// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007 Julien Pommier // Copyright (C) 2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. /* The sin, cos, exp, and log functions of this file come from * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ */ #ifndef EIGEN_MATH_FUNCTIONS_SSE_H #define EIGEN_MATH_FUNCTIONS_SSE_H namespace Eigen { namespace internal { template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f plog(const Packet4f& _x) { Packet4f x = _x; _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000); /* the smallest non denormalized float number */ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000); _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f); /* natural logarithm computed for 4 simultaneous float return NaN for x <= 0 */ _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); Packet4i emm0; Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps()); x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */ emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23); /* keep only the fractional part */ x = _mm_and_ps(x, p4f_inv_mant_mask); x = _mm_or_ps(x, p4f_half); emm0 = _mm_sub_epi32(emm0, p4i_0x7f); Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1); /* part2: if( x < SQRTHF ) { e -= 1; x = x + x - 1.0; } else { x = x - 1.0; } */ Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF); Packet4f tmp = _mm_and_ps(x, mask); x = psub(x, p4f_1); e = psub(e, _mm_and_ps(p4f_1, mask)); x = padd(x, tmp); Packet4f x2 = pmul(x,x); Packet4f x3 = pmul(x2,x); Packet4f y, y1, y2; y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1); y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4); y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7); y = pmadd(y , x, p4f_cephes_log_p2); y1 = pmadd(y1, x, p4f_cephes_log_p5); y2 = pmadd(y2, x, p4f_cephes_log_p8); y = pmadd(y, x3, y1); y = pmadd(y, x3, y2); y = pmul(y, x3); y1 = pmul(e, p4f_cephes_log_q1); tmp = pmul(x2, p4f_half); y = padd(y, y1); x = psub(x, tmp); y2 = pmul(e, p4f_cephes_log_q2); x = padd(x, y); x = padd(x, y2); // negative arg will be NAN, 0 will be -INF return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)), _mm_and_ps(iszero_mask, p4f_minus_inf)); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pexp(const Packet4f& _x) { Packet4f x = _x; _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f); _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f); _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f); _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f); Packet4f tmp = _mm_setzero_ps(), fx; Packet4i emm0; // clamp x x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo); /* express exp(x) as exp(g + n*log(2)) */ fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half); #ifdef EIGEN_VECTORIZE_SSE4_1 fx = _mm_floor_ps(fx); #else emm0 = _mm_cvttps_epi32(fx); tmp = _mm_cvtepi32_ps(emm0); /* if greater, substract 1 */ Packet4f mask = _mm_cmpgt_ps(tmp, fx); mask = _mm_and_ps(mask, p4f_1); fx = psub(tmp, mask); #endif tmp = pmul(fx, p4f_cephes_exp_C1); Packet4f z = pmul(fx, p4f_cephes_exp_C2); x = psub(x, tmp); x = psub(x, z); z = pmul(x,x); Packet4f y = p4f_cephes_exp_p0; y = pmadd(y, x, p4f_cephes_exp_p1); y = pmadd(y, x, p4f_cephes_exp_p2); y = pmadd(y, x, p4f_cephes_exp_p3); y = pmadd(y, x, p4f_cephes_exp_p4); y = pmadd(y, x, p4f_cephes_exp_p5); y = pmadd(y, z, x); y = padd(y, p4f_1); // build 2^n emm0 = _mm_cvttps_epi32(fx); emm0 = _mm_add_epi32(emm0, p4i_0x7f); emm0 = _mm_slli_epi32(emm0, 23); return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d pexp(const Packet2d& _x) { Packet2d x = _x; _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0); _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0); _EIGEN_DECLARE_CONST_Packet2d(half, 0.5); _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437); _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303); _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0); Packet2d tmp = _mm_setzero_pd(), fx; Packet4i emm0; // clamp x x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo); /* express exp(x) as exp(g + n*log(2)) */ fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half); #ifdef EIGEN_VECTORIZE_SSE4_1 fx = _mm_floor_pd(fx); #else emm0 = _mm_cvttpd_epi32(fx); tmp = _mm_cvtepi32_pd(emm0); /* if greater, substract 1 */ Packet2d mask = _mm_cmpgt_pd(tmp, fx); mask = _mm_and_pd(mask, p2d_1); fx = psub(tmp, mask); #endif tmp = pmul(fx, p2d_cephes_exp_C1); Packet2d z = pmul(fx, p2d_cephes_exp_C2); x = psub(x, tmp); x = psub(x, z); Packet2d x2 = pmul(x,x); Packet2d px = p2d_cephes_exp_p0; px = pmadd(px, x2, p2d_cephes_exp_p1); px = pmadd(px, x2, p2d_cephes_exp_p2); px = pmul (px, x); Packet2d qx = p2d_cephes_exp_q0; qx = pmadd(qx, x2, p2d_cephes_exp_q1); qx = pmadd(qx, x2, p2d_cephes_exp_q2); qx = pmadd(qx, x2, p2d_cephes_exp_q3); x = pdiv(px,psub(qx,px)); x = pmadd(p2d_2,x,p2d_1); // build 2^n emm0 = _mm_cvttpd_epi32(fx); emm0 = _mm_add_epi32(emm0, p4i_1023_0); emm0 = _mm_slli_epi32(emm0, 20); emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3)); return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x); } /* evaluation of 4 sines at onces, using SSE2 intrinsics. The code is the exact rewriting of the cephes sinf function. Precision is excellent as long as x < 8192 (I did not bother to take into account the special handling they have for greater values -- it does not return garbage for arguments over 8192, though, but the extra precision is missing). Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the surprising but correct result. */ template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psin(const Packet4f& _x) { Packet4f x = _x; _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); _EIGEN_DECLARE_CONST_Packet4i(1, 1); _EIGEN_DECLARE_CONST_Packet4i(not1, ~1); _EIGEN_DECLARE_CONST_Packet4i(2, 2); _EIGEN_DECLARE_CONST_Packet4i(4, 4); _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000); _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f); _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f); _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f); _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f); _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f); _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f); _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f); _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y; Packet4i emm0, emm2; sign_bit = x; /* take the absolute value */ x = pabs(x); /* take the modulo */ /* extract the sign bit (upper one) */ sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask); /* scale by 4/Pi */ y = pmul(x, p4f_cephes_FOPI); /* store the integer part of y in mm0 */ emm2 = _mm_cvttps_epi32(y); /* j=(j+1) & (~1) (see the cephes sources) */ emm2 = _mm_add_epi32(emm2, p4i_1); emm2 = _mm_and_si128(emm2, p4i_not1); y = _mm_cvtepi32_ps(emm2); /* get the swap sign flag */ emm0 = _mm_and_si128(emm2, p4i_4); emm0 = _mm_slli_epi32(emm0, 29); /* get the polynom selection mask there is one polynom for 0 <= x <= Pi/4 and another one for Pi/4 EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f pcos(const Packet4f& _x) { Packet4f x = _x; _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); _EIGEN_DECLARE_CONST_Packet4i(1, 1); _EIGEN_DECLARE_CONST_Packet4i(not1, ~1); _EIGEN_DECLARE_CONST_Packet4i(2, 2); _EIGEN_DECLARE_CONST_Packet4i(4, 4); _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f); _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f); _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f); _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f); _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f); _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f); _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f); _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y; Packet4i emm0, emm2; x = pabs(x); /* scale by 4/Pi */ y = pmul(x, p4f_cephes_FOPI); /* get the integer part of y */ emm2 = _mm_cvttps_epi32(y); /* j=(j+1) & (~1) (see the cephes sources) */ emm2 = _mm_add_epi32(emm2, p4i_1); emm2 = _mm_and_si128(emm2, p4i_not1); y = _mm_cvtepi32_ps(emm2); emm2 = _mm_sub_epi32(emm2, p4i_2); /* get the swap sign flag */ emm0 = _mm_andnot_si128(emm2, p4i_4); emm0 = _mm_slli_epi32(emm0, 29); /* get the polynom selection mask */ emm2 = _mm_and_si128(emm2, p4i_2); emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); Packet4f sign_bit = _mm_castsi128_ps(emm0); Packet4f poly_mask = _mm_castsi128_ps(emm2); /* The magic pass: "Extended precision modular arithmetic" x = ((x - y * DP1) - y * DP2) - y * DP3; */ xmm1 = pmul(y, p4f_minus_cephes_DP1); xmm2 = pmul(y, p4f_minus_cephes_DP2); xmm3 = pmul(y, p4f_minus_cephes_DP3); x = padd(x, xmm1); x = padd(x, xmm2); x = padd(x, xmm3); /* Evaluate the first polynom (0 <= x <= Pi/4) */ y = p4f_coscof_p0; Packet4f z = pmul(x,x); y = pmadd(y,z,p4f_coscof_p1); y = pmadd(y,z,p4f_coscof_p2); y = pmul(y, z); y = pmul(y, z); Packet4f tmp = _mm_mul_ps(z, p4f_half); y = psub(y, tmp); y = padd(y, p4f_1); /* Evaluate the second polynom (Pi/4 <= x <= 0) */ Packet4f y2 = p4f_sincof_p0; y2 = pmadd(y2, z, p4f_sincof_p1); y2 = pmadd(y2, z, p4f_sincof_p2); y2 = pmul(y2, z); y2 = pmadd(y2, x, x); /* select the correct result from the two polynoms */ y2 = _mm_and_ps(poly_mask, y2); y = _mm_andnot_ps(poly_mask, y); y = _mm_or_ps(y,y2); /* update the sign */ return _mm_xor_ps(y, sign_bit); } #if EIGEN_FAST_MATH // This is based on Quake3's fast inverse square root. // For detail see here: http://www.beyond3d.com/content/articles/8/ // It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly. template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f psqrt(const Packet4f& _x) { Packet4f half = pmul(_x, pset1(.5f)); /* select only the inverse sqrt of non-zero inputs */ Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1((std::numeric_limits::min)())); Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x)); x = pmul(x, psub(pset1(1.5f), pmul(half, pmul(x,x)))); return pmul(_x,x); } #else template<> EIGEN_STRONG_INLINE Packet4f psqrt(const Packet4f& x) { return _mm_sqrt_ps(x); } #endif template<> EIGEN_STRONG_INLINE Packet2d psqrt(const Packet2d& x) { return _mm_sqrt_pd(x); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_MATH_FUNCTIONS_SSE_H