module Matrix.QR.Givens ( leastSquares, decompose, solve, det, detAbs, Rotation, rotateVector, Upper, solveUpper, detUpper, ) where import qualified Matrix.Sparse as Sparse import DSP.Basic (toMaybe, (^!)) import Control.Monad (mfilter) import qualified Data.Foldable as Fold import qualified Data.List as List import qualified Data.Map as Map import Data.Map (Map) import Data.Array (Array, Ix, array, bounds, elems, rangeSize, range, (!), (//), ) data Rotation i a = Rotation (i,i) (a,a) deriving Show data Upper i j a = Upper ((i,j), (i,j)) (Map i (Map j a)) deriving Show {- | The decomposition routine is pretty simple. It does not try to minimize fill-up by a clever ordering of rotations. However, for banded matrices it will work as expected. -} decompose :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) => Sparse.Matrix i j a -- ^ A -> ([Rotation i a], Upper i j a) -- ^ QR(A) decompose a = (\(qs,rows) -> (concat qs, Upper (Sparse.bounds a) $ Map.fromList rows)) . unzip . List.unfoldr (\a0 -> let bnds@((m0,_), _) = Sparse.bounds a0 (q,a1) = step a0 in toMaybe (not $ emptyRange bnds) $ ((q, (m0, Sparse.getRow m0 a1)), submatrix a1)) $ a -- cf. QR.Householder emptyRange :: (Ix i) => (i,i) -> Bool emptyRange = null . range -- | assumes that the first column is empty except the top-most element submatrix :: (Ord i, Enum i, Ord j, Enum j) => Sparse.Matrix i j a -> Sparse.Matrix i j a submatrix a = let ((m0,n0), mn1) = Sparse.bounds a in Sparse.fromRows ((succ m0, succ n0), mn1) $ Map.delete m0 $ Sparse.toRows a step :: (Ord i, Ord j, RealFloat a) => Sparse.Matrix i j a -> ([Rotation i a], Sparse.Matrix i j a) step a = let bnds@((m0,n0), _) = Sparse.bounds a rows = Sparse.toRows a topRow = Map.findWithDefault Map.empty m0 rows in (\((xi,xrem), finalRows) -> (Map.elems $ Map.mapMaybe fst finalRows, Sparse.fromRows bnds $ Map.insert m0 (Map.insert n0 xi xrem) $ fmap snd finalRows)) $ Map.mapAccumWithKey (\(xi,xrem) mi yrow -> let yrem = Map.delete n0 yrow jrot = Just . Rotation (m0,mi) in case mfilter (0/=) $ Map.lookup n0 yrow of Nothing -> ((xi,xrem),(Nothing,yrem)) Just yi -> if xi==0 then ((yi,yrem), (jrot (0,-1), fmap negate xrem)) else let rot = rotationFromXY (xi,yi) (rx,ry) = rotateRows rot (xrem, yrem) in ((fst $ rotateSingle rot (xi,yi), rx), (jrot rot, ry))) (Map.findWithDefault 0 n0 topRow, Map.delete n0 topRow) (Map.delete m0 rows) -- | The argument must not be (0,0). rotationFromXY :: (RealFloat a) => (a,a) -> (a,a) rotationFromXY (x,y) = if abs x > abs y then let q = y/x; k = recipNorm q in (k,-q*k) else let q = x/y; k = recipNorm q in (q*k,-k) recipNorm :: Floating a => a -> a recipNorm q = recip $ sqrt (1+q^!2) rotateSingle :: (Num a) => (a,a) -> (a,a) -> (a,a) rotateSingle (c,s) (x,y) = (c*x-s*y, s*x+c*y) rotateRows :: (Ord j, Num a) => (a,a) -> (Map j a, Map j a) -> (Map j a, Map j a) rotateRows (c,s) (xs,ys) = let rs = Map.intersectionWith (curry $ rotateSingle (c,s)) xs ys `Map.union` fmap (\x -> ( c*x, s*x)) (Map.difference xs ys) `Map.union` fmap (\y -> (-s*y, c*y)) (Map.difference ys xs) in (fmap fst rs, fmap snd rs) rotateVector :: (Ix i, Num a) => Rotation i a -> Array i a -> Array i a rotateVector (Rotation (i0,i1) cs) x = let (y0,y1) = rotateSingle cs (x!i0,x!i1) in x // [(i0,y0),(i1,y1)] {- | Assumes that 'Upper' matrix is at least as high as wide and that it has full rank. -} solveUpper :: (Ix i, Ix j, Fractional a) => Upper i j a -> Array i a -> Array j a solveUpper (Upper ((m0,n0), (m1,n1)) rows0) b = if bounds b == (m0,m1) then array (n0,n1) $ Map.toList $ foldr (\(row,bi) xs -> let ((j,a),as) = Map.deleteFindMin row in Map.insert j ((bi - Fold.sum (Map.intersectionWith (*) as xs)) / a) xs) Map.empty (zip (Map.elems rows0) (elems b)) else error "solveUpper: vertical bounds mismatch" solve :: (Ix i, Ix j, Fractional a) => ([Rotation i a], Upper i j a) -> Array i a -> Array j a solve (qs, u) b = solveUpper u $ foldl (flip rotateVector) b qs {- | Solve a sparse overconstrained linear problem, i.e. minimize @||Ax-b||@. @A@ must have dimensions @m x n@ with @m>=n@ and it must have full-rank. None of these conditions is checked. -} leastSquares :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) => Sparse.Matrix i j a -> Array i a -> Array j a leastSquares = solve . decompose detUpper :: (Ix i, Ix j, Fractional a) => Upper i j a -> a detUpper (Upper ((_m0,n0), (_m1,n1)) rows) = if rangeSize (n0,n1) == Map.size rows then product $ map (snd . Map.findMin) $ Map.elems rows else 0 {- | Only sensible for square matrices, but the function does not check whether the matrix is square. -} det :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) => Sparse.Matrix i j a -> a det = detUpper . snd . decompose {- | Absolute value of the determinant. This is also sound for non-square matrices. -} detAbs :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) => Sparse.Matrix i j a -> a detAbs = abs . det