// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEVECTOR_H #define EIGEN_SPARSEVECTOR_H namespace Eigen { /** \ingroup SparseCore_Module * \class SparseVector * * \brief a sparse vector class * * \tparam _Scalar the scalar type, i.e. the type of the coefficients * * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. */ namespace internal { template struct traits > { typedef _Scalar Scalar; typedef _Index Index; typedef Sparse StorageKind; typedef MatrixXpr XprKind; enum { IsColVector = (_Options & RowMajorBit) ? 0 : 1, RowsAtCompileTime = IsColVector ? Dynamic : 1, ColsAtCompileTime = IsColVector ? 1 : Dynamic, MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit), CoeffReadCost = NumTraits::ReadCost, SupportedAccessPatterns = InnerRandomAccessPattern }; }; } template class SparseVector : public SparseMatrixBase > { public: EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) protected: public: typedef SparseMatrixBase SparseBase; enum { IsColVector = internal::traits::IsColVector }; enum { Options = _Options }; internal::CompressedStorage m_data; Index m_size; internal::CompressedStorage& _data() { return m_data; } internal::CompressedStorage& _data() const { return m_data; } public: EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } EIGEN_STRONG_INLINE Index outerSize() const { return 1; } EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return &m_data.value(0); } EIGEN_STRONG_INLINE Scalar* valuePtr() { return &m_data.value(0); } EIGEN_STRONG_INLINE const Index* innerIndexPtr() const { return &m_data.index(0); } EIGEN_STRONG_INLINE Index* innerIndexPtr() { return &m_data.index(0); } inline Scalar coeff(Index row, Index col) const { eigen_assert((IsColVector ? col : row)==0); return coeff(IsColVector ? row : col); } inline Scalar coeff(Index i) const { return m_data.at(i); } inline Scalar& coeffRef(Index row, Index col) { eigen_assert((IsColVector ? col : row)==0); return coeff(IsColVector ? row : col); } /** \returns a reference to the coefficient value at given index \a i * This operation involes a log(rho*size) binary search. If the coefficient does not * exist yet, then a sorted insertion into a sequential buffer is performed. * * This insertion might be very costly if the number of nonzeros above \a i is large. */ inline Scalar& coeffRef(Index i) { return m_data.atWithInsertion(i); } public: class InnerIterator; class ReverseInnerIterator; inline void setZero() { m_data.clear(); } /** \returns the number of non zero coefficients */ inline Index nonZeros() const { return static_cast(m_data.size()); } inline void startVec(Index outer) { EIGEN_UNUSED_VARIABLE(outer); eigen_assert(outer==0); } inline Scalar& insertBackByOuterInner(Index outer, Index inner) { EIGEN_UNUSED_VARIABLE(outer); eigen_assert(outer==0); return insertBack(inner); } inline Scalar& insertBack(Index i) { m_data.append(0, i); return m_data.value(m_data.size()-1); } inline Scalar& insert(Index row, Index col) { Index inner = IsColVector ? row : col; Index outer = IsColVector ? col : row; eigen_assert(outer==0); return insert(inner); } Scalar& insert(Index i) { Index startId = 0; Index p = Index(m_data.size()) - 1; // TODO smart realloc m_data.resize(p+2,1); while ( (p >= startId) && (m_data.index(p) > i) ) { m_data.index(p+1) = m_data.index(p); m_data.value(p+1) = m_data.value(p); --p; } m_data.index(p+1) = i; m_data.value(p+1) = 0; return m_data.value(p+1); } /** */ inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } inline void finalize() {} void prune(Scalar reference, RealScalar epsilon = NumTraits::dummy_precision()) { m_data.prune(reference,epsilon); } void resize(Index rows, Index cols) { eigen_assert(rows==1 || cols==1); resize(IsColVector ? rows : cols); } void resize(Index newSize) { m_size = newSize; m_data.clear(); } void resizeNonZeros(Index size) { m_data.resize(size); } inline SparseVector() : m_size(0) { resize(0); } inline SparseVector(Index size) : m_size(0) { resize(size); } inline SparseVector(Index rows, Index cols) : m_size(0) { resize(rows,cols); } template inline SparseVector(const SparseMatrixBase& other) : m_size(0) { *this = other.derived(); } inline SparseVector(const SparseVector& other) : m_size(0) { *this = other.derived(); } inline void swap(SparseVector& other) { std::swap(m_size, other.m_size); m_data.swap(other.m_data); } inline SparseVector& operator=(const SparseVector& other) { if (other.isRValue()) { swap(other.const_cast_derived()); } else { resize(other.size()); m_data = other.m_data; } return *this; } template inline SparseVector& operator=(const SparseMatrixBase& other) { if (int(RowsAtCompileTime)!=int(OtherDerived::RowsAtCompileTime)) return assign(other.transpose()); else return assign(other); } #ifndef EIGEN_PARSED_BY_DOXYGEN template inline SparseVector& operator=(const SparseSparseProduct& product) { return Base::operator=(product); } #endif friend std::ostream & operator << (std::ostream & s, const SparseVector& m) { for (Index i=0; i EIGEN_DONT_INLINE SparseVector& assign(const SparseMatrixBase& _other) { const OtherDerived& other(_other.derived()); const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); if(needToTranspose) { Index size = other.size(); Index nnz = other.nonZeros(); resize(size); reserve(nnz); for(Index i=0; i class SparseVector::InnerIterator { public: InnerIterator(const SparseVector& vec, Index outer=0) : m_data(vec.m_data), m_id(0), m_end(static_cast(m_data.size())) { EIGEN_UNUSED_VARIABLE(outer); eigen_assert(outer==0); } InnerIterator(const internal::CompressedStorage& data) : m_data(data), m_id(0), m_end(static_cast(m_data.size())) {} inline InnerIterator& operator++() { m_id++; return *this; } inline Scalar value() const { return m_data.value(m_id); } inline Scalar& valueRef() { return const_cast(m_data.value(m_id)); } inline Index index() const { return m_data.index(m_id); } inline Index row() const { return IsColVector ? index() : 0; } inline Index col() const { return IsColVector ? 0 : index(); } inline operator bool() const { return (m_id < m_end); } protected: const internal::CompressedStorage& m_data; Index m_id; const Index m_end; }; template class SparseVector::ReverseInnerIterator { public: ReverseInnerIterator(const SparseVector& vec, Index outer=0) : m_data(vec.m_data), m_id(static_cast(m_data.size())), m_start(0) { EIGEN_UNUSED_VARIABLE(outer); eigen_assert(outer==0); } ReverseInnerIterator(const internal::CompressedStorage& data) : m_data(data), m_id(static_cast(m_data.size())), m_start(0) {} inline ReverseInnerIterator& operator--() { m_id--; return *this; } inline Scalar value() const { return m_data.value(m_id-1); } inline Scalar& valueRef() { return const_cast(m_data.value(m_id-1)); } inline Index index() const { return m_data.index(m_id-1); } inline Index row() const { return IsColVector ? index() : 0; } inline Index col() const { return IsColVector ? 0 : index(); } inline operator bool() const { return (m_id > m_start); } protected: const internal::CompressedStorage& m_data; Index m_id; const Index m_start; }; } // end namespace Eigen #endif // EIGEN_SPARSEVECTOR_H