// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_JACOBISVD_H #define EIGEN_JACOBISVD_H namespace Eigen { namespace internal { // forward declaration (needed by ICC) // the empty body is required by MSVC template::IsComplex> struct svd_precondition_2x2_block_to_be_real {}; /*** QR preconditioners (R-SVD) *** *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for *** JacobiSVD which by itself is only able to work on square matrices. ***/ enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; template struct qr_preconditioner_should_do_anything { enum { a = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, b = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, ret = !( (QRPreconditioner == NoQRPreconditioner) || (Case == PreconditionIfMoreColsThanRows && bool(a)) || (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) }; }; template::ret > struct qr_preconditioner_impl {}; template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; void allocate(const JacobiSVD&) {} bool run(JacobiSVD&, const MatrixType&) { return false; } }; /*** preconditioner using FullPivHouseholderQR ***/ template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime }; typedef Matrix WorkspaceType; void allocate(const JacobiSVD& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); return true; } return false; } private: typedef FullPivHouseholderQR QRType; QRType m_qr; WorkspaceType m_workspace; }; template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } m_adjoint.resize(svd.cols(), svd.rows()); if (svd.m_computeFullV) m_workspace.resize(svd.cols()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); return true; } else return false; } private: typedef FullPivHouseholderQR QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type::type m_workspace; }; /*** preconditioner using ColPivHouseholderQR ***/ template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; void allocate(const JacobiSVD& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); else if(svd.m_computeThinU) { svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); } if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); return true; } return false; } private: typedef ColPivHouseholderQR QRType; QRType m_qr; typename internal::plain_col_type::type m_workspace; }; template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } if (svd.m_computeFullV) m_workspace.resize(svd.cols()); else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); m_adjoint.resize(svd.cols(), svd.rows()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); else if(svd.m_computeThinV) { svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); } if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); return true; } else return false; } private: typedef ColPivHouseholderQR QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type::type m_workspace; }; /*** preconditioner using HouseholderQR ***/ template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; void allocate(const JacobiSVD& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); else if(svd.m_computeThinU) { svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); } if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); return true; } return false; } private: typedef HouseholderQR QRType; QRType m_qr; typename internal::plain_col_type::type m_workspace; }; template class qr_preconditioner_impl { public: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } if (svd.m_computeFullV) m_workspace.resize(svd.cols()); else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); m_adjoint.resize(svd.cols(), svd.rows()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); else if(svd.m_computeThinV) { svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); } if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); return true; } else return false; } private: typedef HouseholderQR QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type::type m_workspace; }; /*** 2x2 SVD implementation *** *** JacobiSVD consists in performing a series of 2x2 SVD subproblems ***/ template struct svd_precondition_2x2_block_to_be_real { typedef JacobiSVD SVD; typedef typename SVD::Index Index; static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {} }; template struct svd_precondition_2x2_block_to_be_real { typedef JacobiSVD SVD; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; typedef typename SVD::Index Index; static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q) { using std::sqrt; Scalar z; JacobiRotation rot; RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); if(n==0) { z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); work_matrix.row(p) *= z; if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); work_matrix.row(q) *= z; if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); } else { rot.c() = conj(work_matrix.coeff(p,p)) / n; rot.s() = work_matrix.coeff(q,p) / n; work_matrix.applyOnTheLeft(p,q,rot); if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); if(work_matrix.coeff(p,q) != Scalar(0)) { Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); work_matrix.col(q) *= z; if(svd.computeV()) svd.m_matrixV.col(q) *= z; } if(work_matrix.coeff(q,q) != Scalar(0)) { z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); work_matrix.row(q) *= z; if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); } } } }; template void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, JacobiRotation *j_left, JacobiRotation *j_right) { using std::sqrt; Matrix m; m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); JacobiRotation rot1; RealScalar t = m.coeff(0,0) + m.coeff(1,1); RealScalar d = m.coeff(1,0) - m.coeff(0,1); if(t == RealScalar(0)) { rot1.c() = RealScalar(0); rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1); } else { RealScalar u = d / t; rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u)); rot1.s() = rot1.c() * u; } m.applyOnTheLeft(0,1,rot1); j_right->makeJacobi(m,0,1); *j_left = rot1 * j_right->transpose(); } } // end namespace internal /** \ingroup SVD_Module * * * \class JacobiSVD * * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix * * \param MatrixType the type of the matrix of which we are computing the SVD decomposition * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally * for the R-SVD step for non-square matrices. See discussion of possible values below. * * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product * \f[ A = U S V^* \f] * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left * and right \em singular \em vectors of \a A respectively. * * Singular values are always sorted in decreasing order. * * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. * * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. * * Here's an example demonstrating basic usage: * \include JacobiSVD_basic.cpp * Output: \verbinclude JacobiSVD_basic.out * * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. * * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to * terminate in finite (and reasonable) time. * * The possible values for QRPreconditioner are: * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. * Contrary to other QRs, it doesn't allow computing thin unitaries. * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive * process is more reliable than the optimized bidiagonal SVD iterations. * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking * if QR preconditioning is needed before applying it anyway. * * \sa MatrixBase::jacobiSvd() */ template class JacobiSVD : public SVDBase<_MatrixType> { public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename MatrixType::Index Index; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options }; typedef Matrix MatrixUType; typedef Matrix MatrixVType; typedef typename internal::plain_diag_type::type SingularValuesType; typedef typename internal::plain_row_type::type RowType; typedef typename internal::plain_col_type::type ColType; typedef Matrix WorkMatrixType; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via JacobiSVD::compute(const MatrixType&). */ JacobiSVD() : SVDBase<_MatrixType>::SVDBase() {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem size. * \sa JacobiSVD() */ JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) : SVDBase<_MatrixType>::SVDBase() { allocate(rows, cols, computationOptions); } /** \brief Constructor performing the decomposition of given matrix. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) : SVDBase<_MatrixType>::SVDBase() { compute(matrix, computationOptions); } /** \brief Method performing the decomposition of given matrix using custom options. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions); /** \brief Method performing the decomposition of given matrix using current options. * * \param matrix the matrix to decompose * * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). */ SVDBase& compute(const MatrixType& matrix) { return compute(matrix, this->m_computationOptions); } /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. * * \param b the right-hand-side of the equation to solve. * * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. * * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. */ template inline const internal::solve_retval solve(const MatrixBase& b) const { eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized."); eigen_assert(SVDBase::computeU() && SVDBase::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); return internal::solve_retval(*this, b.derived()); } private: void allocate(Index rows, Index cols, unsigned int computationOptions); protected: WorkMatrixType m_workMatrix; template friend struct internal::svd_precondition_2x2_block_to_be_real; template friend struct internal::qr_preconditioner_impl; internal::qr_preconditioner_impl m_qr_precond_morecols; internal::qr_preconditioner_impl m_qr_precond_morerows; }; template void JacobiSVD::allocate(Index rows, Index cols, unsigned int computationOptions) { if (SVDBase::allocate(rows, cols, computationOptions)) return; if (QRPreconditioner == FullPivHouseholderQRPreconditioner) { eigen_assert(!(this->m_computeThinU || this->m_computeThinV) && "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " "Use the ColPivHouseholderQR preconditioner instead."); } m_workMatrix.resize(this->m_diagSize, this->m_diagSize); if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this); if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this); } template SVDBase& JacobiSVD::compute(const MatrixType& matrix, unsigned int computationOptions) { using std::abs; allocate(matrix.rows(), matrix.cols(), computationOptions); // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, // only worsening the precision of U and V as we accumulate more rotations const RealScalar precision = RealScalar(2) * NumTraits::epsilon(); // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits::denorm_min(); /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix)) { m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize); if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows); if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize); if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols); if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize); } /*** step 2. The main Jacobi SVD iteration. ***/ bool finished = false; while(!finished) { finished = true; // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix for(Index p = 1; p < this->m_diagSize; ++p) { for(Index q = 0; q < p; ++q) { // if this 2x2 sub-matrix is not diagonal already... // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't // keep us iterating forever. Similarly, small denormal numbers are considered zero. using std::max; RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold) { finished = false; // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal internal::svd_precondition_2x2_block_to_be_real::run(m_workMatrix, *this, p, q); JacobiRotation j_left, j_right; internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); // accumulate resulting Jacobi rotations m_workMatrix.applyOnTheLeft(p,q,j_left); if(SVDBase::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose()); m_workMatrix.applyOnTheRight(p,q,j_right); if(SVDBase::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right); } } } } /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ for(Index i = 0; i < this->m_diagSize; ++i) { RealScalar a = abs(m_workMatrix.coeff(i,i)); this->m_singularValues.coeffRef(i) = a; if(SVDBase::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a; } /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ this->m_nonzeroSingularValues = this->m_diagSize; for(Index i = 0; i < this->m_diagSize; i++) { Index pos; RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos); if(maxRemainingSingularValue == RealScalar(0)) { this->m_nonzeroSingularValues = i; break; } if(pos) { pos += i; std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos)); if(SVDBase::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i)); if(SVDBase::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i)); } } this->m_isInitialized = true; return *this; } namespace internal { template struct solve_retval, Rhs> : solve_retval_base, Rhs> { typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType; EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs) template void evalTo(Dest& dst) const { eigen_assert(rhs().rows() == dec().rows()); // A = U S V^* // So A^{-1} = V S^{-1} U^* Index diagSize = (std::min)(dec().rows(), dec().cols()); typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize); Index nonzeroSingVals = dec().nonzeroSingularValues(); invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse(); invertedSingVals.tail(diagSize - nonzeroSingVals).setZero(); dst = dec().matrixV().leftCols(diagSize) * invertedSingVals.asDiagonal() * dec().matrixU().leftCols(diagSize).adjoint() * rhs(); } }; } // end namespace internal /** \svd_module * * \return the singular value decomposition of \c *this computed by two-sided * Jacobi transformations. * * \sa class JacobiSVD */ template JacobiSVD::PlainObject> MatrixBase::jacobiSvd(unsigned int computationOptions) const { return JacobiSVD(*this, computationOptions); } } // end namespace Eigen #endif // EIGEN_JACOBISVD_H