// Provides an efficient blocking version of moodycamel::ConcurrentQueue. // ©2015-2016 Cameron Desrochers. Distributed under the terms of the simplified // BSD license, available at the top of concurrentqueue.h. // Uses Jeff Preshing's semaphore implementation (under the terms of its // separate zlib license, embedded below). #pragma once #include "concurrentqueue.h" #include "lightweightsemaphore.h" #include #include #include #include #include namespace duckdb_moodycamel { // This is a blocking version of the queue. It has an almost identical interface to // the normal non-blocking version, with the addition of various wait_dequeue() methods // and the removal of producer-specific dequeue methods. template class BlockingConcurrentQueue { private: typedef ::duckdb_moodycamel::ConcurrentQueue ConcurrentQueue; typedef ::duckdb_moodycamel::LightweightSemaphore LightweightSemaphore; public: typedef typename ConcurrentQueue::producer_token_t producer_token_t; typedef typename ConcurrentQueue::consumer_token_t consumer_token_t; typedef typename ConcurrentQueue::index_t index_t; typedef typename ConcurrentQueue::size_t size_t; typedef typename std::make_signed::type ssize_t; static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE; static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD; static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE; static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE; static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE; static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE; static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE; public: // Creates a queue with at least `capacity` element slots; note that the // actual number of elements that can be inserted without additional memory // allocation depends on the number of producers and the block size (e.g. if // the block size is equal to `capacity`, only a single block will be allocated // up-front, which means only a single producer will be able to enqueue elements // without an extra allocation -- blocks aren't shared between producers). // This method is not thread safe -- it is up to the user to ensure that the // queue is fully constructed before it starts being used by other threads (this // includes making the memory effects of construction visible, possibly with a // memory barrier). explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE) : inner(capacity), sema(create(), &BlockingConcurrentQueue::template destroy) { assert(reinterpret_cast((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member"); if (!sema) { MOODYCAMEL_THROW(std::bad_alloc()); } } BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers) : inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create(), &BlockingConcurrentQueue::template destroy) { assert(reinterpret_cast((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member"); if (!sema) { MOODYCAMEL_THROW(std::bad_alloc()); } } // Disable copying and copy assignment BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION; // Moving is supported, but note that it is *not* a thread-safe operation. // Nobody can use the queue while it's being moved, and the memory effects // of that move must be propagated to other threads before they can use it. // Note: When a queue is moved, its tokens are still valid but can only be // used with the destination queue (i.e. semantically they are moved along // with the queue itself). BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT : inner(std::move(other.inner)), sema(std::move(other.sema)) { } inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT { return swap_internal(other); } // Swaps this queue's state with the other's. Not thread-safe. // Swapping two queues does not invalidate their tokens, however // the tokens that were created for one queue must be used with // only the swapped queue (i.e. the tokens are tied to the // queue's movable state, not the object itself). inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT { swap_internal(other); } private: BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other) { if (this == &other) { return *this; } inner.swap(other.inner); sema.swap(other.sema); return *this; } public: // Enqueues a single item (by copying it). // Allocates memory if required. Only fails if memory allocation fails (or implicit // production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, // or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Thread-safe. inline bool enqueue(T const& item) { if ((details::likely)(inner.enqueue(item))) { sema->signal(); return true; } return false; } // Enqueues a single item (by moving it, if possible). // Allocates memory if required. Only fails if memory allocation fails (or implicit // production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, // or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Thread-safe. inline bool enqueue(T&& item) { if ((details::likely)(inner.enqueue(std::move(item)))) { sema->signal(); return true; } return false; } // Enqueues a single item (by copying it) using an explicit producer token. // Allocates memory if required. Only fails if memory allocation fails (or // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Thread-safe. inline bool enqueue(producer_token_t const& token, T const& item) { if ((details::likely)(inner.enqueue(token, item))) { sema->signal(); return true; } return false; } // Enqueues a single item (by moving it, if possible) using an explicit producer token. // Allocates memory if required. Only fails if memory allocation fails (or // Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Thread-safe. inline bool enqueue(producer_token_t const& token, T&& item) { if ((details::likely)(inner.enqueue(token, std::move(item)))) { sema->signal(); return true; } return false; } // Enqueues several items. // Allocates memory if required. Only fails if memory allocation fails (or // implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE // is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Note: Use std::make_move_iterator if the elements should be moved instead of copied. // Thread-safe. template inline bool enqueue_bulk(It itemFirst, size_t count) { if ((details::likely)(inner.enqueue_bulk(std::forward(itemFirst), count))) { sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); return true; } return false; } // Enqueues several items using an explicit producer token. // Allocates memory if required. Only fails if memory allocation fails // (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed). // Note: Use std::make_move_iterator if the elements should be moved // instead of copied. // Thread-safe. template inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) { if ((details::likely)(inner.enqueue_bulk(token, std::forward(itemFirst), count))) { sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); return true; } return false; } // Enqueues a single item (by copying it). // Does not allocate memory. Fails if not enough room to enqueue (or implicit // production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE // is 0). // Thread-safe. inline bool try_enqueue(T const& item) { if (inner.try_enqueue(item)) { sema->signal(); return true; } return false; } // Enqueues a single item (by moving it, if possible). // Does not allocate memory (except for one-time implicit producer). // Fails if not enough room to enqueue (or implicit production is // disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). // Thread-safe. inline bool try_enqueue(T&& item) { if (inner.try_enqueue(std::move(item))) { sema->signal(); return true; } return false; } // Enqueues a single item (by copying it) using an explicit producer token. // Does not allocate memory. Fails if not enough room to enqueue. // Thread-safe. inline bool try_enqueue(producer_token_t const& token, T const& item) { if (inner.try_enqueue(token, item)) { sema->signal(); return true; } return false; } // Enqueues a single item (by moving it, if possible) using an explicit producer token. // Does not allocate memory. Fails if not enough room to enqueue. // Thread-safe. inline bool try_enqueue(producer_token_t const& token, T&& item) { if (inner.try_enqueue(token, std::move(item))) { sema->signal(); return true; } return false; } // Enqueues several items. // Does not allocate memory (except for one-time implicit producer). // Fails if not enough room to enqueue (or implicit production is // disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). // Note: Use std::make_move_iterator if the elements should be moved // instead of copied. // Thread-safe. template inline bool try_enqueue_bulk(It itemFirst, size_t count) { if (inner.try_enqueue_bulk(std::forward(itemFirst), count)) { sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); return true; } return false; } // Enqueues several items using an explicit producer token. // Does not allocate memory. Fails if not enough room to enqueue. // Note: Use std::make_move_iterator if the elements should be moved // instead of copied. // Thread-safe. template inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count) { if (inner.try_enqueue_bulk(token, std::forward(itemFirst), count)) { sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count); return true; } return false; } // Attempts to dequeue from the queue. // Returns false if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template inline bool try_dequeue(U& item) { if (sema->tryWait()) { while (!inner.try_dequeue(item)) { continue; } return true; } return false; } // Attempts to dequeue from the queue using an explicit consumer token. // Returns false if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template inline bool try_dequeue(consumer_token_t& token, U& item) { if (sema->tryWait()) { while (!inner.try_dequeue(token, item)) { continue; } return true; } return false; } // Attempts to dequeue several elements from the queue. // Returns the number of items actually dequeued. // Returns 0 if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template inline size_t try_dequeue_bulk(It itemFirst, size_t max) { size_t count = 0; max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max); while (count != max) { count += inner.template try_dequeue_bulk(itemFirst, max - count); } return count; } // Attempts to dequeue several elements from the queue using an explicit consumer token. // Returns the number of items actually dequeued. // Returns 0 if all producer streams appeared empty at the time they // were checked (so, the queue is likely but not guaranteed to be empty). // Never allocates. Thread-safe. template inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max) { size_t count = 0; max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max); while (count != max) { count += inner.template try_dequeue_bulk(token, itemFirst, max - count); } return count; } // Blocks the current thread until there's something to dequeue, then // dequeues it. // Never allocates. Thread-safe. template inline void wait_dequeue(U& item) { while (!sema->wait()) { continue; } while (!inner.try_dequeue(item)) { continue; } } // Blocks the current thread until either there's something to dequeue // or the timeout (specified in microseconds) expires. Returns false // without setting `item` if the timeout expires, otherwise assigns // to `item` and returns true. // Using a negative timeout indicates an indefinite timeout, // and is thus functionally equivalent to calling wait_dequeue. // Never allocates. Thread-safe. template inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs) { if (!sema->wait(timeout_usecs)) { return false; } while (!inner.try_dequeue(item)) { continue; } return true; } // Blocks the current thread until either there's something to dequeue // or the timeout expires. Returns false without setting `item` if the // timeout expires, otherwise assigns to `item` and returns true. // Never allocates. Thread-safe. template inline bool wait_dequeue_timed(U& item, std::chrono::duration const& timeout) { return wait_dequeue_timed(item, std::chrono::duration_cast(timeout).count()); } // Blocks the current thread until there's something to dequeue, then // dequeues it using an explicit consumer token. // Never allocates. Thread-safe. template inline void wait_dequeue(consumer_token_t& token, U& item) { while (!sema->wait()) { continue; } while (!inner.try_dequeue(token, item)) { continue; } } // Blocks the current thread until either there's something to dequeue // or the timeout (specified in microseconds) expires. Returns false // without setting `item` if the timeout expires, otherwise assigns // to `item` and returns true. // Using a negative timeout indicates an indefinite timeout, // and is thus functionally equivalent to calling wait_dequeue. // Never allocates. Thread-safe. template inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs) { if (!sema->wait(timeout_usecs)) { return false; } while (!inner.try_dequeue(token, item)) { continue; } return true; } // Blocks the current thread until either there's something to dequeue // or the timeout expires. Returns false without setting `item` if the // timeout expires, otherwise assigns to `item` and returns true. // Never allocates. Thread-safe. template inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration const& timeout) { return wait_dequeue_timed(token, item, std::chrono::duration_cast(timeout).count()); } // Attempts to dequeue several elements from the queue. // Returns the number of items actually dequeued, which will // always be at least one (this method blocks until the queue // is non-empty) and at most max. // Never allocates. Thread-safe. template inline size_t wait_dequeue_bulk(It itemFirst, size_t max) { size_t count = 0; max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max); while (count != max) { count += inner.template try_dequeue_bulk(itemFirst, max - count); } return count; } // Attempts to dequeue several elements from the queue. // Returns the number of items actually dequeued, which can // be 0 if the timeout expires while waiting for elements, // and at most max. // Using a negative timeout indicates an indefinite timeout, // and is thus functionally equivalent to calling wait_dequeue_bulk. // Never allocates. Thread-safe. template inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs) { size_t count = 0; max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs); while (count != max) { count += inner.template try_dequeue_bulk(itemFirst, max - count); } return count; } // Attempts to dequeue several elements from the queue. // Returns the number of items actually dequeued, which can // be 0 if the timeout expires while waiting for elements, // and at most max. // Never allocates. Thread-safe. template inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration const& timeout) { return wait_dequeue_bulk_timed(itemFirst, max, std::chrono::duration_cast(timeout).count()); } // Attempts to dequeue several elements from the queue using an explicit consumer token. // Returns the number of items actually dequeued, which will // always be at least one (this method blocks until the queue // is non-empty) and at most max. // Never allocates. Thread-safe. template inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max) { size_t count = 0; max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max); while (count != max) { count += inner.template try_dequeue_bulk(token, itemFirst, max - count); } return count; } // Attempts to dequeue several elements from the queue using an explicit consumer token. // Returns the number of items actually dequeued, which can // be 0 if the timeout expires while waiting for elements, // and at most max. // Using a negative timeout indicates an indefinite timeout, // and is thus functionally equivalent to calling wait_dequeue_bulk. // Never allocates. Thread-safe. template inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs) { size_t count = 0; max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs); while (count != max) { count += inner.template try_dequeue_bulk(token, itemFirst, max - count); } return count; } // Attempts to dequeue several elements from the queue using an explicit consumer token. // Returns the number of items actually dequeued, which can // be 0 if the timeout expires while waiting for elements, // and at most max. // Never allocates. Thread-safe. template inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration const& timeout) { return wait_dequeue_bulk_timed(token, itemFirst, max, std::chrono::duration_cast(timeout).count()); } // Returns an estimate of the total number of elements currently in the queue. This // estimate is only accurate if the queue has completely stabilized before it is called // (i.e. all enqueue and dequeue operations have completed and their memory effects are // visible on the calling thread, and no further operations start while this method is // being called). // Thread-safe. inline size_t size_approx() const { return (size_t)sema->availableApprox(); } // Returns true if the underlying atomic variables used by // the queue are lock-free (they should be on most platforms). // Thread-safe. static bool is_lock_free() { return ConcurrentQueue::is_lock_free(); } private: template static inline U* create() { auto p = (Traits::malloc)(sizeof(U)); return p != nullptr ? new (p) U : nullptr; } template static inline U* create(A1&& a1) { auto p = (Traits::malloc)(sizeof(U)); return p != nullptr ? new (p) U(std::forward(a1)) : nullptr; } template static inline void destroy(U* p) { if (p != nullptr) { p->~U(); } (Traits::free)(p); } private: ConcurrentQueue inner; std::unique_ptr sema; }; template inline void swap(BlockingConcurrentQueue& a, BlockingConcurrentQueue& b) MOODYCAMEL_NOEXCEPT { a.swap(b); } } // end namespace moodycamel