// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_HOMOGENEOUS_H #define EIGEN_HOMOGENEOUS_H namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class Homogeneous * * \brief Expression of one (or a set of) homogeneous vector(s) * * \param MatrixType the type of the object in which we are making homogeneous * * This class represents an expression of one (or a set of) homogeneous vector(s). * It is the return type of MatrixBase::homogeneous() and most of the time * this is the only way it is used. * * \sa MatrixBase::homogeneous() */ namespace internal { template struct traits > : traits { typedef typename traits::StorageKind StorageKind; typedef typename nested::type MatrixTypeNested; typedef typename remove_reference::type _MatrixTypeNested; enum { RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, RowsAtCompileTime = Direction==Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, ColsAtCompileTime = Direction==Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, TmpFlags = _MatrixTypeNested::Flags & HereditaryBits, Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit) : RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit) : TmpFlags, CoeffReadCost = _MatrixTypeNested::CoeffReadCost }; }; template struct homogeneous_left_product_impl; template struct homogeneous_right_product_impl; } // end namespace internal template class Homogeneous : internal::no_assignment_operator, public MatrixBase > { public: enum { Direction = _Direction }; typedef MatrixBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {} inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); } inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); } inline Scalar coeff(Index row, Index col) const { if( (int(Direction)==Vertical && row==m_matrix.rows()) || (int(Direction)==Horizontal && col==m_matrix.cols())) return Scalar(1); return m_matrix.coeff(row, col); } template inline const internal::homogeneous_right_product_impl operator* (const MatrixBase& rhs) const { eigen_assert(int(Direction)==Horizontal); return internal::homogeneous_right_product_impl(m_matrix,rhs.derived()); } template friend inline const internal::homogeneous_left_product_impl operator* (const MatrixBase& lhs, const Homogeneous& rhs) { eigen_assert(int(Direction)==Vertical); return internal::homogeneous_left_product_impl(lhs.derived(),rhs.m_matrix); } template friend inline const internal::homogeneous_left_product_impl > operator* (const Transform& lhs, const Homogeneous& rhs) { eigen_assert(int(Direction)==Vertical); return internal::homogeneous_left_product_impl >(lhs,rhs.m_matrix); } protected: typename MatrixType::Nested m_matrix; }; /** \geometry_module * * \return an expression of the equivalent homogeneous vector * * \only_for_vectors * * Example: \include MatrixBase_homogeneous.cpp * Output: \verbinclude MatrixBase_homogeneous.out * * \sa class Homogeneous */ template inline typename MatrixBase::HomogeneousReturnType MatrixBase::homogeneous() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return derived(); } /** \geometry_module * * \returns a matrix expression of homogeneous column (or row) vectors * * Example: \include VectorwiseOp_homogeneous.cpp * Output: \verbinclude VectorwiseOp_homogeneous.out * * \sa MatrixBase::homogeneous() */ template inline Homogeneous VectorwiseOp::homogeneous() const { return _expression(); } /** \geometry_module * * \returns an expression of the homogeneous normalized vector of \c *this * * Example: \include MatrixBase_hnormalized.cpp * Output: \verbinclude MatrixBase_hnormalized.out * * \sa VectorwiseOp::hnormalized() */ template inline const typename MatrixBase::HNormalizedReturnType MatrixBase::hnormalized() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); return ConstStartMinusOne(derived(),0,0, ColsAtCompileTime==1?size()-1:1, ColsAtCompileTime==1?1:size()-1) / coeff(size()-1); } /** \geometry_module * * \returns an expression of the homogeneous normalized vector of \c *this * * Example: \include DirectionWise_hnormalized.cpp * Output: \verbinclude DirectionWise_hnormalized.out * * \sa MatrixBase::hnormalized() */ template inline const typename VectorwiseOp::HNormalizedReturnType VectorwiseOp::hnormalized() const { return HNormalized_Block(_expression(),0,0, Direction==Vertical ? _expression().rows()-1 : _expression().rows(), Direction==Horizontal ? _expression().cols()-1 : _expression().cols()).cwiseQuotient( Replicate (HNormalized_Factors(_expression(), Direction==Vertical ? _expression().rows()-1:0, Direction==Horizontal ? _expression().cols()-1:0, Direction==Vertical ? 1 : _expression().rows(), Direction==Horizontal ? 1 : _expression().cols()), Direction==Vertical ? _expression().rows()-1 : 1, Direction==Horizontal ? _expression().cols()-1 : 1)); } namespace internal { template struct take_matrix_for_product { typedef MatrixOrTransformType type; static const type& run(const type &x) { return x; } }; template struct take_matrix_for_product > { typedef Transform TransformType; typedef typename internal::add_const::type type; static type run (const TransformType& x) { return x.affine(); } }; template struct take_matrix_for_product > { typedef Transform TransformType; typedef typename TransformType::MatrixType type; static const type& run (const TransformType& x) { return x.matrix(); } }; template struct traits,Lhs> > { typedef typename take_matrix_for_product::type LhsMatrixType; typedef typename remove_all::type MatrixTypeCleaned; typedef typename remove_all::type LhsMatrixTypeCleaned; typedef typename make_proper_matrix_type< typename traits::Scalar, LhsMatrixTypeCleaned::RowsAtCompileTime, MatrixTypeCleaned::ColsAtCompileTime, MatrixTypeCleaned::PlainObject::Options, LhsMatrixTypeCleaned::MaxRowsAtCompileTime, MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; }; template struct homogeneous_left_product_impl,Lhs> : public ReturnByValue,Lhs> > { typedef typename traits::LhsMatrixType LhsMatrixType; typedef typename remove_all::type LhsMatrixTypeCleaned; typedef typename remove_all::type LhsMatrixTypeNested; typedef typename MatrixType::Index Index; homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) : m_lhs(take_matrix_for_product::run(lhs)), m_rhs(rhs) {} inline Index rows() const { return m_lhs.rows(); } inline Index cols() const { return m_rhs.cols(); } template void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = Block (m_lhs,0,0,m_lhs.rows(),m_lhs.cols()-1) * m_rhs; dst += m_lhs.col(m_lhs.cols()-1).rowwise() .template replicate(m_rhs.cols()); } typename LhsMatrixTypeCleaned::Nested m_lhs; typename MatrixType::Nested m_rhs; }; template struct traits,Rhs> > { typedef typename make_proper_matrix_type::Scalar, MatrixType::RowsAtCompileTime, Rhs::ColsAtCompileTime, MatrixType::PlainObject::Options, MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime>::type ReturnType; }; template struct homogeneous_right_product_impl,Rhs> : public ReturnByValue,Rhs> > { typedef typename remove_all::type RhsNested; typedef typename MatrixType::Index Index; homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {} inline Index rows() const { return m_lhs.rows(); } inline Index cols() const { return m_rhs.cols(); } template void evalTo(Dest& dst) const { // FIXME investigate how to allow lazy evaluation of this product when possible dst = m_lhs * Block (m_rhs,0,0,m_rhs.rows()-1,m_rhs.cols()); dst += m_rhs.row(m_rhs.rows()-1).colwise() .template replicate(m_lhs.rows()); } typename MatrixType::Nested m_lhs; typename Rhs::Nested m_rhs; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_HOMOGENEOUS_H