// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob // Copyright (C) 2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_JACOBI_H #define EIGEN_JACOBI_H namespace Eigen { /** \ingroup Jacobi_Module * \jacobi_module * \class JacobiRotation * \brief Rotation given by a cosine-sine pair. * * This class represents a Jacobi or Givens rotation. * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by * its cosine \c c and sine \c s as follow: * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ * * You can apply the respective counter-clockwise rotation to a column vector \c v by * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: * \code * v.applyOnTheLeft(J.adjoint()); * \endcode * * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() */ template class JacobiRotation { public: typedef typename NumTraits::Real RealScalar; /** Default constructor without any initialization. */ JacobiRotation() {} /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} Scalar& c() { return m_c; } Scalar c() const { return m_c; } Scalar& s() { return m_s; } Scalar s() const { return m_s; } /** Concatenates two planar rotation */ JacobiRotation operator*(const JacobiRotation& other) { using numext::conj; return JacobiRotation(m_c * other.m_c - conj(m_s) * other.m_s, conj(m_c * conj(other.m_s) + conj(m_s) * conj(other.m_c))); } /** Returns the transposed transformation */ JacobiRotation transpose() const { using numext::conj; return JacobiRotation(m_c, -conj(m_s)); } /** Returns the adjoint transformation */ JacobiRotation adjoint() const { using numext::conj; return JacobiRotation(conj(m_c), -m_s); } template bool makeJacobi(const MatrixBase&, typename Derived::Index p, typename Derived::Index q); bool makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z); void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0); protected: void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type); void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type); Scalar m_c, m_s; }; /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ * * \sa MatrixBase::makeJacobi(const MatrixBase&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() */ template bool JacobiRotation::makeJacobi(const RealScalar& x, const Scalar& y, const RealScalar& z) { using std::sqrt; using std::abs; typedef typename NumTraits::Real RealScalar; if(y == Scalar(0)) { m_c = Scalar(1); m_s = Scalar(0); return false; } else { RealScalar tau = (x-z)/(RealScalar(2)*abs(y)); RealScalar w = sqrt(numext::abs2(tau) + RealScalar(1)); RealScalar t; if(tau>RealScalar(0)) { t = RealScalar(1) / (tau + w); } else { t = RealScalar(1) / (tau - w); } RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); RealScalar n = RealScalar(1) / sqrt(numext::abs2(t)+RealScalar(1)); m_s = - sign_t * (numext::conj(y) / abs(y)) * abs(t) * n; m_c = n; return true; } } /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields * a diagonal matrix \f$ A = J^* B J \f$ * * Example: \include Jacobi_makeJacobi.cpp * Output: \verbinclude Jacobi_makeJacobi.out * * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() */ template template inline bool JacobiRotation::makeJacobi(const MatrixBase& m, typename Derived::Index p, typename Derived::Index q) { return makeJacobi(numext::real(m.coeff(p,p)), m.coeff(p,q), numext::real(m.coeff(q,q))); } /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. * * The value of \a z is returned if \a z is not null (the default is null). * Also note that G is built such that the cosine is always real. * * Example: \include Jacobi_makeGivens.cpp * Output: \verbinclude Jacobi_makeGivens.out * * This function implements the continuous Givens rotation generation algorithm * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. * * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() */ template void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* z) { makeGivens(p, q, z, typename internal::conditional::IsComplex, internal::true_type, internal::false_type>::type()); } // specialization for complexes template void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) { using std::sqrt; using std::abs; using numext::conj; if(q==Scalar(0)) { m_c = numext::real(p)<0 ? Scalar(-1) : Scalar(1); m_s = 0; if(r) *r = m_c * p; } else if(p==Scalar(0)) { m_c = 0; m_s = -q/abs(q); if(r) *r = abs(q); } else { RealScalar p1 = numext::norm1(p); RealScalar q1 = numext::norm1(q); if(p1>=q1) { Scalar ps = p / p1; RealScalar p2 = numext::abs2(ps); Scalar qs = q / p1; RealScalar q2 = numext::abs2(qs); RealScalar u = sqrt(RealScalar(1) + q2/p2); if(numext::real(p) void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) { using std::sqrt; using std::abs; if(q==Scalar(0)) { m_c = p abs(q)) { Scalar t = q/p; Scalar u = sqrt(Scalar(1) + numext::abs2(t)); if(p void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation& j); } /** \jacobi_module * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. * * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() */ template template inline void MatrixBase::applyOnTheLeft(Index p, Index q, const JacobiRotation& j) { RowXpr x(this->row(p)); RowXpr y(this->row(q)); internal::apply_rotation_in_the_plane(x, y, j); } /** \ingroup Jacobi_Module * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. * * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() */ template template inline void MatrixBase::applyOnTheRight(Index p, Index q, const JacobiRotation& j) { ColXpr x(this->col(p)); ColXpr y(this->col(q)); internal::apply_rotation_in_the_plane(x, y, j.transpose()); } namespace internal { template void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation& j) { typedef typename VectorX::Index Index; typedef typename VectorX::Scalar Scalar; enum { PacketSize = packet_traits::size }; typedef typename packet_traits::type Packet; eigen_assert(_x.size() == _y.size()); Index size = _x.size(); Index incrx = _x.innerStride(); Index incry = _y.innerStride(); Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0); Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0); OtherScalar c = j.c(); OtherScalar s = j.s(); if (c==OtherScalar(1) && s==OtherScalar(0)) return; /*** dynamic-size vectorized paths ***/ if(VectorX::SizeAtCompileTime == Dynamic && (VectorX::Flags & VectorY::Flags & PacketAccessBit) && ((incrx==1 && incry==1) || PacketSize == 1)) { // both vectors are sequentially stored in memory => vectorization enum { Peeling = 2 }; Index alignedStart = internal::first_aligned(y, size); Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; const Packet pc = pset1(c); const Packet ps = pset1(s); conj_helper::IsComplex,false> pcj; for(Index i=0; i(px); Packet yi = pload(py); pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); px += PacketSize; py += PacketSize; } } else { Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); for(Index i=alignedStart; i(px); Packet xi1 = ploadu(px+PacketSize); Packet yi = pload (py); Packet yi1 = pload (py+PacketSize); pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1))); pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1))); px += Peeling*PacketSize; py += Peeling*PacketSize; } if(alignedEnd!=peelingEnd) { Packet xi = ploadu(x+peelingEnd); Packet yi = pload (y+peelingEnd); pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi))); pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi))); } } for(Index i=alignedEnd; i(c); const Packet ps = pset1(s); conj_helper::IsComplex,false> pcj; Scalar* EIGEN_RESTRICT px = x; Scalar* EIGEN_RESTRICT py = y; for(Index i=0; i(px); Packet yi = pload(py); pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); px += PacketSize; py += PacketSize; } } /*** non-vectorized path ***/ else { for(Index i=0; i