module System.Directory.Layout.QQ
( dedent
, dedentSubst
) where
import Control.Applicative
import Data.Char (isSpace)
import Data.Foldable (Foldable(..), toList)
import Data.List (intercalate)
import Data.Sequence (Seq, ViewL(..), ViewR(..), (|>))
import qualified Data.Sequence as Seq
import Data.String (fromString)
import Language.Haskell.TH.Quote (QuasiQuoter(..))
import Language.Haskell.TH.Syntax (liftString)
import Language.Haskell.TH (Q, Exp)
import Prelude hiding (foldr)
import System.Command.QQ (substituteVars, quoter)
dedent :: QuasiQuoter
dedent = dedentWith liftString
dedentSubst :: QuasiQuoter
dedentSubst = dedentWith $ \x -> [e| fromString $(substituteVars x) |]
dedentWith :: (String -> Q Exp) -> QuasiQuoter
dedentWith f = quoter $ f . withLines (strip . trim (all isSpace))
withLines :: (Seq String -> Seq String) -> String -> String
withLines f = unsplit '\n' . toList . f . Seq.fromList . split '\n'
split :: Eq a => a -> [a] -> [[a]]
split sep xs = case break (== sep) xs of
(ys, []) -> ys : []
(ys, _ : zs) -> ys : split sep zs
unsplit :: a -> [[a]] -> [a]
unsplit = intercalate . pure
trim :: (String -> Bool) -> Seq String -> Seq String
trim f = trimLast f . dropFirst f
dropFirst :: (String -> Bool) -> Seq String -> Seq String
dropFirst p xs = case Seq.viewl xs of
y :< ys | p y -> ys
_ -> xs
trimLast :: (String -> Bool) -> Seq String -> Seq String
trimLast p xs = case Seq.viewr xs of
ys :> y | p y -> ys |> ""
_ -> xs
strip :: Seq String -> Seq String
strip xs = case Seq.viewr xs of
vs :> "" -> stripCommonLeadingWhitespace vs |> ""
_ -> stripCommonLeadingWhitespace xs
stripCommonLeadingWhitespace :: (Functor f, Foldable f) => f String -> f String
stripCommonLeadingWhitespace xs = drop (commonLeadingWhitespace xs) <$> xs
commonLeadingWhitespace :: (Functor f, Foldable f) => f String -> Int
commonLeadingWhitespace = minimumOr 0 . fmap (length . takeWhile isSpace)
minimumOr :: (Foldable f, Ord a) => a -> f a -> a
minimumOr n = maybe n id . foldr (lmin . Just) Nothing
where
lmin (Just x) (Just y) = Just (min x y)
lmin Nothing x = x
lmin x Nothing = x