// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2010 Konstantinos Margaritis // Heavily based on Gael's SSE version. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_PACKET_MATH_NEON_H #define EIGEN_PACKET_MATH_NEON_H namespace Eigen { namespace internal { #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 #endif // FIXME NEON has 16 quad registers, but since the current register allocator // is so bad, it is much better to reduce it to 8 #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8 #endif typedef float32x4_t Packet4f; typedef int32x4_t Packet4i; typedef uint32x4_t Packet4ui; #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ const Packet4f p4f_##NAME = pset1(X) #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1(X)) #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ const Packet4i p4i_##NAME = pset1(X) #if defined(__llvm__) && !defined(__clang__) //Special treatment for Apple's llvm-gcc, its NEON packet types are unions #define EIGEN_INIT_NEON_PACKET2(X, Y) {{X, Y}} #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}} #else //Default initializer for packets #define EIGEN_INIT_NEON_PACKET2(X, Y) {X, Y} #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W} #endif // arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function // which available on LLVM and GCC (at least) #if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__) #define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR); #elif defined __pld #define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR) #elif !defined(__aarch64__) #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" ); #else // by default no explicit prefetching #define EIGEN_ARM_PREFETCH(ADDR) #endif template<> struct packet_traits : default_packet_traits { typedef Packet4f type; enum { Vectorizable = 1, AlignedOnScalar = 1, size = 4, HasDiv = 1, // FIXME check the Has* HasSin = 0, HasCos = 0, HasLog = 0, HasExp = 0, HasSqrt = 0 }; }; template<> struct packet_traits : default_packet_traits { typedef Packet4i type; enum { Vectorizable = 1, AlignedOnScalar = 1, size=4 // FIXME check the Has* }; }; #if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__) // workaround gcc 4.2, 4.3 and 4.4 compilatin issue EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); } EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); } EIGEN_STRONG_INLINE void vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); } EIGEN_STRONG_INLINE void vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); } #endif template<> struct unpacket_traits { typedef float type; enum {size=4}; }; template<> struct unpacket_traits { typedef int type; enum {size=4}; }; template<> EIGEN_STRONG_INLINE Packet4f pset1(const float& from) { return vdupq_n_f32(from); } template<> EIGEN_STRONG_INLINE Packet4i pset1(const int& from) { return vdupq_n_s32(from); } template<> EIGEN_STRONG_INLINE Packet4f plset(const float& a) { Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3); return vaddq_f32(pset1(a), countdown); } template<> EIGEN_STRONG_INLINE Packet4i plset(const int& a) { Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3); return vaddq_s32(pset1(a), countdown); } template<> EIGEN_STRONG_INLINE Packet4f padd(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); } template<> EIGEN_STRONG_INLINE Packet4i padd(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f psub(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); } template<> EIGEN_STRONG_INLINE Packet4i psub(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); } template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); } template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } template<> EIGEN_STRONG_INLINE Packet4f pmul(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); } template<> EIGEN_STRONG_INLINE Packet4i pmul(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f pdiv(const Packet4f& a, const Packet4f& b) { Packet4f inv, restep, div; // NEON does not offer a divide instruction, we have to do a reciprocal approximation // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers // a reciprocal estimate AND a reciprocal step -which saves a few instructions // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with // Newton-Raphson and vrecpsq_f32() inv = vrecpeq_f32(b); // This returns a differential, by which we will have to multiply inv to get a better // approximation of 1/b. restep = vrecpsq_f32(b, inv); inv = vmulq_f32(restep, inv); // Finally, multiply a by 1/b and get the wanted result of the division. div = vmulq_f32(a, inv); return div; } template<> EIGEN_STRONG_INLINE Packet4i pdiv(const Packet4i& /*a*/, const Packet4i& /*b*/) { eigen_assert(false && "packet integer division are not supported by NEON"); return pset1(0); } // for some weird raisons, it has to be overloaded for packet of integers template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); } template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); } template<> EIGEN_STRONG_INLINE Packet4f pmin(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); } template<> EIGEN_STRONG_INLINE Packet4i pmin(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f pmax(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); } template<> EIGEN_STRONG_INLINE Packet4i pmax(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); } // Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics template<> EIGEN_STRONG_INLINE Packet4f pand(const Packet4f& a, const Packet4f& b) { return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } template<> EIGEN_STRONG_INLINE Packet4i pand(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f por(const Packet4f& a, const Packet4f& b) { return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } template<> EIGEN_STRONG_INLINE Packet4i por(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f pxor(const Packet4f& a, const Packet4f& b) { return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } template<> EIGEN_STRONG_INLINE Packet4i pxor(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f pandnot(const Packet4f& a, const Packet4f& b) { return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b))); } template<> EIGEN_STRONG_INLINE Packet4i pandnot(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); } template<> EIGEN_STRONG_INLINE Packet4f pload(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); } template<> EIGEN_STRONG_INLINE Packet4i pload(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); } template<> EIGEN_STRONG_INLINE Packet4f ploadu(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); } template<> EIGEN_STRONG_INLINE Packet4i ploadu(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); } template<> EIGEN_STRONG_INLINE Packet4f ploaddup(const float* from) { float32x2_t lo, hi; lo = vld1_dup_f32(from); hi = vld1_dup_f32(from+1); return vcombine_f32(lo, hi); } template<> EIGEN_STRONG_INLINE Packet4i ploaddup(const int* from) { int32x2_t lo, hi; lo = vld1_dup_s32(from); hi = vld1_dup_s32(from+1); return vcombine_s32(lo, hi); } template<> EIGEN_STRONG_INLINE void pstore(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); } template<> EIGEN_STRONG_INLINE void pstore(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); } template<> EIGEN_STRONG_INLINE void pstoreu(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); } template<> EIGEN_STRONG_INLINE void pstoreu(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); } template<> EIGEN_STRONG_INLINE void prefetch(const float* addr) { EIGEN_ARM_PREFETCH(addr); } template<> EIGEN_STRONG_INLINE void prefetch(const int* addr) { EIGEN_ARM_PREFETCH(addr); } // FIXME only store the 2 first elements ? template<> EIGEN_STRONG_INLINE float pfirst(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; } template<> EIGEN_STRONG_INLINE int pfirst(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; } template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { float32x2_t a_lo, a_hi; Packet4f a_r64; a_r64 = vrev64q_f32(a); a_lo = vget_low_f32(a_r64); a_hi = vget_high_f32(a_r64); return vcombine_f32(a_hi, a_lo); } template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { int32x2_t a_lo, a_hi; Packet4i a_r64; a_r64 = vrev64q_s32(a); a_lo = vget_low_s32(a_r64); a_hi = vget_high_s32(a_r64); return vcombine_s32(a_hi, a_lo); } template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); } template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); } template<> EIGEN_STRONG_INLINE float predux(const Packet4f& a) { float32x2_t a_lo, a_hi, sum; a_lo = vget_low_f32(a); a_hi = vget_high_f32(a); sum = vpadd_f32(a_lo, a_hi); sum = vpadd_f32(sum, sum); return vget_lane_f32(sum, 0); } template<> EIGEN_STRONG_INLINE Packet4f preduxp(const Packet4f* vecs) { float32x4x2_t vtrn1, vtrn2, res1, res2; Packet4f sum1, sum2, sum; // NEON zip performs interleaving of the supplied vectors. // We perform two interleaves in a row to acquire the transposed vector vtrn1 = vzipq_f32(vecs[0], vecs[2]); vtrn2 = vzipq_f32(vecs[1], vecs[3]); res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]); res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]); // Do the addition of the resulting vectors sum1 = vaddq_f32(res1.val[0], res1.val[1]); sum2 = vaddq_f32(res2.val[0], res2.val[1]); sum = vaddq_f32(sum1, sum2); return sum; } template<> EIGEN_STRONG_INLINE int predux(const Packet4i& a) { int32x2_t a_lo, a_hi, sum; a_lo = vget_low_s32(a); a_hi = vget_high_s32(a); sum = vpadd_s32(a_lo, a_hi); sum = vpadd_s32(sum, sum); return vget_lane_s32(sum, 0); } template<> EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs) { int32x4x2_t vtrn1, vtrn2, res1, res2; Packet4i sum1, sum2, sum; // NEON zip performs interleaving of the supplied vectors. // We perform two interleaves in a row to acquire the transposed vector vtrn1 = vzipq_s32(vecs[0], vecs[2]); vtrn2 = vzipq_s32(vecs[1], vecs[3]); res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]); res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]); // Do the addition of the resulting vectors sum1 = vaddq_s32(res1.val[0], res1.val[1]); sum2 = vaddq_s32(res2.val[0], res2.val[1]); sum = vaddq_s32(sum1, sum2); return sum; } // Other reduction functions: // mul template<> EIGEN_STRONG_INLINE float predux_mul(const Packet4f& a) { float32x2_t a_lo, a_hi, prod; // Get a_lo = |a1|a2| and a_hi = |a3|a4| a_lo = vget_low_f32(a); a_hi = vget_high_f32(a); // Get the product of a_lo * a_hi -> |a1*a3|a2*a4| prod = vmul_f32(a_lo, a_hi); // Multiply prod with its swapped value |a2*a4|a1*a3| prod = vmul_f32(prod, vrev64_f32(prod)); return vget_lane_f32(prod, 0); } template<> EIGEN_STRONG_INLINE int predux_mul(const Packet4i& a) { int32x2_t a_lo, a_hi, prod; // Get a_lo = |a1|a2| and a_hi = |a3|a4| a_lo = vget_low_s32(a); a_hi = vget_high_s32(a); // Get the product of a_lo * a_hi -> |a1*a3|a2*a4| prod = vmul_s32(a_lo, a_hi); // Multiply prod with its swapped value |a2*a4|a1*a3| prod = vmul_s32(prod, vrev64_s32(prod)); return vget_lane_s32(prod, 0); } // min template<> EIGEN_STRONG_INLINE float predux_min(const Packet4f& a) { float32x2_t a_lo, a_hi, min; a_lo = vget_low_f32(a); a_hi = vget_high_f32(a); min = vpmin_f32(a_lo, a_hi); min = vpmin_f32(min, min); return vget_lane_f32(min, 0); } template<> EIGEN_STRONG_INLINE int predux_min(const Packet4i& a) { int32x2_t a_lo, a_hi, min; a_lo = vget_low_s32(a); a_hi = vget_high_s32(a); min = vpmin_s32(a_lo, a_hi); min = vpmin_s32(min, min); return vget_lane_s32(min, 0); } // max template<> EIGEN_STRONG_INLINE float predux_max(const Packet4f& a) { float32x2_t a_lo, a_hi, max; a_lo = vget_low_f32(a); a_hi = vget_high_f32(a); max = vpmax_f32(a_lo, a_hi); max = vpmax_f32(max, max); return vget_lane_f32(max, 0); } template<> EIGEN_STRONG_INLINE int predux_max(const Packet4i& a) { int32x2_t a_lo, a_hi, max; a_lo = vget_low_s32(a); a_hi = vget_high_s32(a); max = vpmax_s32(a_lo, a_hi); return vget_lane_s32(max, 0); } // this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors, // see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074 #define PALIGN_NEON(Offset,Type,Command) \ template<>\ struct palign_impl\ {\ EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\ {\ if (Offset!=0)\ first = Command(first, second, Offset);\ }\ };\ PALIGN_NEON(0,Packet4f,vextq_f32) PALIGN_NEON(1,Packet4f,vextq_f32) PALIGN_NEON(2,Packet4f,vextq_f32) PALIGN_NEON(3,Packet4f,vextq_f32) PALIGN_NEON(0,Packet4i,vextq_s32) PALIGN_NEON(1,Packet4i,vextq_s32) PALIGN_NEON(2,Packet4i,vextq_s32) PALIGN_NEON(3,Packet4i,vextq_s32) #undef PALIGN_NEON } // end namespace internal } // end namespace Eigen #endif // EIGEN_PACKET_MATH_NEON_H