// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEMATRIXBASE_H #define EIGEN_SPARSEMATRIXBASE_H namespace Eigen { /** \ingroup SparseCore_Module * * \class SparseMatrixBase * * \brief Base class of any sparse matrices or sparse expressions * * \tparam Derived * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN. */ template class SparseMatrixBase : public EigenBase { public: typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; typedef typename internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits::type >::type PacketReturnType; typedef SparseMatrixBase StorageBaseType; typedef EigenBase Base; template Derived& operator=(const EigenBase &other) { other.derived().evalTo(derived()); return derived(); } enum { RowsAtCompileTime = internal::traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = internal::traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, internal::traits::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, MaxSizeAtCompileTime = (internal::size_at_compile_time::ret), IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = internal::traits::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ CoeffReadCost = internal::traits::CoeffReadCost, /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ IsRowMajor = Flags&RowMajorBit ? 1 : 0, InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), #ifndef EIGEN_PARSED_BY_DOXYGEN _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC #endif }; /** \internal the return type of MatrixBase::adjoint() */ typedef typename internal::conditional::IsComplex, CwiseUnaryOp, Eigen::Transpose >, Transpose >::type AdjointReturnType; typedef SparseMatrix PlainObject; #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex then RealScalar is \a T. * * \sa class NumTraits */ typedef typename NumTraits::Real RealScalar; /** \internal the return type of coeff() */ typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType; /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp,Matrix > ConstantReturnType; /** type of the equivalent square matrix */ typedef Matrix SquareMatrixType; inline const Derived& derived() const { return *static_cast(this); } inline Derived& derived() { return *static_cast(this); } inline Derived& const_cast_derived() const { return *static_cast(const_cast(this)); } #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/CommonCwiseBinaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" # include "../plugins/MatrixCwiseBinaryOps.h" # include "../plugins/BlockMethods.h" # ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN # include EIGEN_SPARSEMATRIXBASE_PLUGIN # endif # undef EIGEN_CURRENT_STORAGE_BASE_CLASS #undef EIGEN_CURRENT_STORAGE_BASE_CLASS /** \returns the number of rows. \sa cols() */ inline Index rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows() */ inline Index cols() const { return derived().cols(); } /** \returns the number of coefficients, which is \a rows()*cols(). * \sa rows(), cols(). */ inline Index size() const { return rows() * cols(); } /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline Index nonZeros() const { return derived().nonZeros(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ inline bool isVector() const { return rows()==1 || cols()==1; } /** \returns the size of the storage major dimension, * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } /** \returns the size of the inner dimension according to the storage order, * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } bool isRValue() const { return m_isRValue; } Derived& markAsRValue() { m_isRValue = true; return derived(); } SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ } template Derived& operator=(const ReturnByValue& other) { other.evalTo(derived()); return derived(); } template inline Derived& operator=(const SparseMatrixBase& other) { return assign(other.derived()); } inline Derived& operator=(const Derived& other) { // if (other.isRValue()) // derived().swap(other.const_cast_derived()); // else return assign(other.derived()); } protected: template inline Derived& assign(const OtherDerived& other) { const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols(); if ((!transpose) && other.isRValue()) { // eval without temporary derived().resize(other.rows(), other.cols()); derived().setZero(); derived().reserve((std::max)(this->rows(),this->cols())*2); for (Index j=0; j inline void assignGeneric(const OtherDerived& other) { //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); eigen_assert(( ((internal::traits::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) || (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) && "the transpose operation is supposed to be handled in SparseMatrix::operator="); enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) }; const Index outerSize = other.outerSize(); //typedef typename internal::conditional, Derived>::type TempType; // thanks to shallow copies, we always eval to a tempary Derived temp(other.rows(), other.cols()); temp.reserve((std::max)(this->rows(),this->cols())*2); for (Index j=0; j inline Derived& operator=(const SparseSparseProduct& product); friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m) { typedef typename Derived::Nested Nested; typedef typename internal::remove_all::type NestedCleaned; if (Flags&RowMajorBit) { const Nested nm(m.derived()); for (Index row=0; row trans = m; s << static_cast >&>(trans); } } return s; } template Derived& operator+=(const SparseMatrixBase& other); template Derived& operator-=(const SparseMatrixBase& other); Derived& operator*=(const Scalar& other); Derived& operator/=(const Scalar& other); #define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \ CwiseBinaryOp< \ internal::scalar_product_op< \ typename internal::scalar_product_traits< \ typename internal::traits::Scalar, \ typename internal::traits::Scalar \ >::ReturnType \ >, \ const Derived, \ const OtherDerived \ > template EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE cwiseProduct(const MatrixBase &other) const; // sparse * sparse template const typename SparseSparseProductReturnType::Type operator*(const SparseMatrixBase &other) const; // sparse * diagonal template const SparseDiagonalProduct operator*(const DiagonalBase &other) const; // diagonal * sparse template friend const SparseDiagonalProduct operator*(const DiagonalBase &lhs, const SparseMatrixBase& rhs) { return SparseDiagonalProduct(lhs.derived(), rhs.derived()); } /** dense * sparse (return a dense object unless it is an outer product) */ template friend const typename DenseSparseProductReturnType::Type operator*(const MatrixBase& lhs, const Derived& rhs) { return typename DenseSparseProductReturnType::Type(lhs.derived(),rhs); } /** sparse * dense (returns a dense object unless it is an outer product) */ template const typename SparseDenseProductReturnType::Type operator*(const MatrixBase &other) const { return typename SparseDenseProductReturnType::Type(derived(), other.derived()); } /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */ SparseSymmetricPermutationProduct twistedBy(const PermutationMatrix& perm) const { return SparseSymmetricPermutationProduct(derived(), perm); } template Derived& operator*=(const SparseMatrixBase& other); #ifdef EIGEN2_SUPPORT // deprecated template typename internal::plain_matrix_type_column_major::type solveTriangular(const MatrixBase& other) const; // deprecated template void solveTriangularInPlace(MatrixBase& other) const; #endif // EIGEN2_SUPPORT template inline const SparseTriangularView triangularView() const; template inline const SparseSelfAdjointView selfadjointView() const; template inline SparseSelfAdjointView selfadjointView(); template Scalar dot(const MatrixBase& other) const; template Scalar dot(const SparseMatrixBase& other) const; RealScalar squaredNorm() const; RealScalar norm() const; RealScalar blueNorm() const; Transpose transpose() { return derived(); } const Transpose transpose() const { return derived(); } const AdjointReturnType adjoint() const { return transpose(); } // inner-vector typedef Block InnerVectorReturnType; typedef Block ConstInnerVectorReturnType; InnerVectorReturnType innerVector(Index outer); const ConstInnerVectorReturnType innerVector(Index outer) const; // set of inner-vectors typedef Block InnerVectorsReturnType; typedef Block ConstInnerVectorsReturnType; InnerVectorsReturnType innerVectors(Index outerStart, Index outerSize); const ConstInnerVectorsReturnType innerVectors(Index outerStart, Index outerSize) const; /** \internal use operator= */ template void evalTo(MatrixBase& dst) const { dst.setZero(); for (Index j=0; j toDense() const { return derived(); } template bool isApprox(const SparseMatrixBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const { return toDense().isApprox(other.toDense(),prec); } template bool isApprox(const MatrixBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const { return toDense().isApprox(other,prec); } /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ inline const typename internal::eval::type eval() const { return typename internal::eval::type(derived()); } Scalar sum() const; protected: bool m_isRValue; }; } // end namespace Eigen #endif // EIGEN_SPARSEMATRIXBASE_H