// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud
// Copyright (C) 2006-2008 Benoit Jacob
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This file is a base class plugin containing matrix specifics coefficient wise functions.
/** \returns an expression of the Schur product (coefficient wise product) of *this and \a other
*
* Example: \include MatrixBase_cwiseProduct.cpp
* Output: \verbinclude MatrixBase_cwiseProduct.out
*
* \sa class CwiseBinaryOp, cwiseAbs2
*/
template
EIGEN_STRONG_INLINE const EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)
cwiseProduct(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const
{
return EIGEN_CWISE_PRODUCT_RETURN_TYPE(Derived,OtherDerived)(derived(), other.derived());
}
/** \returns an expression of the coefficient-wise == operator of *this and \a other
*
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
* generally a far better idea to use a fuzzy comparison as provided by isApprox() and
* isMuchSmallerThan().
*
* Example: \include MatrixBase_cwiseEqual.cpp
* Output: \verbinclude MatrixBase_cwiseEqual.out
*
* \sa cwiseNotEqual(), isApprox(), isMuchSmallerThan()
*/
template
inline const CwiseBinaryOp, const Derived, const OtherDerived>
cwiseEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const
{
return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived());
}
/** \returns an expression of the coefficient-wise != operator of *this and \a other
*
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
* generally a far better idea to use a fuzzy comparison as provided by isApprox() and
* isMuchSmallerThan().
*
* Example: \include MatrixBase_cwiseNotEqual.cpp
* Output: \verbinclude MatrixBase_cwiseNotEqual.out
*
* \sa cwiseEqual(), isApprox(), isMuchSmallerThan()
*/
template
inline const CwiseBinaryOp, const Derived, const OtherDerived>
cwiseNotEqual(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const
{
return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived());
}
/** \returns an expression of the coefficient-wise min of *this and \a other
*
* Example: \include MatrixBase_cwiseMin.cpp
* Output: \verbinclude MatrixBase_cwiseMin.out
*
* \sa class CwiseBinaryOp, max()
*/
template
EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived>
cwiseMin(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const
{
return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived());
}
/** \returns an expression of the coefficient-wise min of *this and scalar \a other
*
* \sa class CwiseBinaryOp, min()
*/
EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType>
cwiseMin(const Scalar &other) const
{
return cwiseMin(Derived::Constant(rows(), cols(), other));
}
/** \returns an expression of the coefficient-wise max of *this and \a other
*
* Example: \include MatrixBase_cwiseMax.cpp
* Output: \verbinclude MatrixBase_cwiseMax.out
*
* \sa class CwiseBinaryOp, min()
*/
template
EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived>
cwiseMax(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const
{
return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived());
}
/** \returns an expression of the coefficient-wise max of *this and scalar \a other
*
* \sa class CwiseBinaryOp, min()
*/
EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const ConstantReturnType>
cwiseMax(const Scalar &other) const
{
return cwiseMax(Derived::Constant(rows(), cols(), other));
}
/** \returns an expression of the coefficient-wise quotient of *this and \a other
*
* Example: \include MatrixBase_cwiseQuotient.cpp
* Output: \verbinclude MatrixBase_cwiseQuotient.out
*
* \sa class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
*/
template
EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived>
cwiseQuotient(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const
{
return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived());
}
typedef CwiseBinaryOp, const Derived, const ConstantReturnType> CwiseScalarEqualReturnType;
/** \returns an expression of the coefficient-wise == operator of \c *this and a scalar \a s
*
* \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
* In order to check for equality between two vectors or matrices with floating-point coefficients, it is
* generally a far better idea to use a fuzzy comparison as provided by isApprox() and
* isMuchSmallerThan().
*
* \sa cwiseEqual(const MatrixBase &) const
*/
inline const CwiseScalarEqualReturnType
cwiseEqual(const Scalar& s) const
{
return CwiseScalarEqualReturnType(derived(), Derived::Constant(rows(), cols(), s), internal::scalar_cmp_op());
}