// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // This file is a base class plugin containing matrix specifics coefficient wise functions. /** \returns an expression of the Schur product (coefficient wise product) of *this and \a other * * Example: \include MatrixBase_cwiseProduct.cpp * Output: \verbinclude MatrixBase_cwiseProduct.out * * \sa class CwiseBinaryOp, cwiseAbs2 */ template EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived) cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived()); } /** \returns an expression of the coefficient-wise == operator of *this and \a other * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * Example: \include MatrixBase_cwiseEqual.cpp * Output: \verbinclude MatrixBase_cwiseEqual.out * * \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan() */ template inline const CwiseBinaryOp, const Derived, const OtherDerived> cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); } /** \returns an expression of the coefficient-wise != operator of *this and \a other * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * Example: \include MatrixBase_cwiseNotEqual.cpp * Output: \verbinclude MatrixBase_cwiseNotEqual.out * * \sa cwiseEqual(), isApprox(), isMuchSmallerThan() */ template inline const CwiseBinaryOp, const Derived, const OtherDerived> cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); } /** \returns an expression of the coefficient-wise min of *this and \a other * * Example: \include MatrixBase_cwiseMin.cpp * Output: \verbinclude MatrixBase_cwiseMin.out * * \sa class CwiseBinaryOp, max() */ template EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); } /** \returns an expression of the coefficient-wise min of *this and scalar \a other * * \sa class CwiseBinaryOp, min() */ EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> cwiseMin(const Scalar &other) const { return cwiseMin(Derived::Constant(rows(), cols(), other)); } /** \returns an expression of the coefficient-wise max of *this and \a other * * Example: \include MatrixBase_cwiseMax.cpp * Output: \verbinclude MatrixBase_cwiseMax.out * * \sa class CwiseBinaryOp, min() */ template EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); } /** \returns an expression of the coefficient-wise max of *this and scalar \a other * * \sa class CwiseBinaryOp, min() */ EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType> cwiseMax(const Scalar &other) const { return cwiseMax(Derived::Constant(rows(), cols(), other)); } /** \returns an expression of the coefficient-wise quotient of *this and \a other * * Example: \include MatrixBase_cwiseQuotient.cpp * Output: \verbinclude MatrixBase_cwiseQuotient.out * * \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse() */ template EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); } typedef CwiseBinaryOp, const Derived, const ConstantReturnType> CwiseScalarEqualReturnType; /** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * \sa cwiseEqual(const MatrixBase &) const */ inline const CwiseScalarEqualReturnType cwiseEqual(const Scalar& s) const { return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s), internal::scalar_cmp_op()); }