// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007-2010 Benoit Jacob // Copyright (C) 2008-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DENSEBASE_H #define EIGEN_DENSEBASE_H namespace Eigen { namespace internal { // The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type. // This dummy function simply aims at checking that at compile time. static inline void check_DenseIndex_is_signed() { EIGEN_STATIC_ASSERT(NumTraits::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); } } // end namespace internal /** \class DenseBase * \ingroup Core_Module * * \brief Base class for all dense matrices, vectors, and arrays * * This class is the base that is inherited by all dense objects (matrix, vector, arrays, * and related expression types). The common Eigen API for dense objects is contained in this class. * * \tparam Derived is the derived type, e.g., a matrix type or an expression. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN. * * \sa \ref TopicClassHierarchy */ template class DenseBase #ifndef EIGEN_PARSED_BY_DOXYGEN : public internal::special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real> #else : public DenseCoeffsBase #endif // not EIGEN_PARSED_BY_DOXYGEN { public: using internal::special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real>::operator*; class InnerIterator; typedef typename internal::traits::StorageKind StorageKind; /** \brief The type of indices * \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE. * \sa \ref TopicPreprocessorDirectives. */ typedef typename internal::traits::Index Index; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; typedef DenseCoeffsBase Base; using Base::derived; using Base::const_cast_derived; using Base::rows; using Base::cols; using Base::size; using Base::rowIndexByOuterInner; using Base::colIndexByOuterInner; using Base::coeff; using Base::coeffByOuterInner; using Base::packet; using Base::packetByOuterInner; using Base::writePacket; using Base::writePacketByOuterInner; using Base::coeffRef; using Base::coeffRefByOuterInner; using Base::copyCoeff; using Base::copyCoeffByOuterInner; using Base::copyPacket; using Base::copyPacketByOuterInner; using Base::operator(); using Base::operator[]; using Base::x; using Base::y; using Base::z; using Base::w; using Base::stride; using Base::innerStride; using Base::outerStride; using Base::rowStride; using Base::colStride; typedef typename Base::CoeffReturnType CoeffReturnType; enum { RowsAtCompileTime = internal::traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = internal::traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, internal::traits::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, /**< This value is equal to the maximum possible number of rows that this expression * might have. If this expression might have an arbitrarily high number of rows, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime */ MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of columns that this expression * might have. If this expression might have an arbitrarily high number of columns, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime */ MaxSizeAtCompileTime = (internal::size_at_compile_time::MaxRowsAtCompileTime, internal::traits::MaxColsAtCompileTime>::ret), /**< This value is equal to the maximum possible number of coefficients that this expression * might have. If this expression might have an arbitrarily high number of coefficients, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime */ IsVectorAtCompileTime = internal::traits::MaxRowsAtCompileTime == 1 || internal::traits::MaxColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = internal::traits::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */ InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), CoeffReadCost = internal::traits::CoeffReadCost, /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ InnerStrideAtCompileTime = internal::inner_stride_at_compile_time::ret, OuterStrideAtCompileTime = internal::outer_stride_at_compile_time::ret }; enum { ThisConstantIsPrivateInPlainObjectBase }; /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline Index nonZeros() const { return size(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ /** \returns the outer size. * * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a * column-major matrix, and the number of rows for a row-major matrix. */ Index outerSize() const { return IsVectorAtCompileTime ? 1 : int(IsRowMajor) ? this->rows() : this->cols(); } /** \returns the inner size. * * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension * with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a * column-major matrix, and the number of columns for a row-major matrix. */ Index innerSize() const { return IsVectorAtCompileTime ? this->size() : int(IsRowMajor) ? this->cols() : this->rows(); } /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(Index newSize) { EIGEN_ONLY_USED_FOR_DEBUG(newSize); eigen_assert(newSize == this->size() && "DenseBase::resize() does not actually allow to resize."); } /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(Index nbRows, Index nbCols) { EIGEN_ONLY_USED_FOR_DEBUG(nbRows); EIGEN_ONLY_USED_FOR_DEBUG(nbCols); eigen_assert(nbRows == this->rows() && nbCols == this->cols() && "DenseBase::resize() does not actually allow to resize."); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp,Derived> ConstantReturnType; /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */ typedef CwiseNullaryOp,Derived> SequentialLinSpacedReturnType; /** \internal Represents a vector with linearly spaced coefficients that allows random access. */ typedef CwiseNullaryOp,Derived> RandomAccessLinSpacedReturnType; /** \internal the return type of MatrixBase::eigenvalues() */ typedef Matrix::Scalar>::Real, internal::traits::ColsAtCompileTime, 1> EigenvaluesReturnType; #endif // not EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this. \returns a reference to *this. */ template Derived& operator=(const DenseBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ Derived& operator=(const DenseBase& other); template Derived& operator=(const EigenBase &other); template Derived& operator+=(const EigenBase &other); template Derived& operator-=(const EigenBase &other); template Derived& operator=(const ReturnByValue& func); /** \internal Copies \a other into *this without evaluating other. \returns a reference to *this. */ template Derived& lazyAssign(const DenseBase& other); /** \internal Evaluates \a other into *this. \returns a reference to *this. */ template Derived& lazyAssign(const ReturnByValue& other); CommaInitializer operator<< (const Scalar& s); template const Flagged flagged() const; template CommaInitializer operator<< (const DenseBase& other); Eigen::Transpose transpose(); typedef typename internal::add_const >::type ConstTransposeReturnType; ConstTransposeReturnType transpose() const; void transposeInPlace(); #ifndef EIGEN_NO_DEBUG protected: template void checkTransposeAliasing(const OtherDerived& other) const; public: #endif static const ConstantReturnType Constant(Index rows, Index cols, const Scalar& value); static const ConstantReturnType Constant(Index size, const Scalar& value); static const ConstantReturnType Constant(const Scalar& value); static const SequentialLinSpacedReturnType LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high); static const RandomAccessLinSpacedReturnType LinSpaced(Index size, const Scalar& low, const Scalar& high); static const SequentialLinSpacedReturnType LinSpaced(Sequential_t, const Scalar& low, const Scalar& high); static const RandomAccessLinSpacedReturnType LinSpaced(const Scalar& low, const Scalar& high); template static const CwiseNullaryOp NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(Index size, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(const CustomNullaryOp& func); static const ConstantReturnType Zero(Index rows, Index cols); static const ConstantReturnType Zero(Index size); static const ConstantReturnType Zero(); static const ConstantReturnType Ones(Index rows, Index cols); static const ConstantReturnType Ones(Index size); static const ConstantReturnType Ones(); void fill(const Scalar& value); Derived& setConstant(const Scalar& value); Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high); Derived& setLinSpaced(const Scalar& low, const Scalar& high); Derived& setZero(); Derived& setOnes(); Derived& setRandom(); template bool isApprox(const DenseBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const; bool isMuchSmallerThan(const RealScalar& other, const RealScalar& prec = NumTraits::dummy_precision()) const; template bool isMuchSmallerThan(const DenseBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const; bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits::dummy_precision()) const; bool isZero(const RealScalar& prec = NumTraits::dummy_precision()) const; bool isOnes(const RealScalar& prec = NumTraits::dummy_precision()) const; inline bool hasNaN() const; inline bool allFinite() const; inline Derived& operator*=(const Scalar& other); inline Derived& operator/=(const Scalar& other); typedef typename internal::add_const_on_value_type::type>::type EvalReturnType; /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ EIGEN_STRONG_INLINE EvalReturnType eval() const { // Even though MSVC does not honor strong inlining when the return type // is a dynamic matrix, we desperately need strong inlining for fixed // size types on MSVC. return typename internal::eval::type(derived()); } /** swaps *this with the expression \a other. * */ template void swap(const DenseBase& other, int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase) { SwapWrapper(derived()).lazyAssign(other.derived()); } /** swaps *this with the matrix or array \a other. * */ template void swap(PlainObjectBase& other) { SwapWrapper(derived()).lazyAssign(other.derived()); } inline const NestByValue nestByValue() const; inline const ForceAlignedAccess forceAlignedAccess() const; inline ForceAlignedAccess forceAlignedAccess(); template inline const typename internal::conditional,Derived&>::type forceAlignedAccessIf() const; template inline typename internal::conditional,Derived&>::type forceAlignedAccessIf(); Scalar sum() const; Scalar mean() const; Scalar trace() const; Scalar prod() const; typename internal::traits::Scalar minCoeff() const; typename internal::traits::Scalar maxCoeff() const; template typename internal::traits::Scalar minCoeff(IndexType* row, IndexType* col) const; template typename internal::traits::Scalar maxCoeff(IndexType* row, IndexType* col) const; template typename internal::traits::Scalar minCoeff(IndexType* index) const; template typename internal::traits::Scalar maxCoeff(IndexType* index) const; template typename internal::result_of::Scalar)>::type redux(const BinaryOp& func) const; template void visit(Visitor& func) const; inline const WithFormat format(const IOFormat& fmt) const; /** \returns the unique coefficient of a 1x1 expression */ CoeffReturnType value() const { EIGEN_STATIC_ASSERT_SIZE_1x1(Derived) eigen_assert(this->rows() == 1 && this->cols() == 1); return derived().coeff(0,0); } bool all(void) const; bool any(void) const; Index count() const; typedef VectorwiseOp RowwiseReturnType; typedef const VectorwiseOp ConstRowwiseReturnType; typedef VectorwiseOp ColwiseReturnType; typedef const VectorwiseOp ConstColwiseReturnType; ConstRowwiseReturnType rowwise() const; RowwiseReturnType rowwise(); ConstColwiseReturnType colwise() const; ColwiseReturnType colwise(); static const CwiseNullaryOp,Derived> Random(Index rows, Index cols); static const CwiseNullaryOp,Derived> Random(Index size); static const CwiseNullaryOp,Derived> Random(); template const Select select(const DenseBase& thenMatrix, const DenseBase& elseMatrix) const; template inline const Select select(const DenseBase& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const; template inline const Select select(const typename ElseDerived::Scalar& thenScalar, const DenseBase& elseMatrix) const; template RealScalar lpNorm() const; template inline const Replicate replicate() const; typedef Replicate ReplicateReturnType; inline const ReplicateReturnType replicate(Index rowFacor,Index colFactor) const; typedef Reverse ReverseReturnType; typedef const Reverse ConstReverseReturnType; ReverseReturnType reverse(); ConstReverseReturnType reverse() const; void reverseInPlace(); #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase # include "../plugins/BlockMethods.h" # ifdef EIGEN_DENSEBASE_PLUGIN # include EIGEN_DENSEBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS #ifdef EIGEN2_SUPPORT Block corner(CornerType type, Index cRows, Index cCols); const Block corner(CornerType type, Index cRows, Index cCols) const; template Block corner(CornerType type); template const Block corner(CornerType type) const; #endif // EIGEN2_SUPPORT // disable the use of evalTo for dense objects with a nice compilation error template inline void evalTo(Dest& ) const { EIGEN_STATIC_ASSERT((internal::is_same::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS); } protected: /** Default constructor. Do nothing. */ DenseBase() { /* Just checks for self-consistency of the flags. * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down */ #ifdef EIGEN_INTERNAL_DEBUGGING EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor)) && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))), INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION) #endif } private: explicit DenseBase(int); DenseBase(int,int); template explicit DenseBase(const DenseBase&); }; } // end namespace Eigen #endif // EIGEN_DENSEBASE_H