// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MACROS_H #define EIGEN_MACROS_H #define EIGEN_WORLD_VERSION 3 #define EIGEN_MAJOR_VERSION 2 #define EIGEN_MINOR_VERSION 4 #define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \ (EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \ EIGEN_MINOR_VERSION>=z)))) #ifdef __GNUC__ #define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x) #else #define EIGEN_GNUC_AT_LEAST(x,y) 0 #endif #ifdef __GNUC__ #define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__ void ignore_unused_variable(const T&) {} } } #define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var); #if !defined(EIGEN_ASM_COMMENT) #if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) ) #define EIGEN_ASM_COMMENT(X) __asm__("#" X) #else #define EIGEN_ASM_COMMENT(X) #endif #endif /* EIGEN_ALIGN_TO_BOUNDARY(n) forces data to be n-byte aligned. This is used to satisfy SIMD requirements. * However, we do that EVEN if vectorization (EIGEN_VECTORIZE) is disabled, * so that vectorization doesn't affect binary compatibility. * * If we made alignment depend on whether or not EIGEN_VECTORIZE is defined, it would be impossible to link * vectorized and non-vectorized code. */ #if (defined __GNUC__) || (defined __PGI) || (defined __IBMCPP__) || (defined __ARMCC_VERSION) #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n))) #elif (defined _MSC_VER) #define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n)) #elif (defined __SUNPRO_CC) // FIXME not sure about this one: #define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n))) #else #error Please tell me what is the equivalent of __attribute__((aligned(n))) for your compiler #endif #define EIGEN_ALIGN16 EIGEN_ALIGN_TO_BOUNDARY(16) #if EIGEN_ALIGN_STATICALLY #define EIGEN_USER_ALIGN_TO_BOUNDARY(n) EIGEN_ALIGN_TO_BOUNDARY(n) #define EIGEN_USER_ALIGN16 EIGEN_ALIGN16 #else #define EIGEN_USER_ALIGN_TO_BOUNDARY(n) #define EIGEN_USER_ALIGN16 #endif #ifdef EIGEN_DONT_USE_RESTRICT_KEYWORD #define EIGEN_RESTRICT #endif #ifndef EIGEN_RESTRICT #define EIGEN_RESTRICT __restrict #endif #ifndef EIGEN_STACK_ALLOCATION_LIMIT // 131072 == 128 KB #define EIGEN_STACK_ALLOCATION_LIMIT 131072 #endif #ifndef EIGEN_DEFAULT_IO_FORMAT #ifdef EIGEN_MAKING_DOCS // format used in Eigen's documentation // needed to define it here as escaping characters in CMake add_definition's argument seems very problematic. #define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat(3, 0, " ", "\n", "", "") #else #define EIGEN_DEFAULT_IO_FORMAT Eigen::IOFormat() #endif #endif // just an empty macro ! #define EIGEN_EMPTY #if defined(_MSC_VER) && (_MSC_VER < 1900) && (!defined(__INTEL_COMPILER)) #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ using Base::operator =; #elif defined(__clang__) // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653) #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ using Base::operator =; \ EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \ template \ EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other) { Base::operator=(other.derived()); return *this; } #else #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \ using Base::operator =; \ EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \ { \ Base::operator=(other); \ return *this; \ } #endif #define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \ EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) /** * Just a side note. Commenting within defines works only by documenting * behind the object (via '!<'). Comments cannot be multi-line and thus * we have these extra long lines. What is confusing doxygen over here is * that we use '\' and basically have a bunch of typedefs with their * documentation in a single line. **/ #define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \ typedef typename Eigen::internal::traits::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex. */ \ typedef typename Eigen::NumTraits::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex, T were corresponding to RealScalar. */ \ typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \ typedef typename Eigen::internal::nested::type Nested; \ typedef typename Eigen::internal::traits::StorageKind StorageKind; \ typedef typename Eigen::internal::traits::Index Index; \ enum { RowsAtCompileTime = Eigen::internal::traits::RowsAtCompileTime, \ ColsAtCompileTime = Eigen::internal::traits::ColsAtCompileTime, \ Flags = Eigen::internal::traits::Flags, \ CoeffReadCost = Eigen::internal::traits::CoeffReadCost, \ SizeAtCompileTime = Base::SizeAtCompileTime, \ MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \ IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; #define EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \ typedef typename Eigen::internal::traits::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex. */ \ typedef typename Eigen::NumTraits::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex, T were corresponding to RealScalar. */ \ typedef typename Base::PacketScalar PacketScalar; \ typedef typename Base::CoeffReturnType CoeffReturnType; /*!< \brief The return type for coefficient access. \details Depending on whether the object allows direct coefficient access (e.g. for a MatrixXd), this type is either 'const Scalar&' or simply 'Scalar' for objects that do not allow direct coefficient access. */ \ typedef typename Eigen::internal::nested::type Nested; \ typedef typename Eigen::internal::traits::StorageKind StorageKind; \ typedef typename Eigen::internal::traits::Index Index; \ enum { RowsAtCompileTime = Eigen::internal::traits::RowsAtCompileTime, \ ColsAtCompileTime = Eigen::internal::traits::ColsAtCompileTime, \ MaxRowsAtCompileTime = Eigen::internal::traits::MaxRowsAtCompileTime, \ MaxColsAtCompileTime = Eigen::internal::traits::MaxColsAtCompileTime, \ Flags = Eigen::internal::traits::Flags, \ CoeffReadCost = Eigen::internal::traits::CoeffReadCost, \ SizeAtCompileTime = Base::SizeAtCompileTime, \ MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \ IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \ using Base::derived; \ using Base::const_cast_derived; #define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b) #define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b) // EIGEN_SIZE_MIN_PREFER_DYNAMIC gives the min between compile-time sizes. 0 has absolute priority, followed by 1, // followed by Dynamic, followed by other finite values. The reason for giving Dynamic the priority over // finite values is that min(3, Dynamic) should be Dynamic, since that could be anything between 0 and 3. #define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a,b) (((int)a == 0 || (int)b == 0) ? 0 \ : ((int)a == 1 || (int)b == 1) ? 1 \ : ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ : ((int)a <= (int)b) ? (int)a : (int)b) // EIGEN_SIZE_MIN_PREFER_FIXED is a variant of EIGEN_SIZE_MIN_PREFER_DYNAMIC comparing MaxSizes. The difference is that finite values // now have priority over Dynamic, so that min(3, Dynamic) gives 3. Indeed, whatever the actual value is // (between 0 and 3), it is not more than 3. #define EIGEN_SIZE_MIN_PREFER_FIXED(a,b) (((int)a == 0 || (int)b == 0) ? 0 \ : ((int)a == 1 || (int)b == 1) ? 1 \ : ((int)a == Dynamic && (int)b == Dynamic) ? Dynamic \ : ((int)a == Dynamic) ? (int)b \ : ((int)b == Dynamic) ? (int)a \ : ((int)a <= (int)b) ? (int)a : (int)b) // see EIGEN_SIZE_MIN_PREFER_DYNAMIC. No need for a separate variant for MaxSizes here. #define EIGEN_SIZE_MAX(a,b) (((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ : ((int)a >= (int)b) ? (int)a : (int)b) #define EIGEN_LOGICAL_XOR(a,b) (((a) || (b)) && !((a) && (b))) #define EIGEN_IMPLIES(a,b) (!(a) || (b)) #define EIGEN_MAKE_CWISE_BINARY_OP(METHOD,FUNCTOR) \ template \ EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> \ (METHOD)(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ { \ return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); \ } // the expression type of a cwise product #define EIGEN_CWISE_PRODUCT_RETURN_TYPE(LHS,RHS) \ CwiseBinaryOp< \ internal::scalar_product_op< \ typename internal::traits::Scalar, \ typename internal::traits::Scalar \ >, \ const LHS, \ const RHS \ > #endif // EIGEN_MACROS_H