module Math.Diophantine.Grammar
( parseRawEquation
, Equals(..)
, Expr(..)
, Term(..)
, VarTerm(..)
, ParseError(..)
, EqParser(..)
) where
import Data.Char (isDigit,isSpace)
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts
newtype HappyAbsSyn t4 t5 t6 t7 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4 t5 t6 t7)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut4 :: (HappyAbsSyn t4 t5 t6 t7) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn5 :: t5 -> (HappyAbsSyn t4 t5 t6 t7)
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut5 :: (HappyAbsSyn t4 t5 t6 t7) -> t5
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn6 :: t6 -> (HappyAbsSyn t4 t5 t6 t7)
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut6 :: (HappyAbsSyn t4 t5 t6 t7) -> t6
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn7 :: t7 -> (HappyAbsSyn t4 t5 t6 t7)
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut7 :: (HappyAbsSyn t4 t5 t6 t7) -> t7
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
happyInTok :: (Token) -> (HappyAbsSyn t4 t5 t6 t7)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
happyOutTok :: (HappyAbsSyn t4 t5 t6 t7) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x01\x00\x01\x00\x1a\x00\x00\x00\x30\x00\x28\x00\x26\x00\x25\x00\x23\x00\x0c\x00\x17\x00\x2f\x00\x2e\x00\x2d\x00\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x00\x01\x00\x01\x00\x01\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x29\x00\x27\x00\x24\x00\x00\x00\x00\x00\x1d\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x11\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2b\x00\x2a\x00\x00\x00\x00\x00\x00\x00\xfe\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x13\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\xfb\xff\xf8\xff\xf0\xff\xef\xff\xee\xff\xed\xff\x00\x00\xfa\xff\x00\x00\xf4\xff\xf7\xff\xf9\xff\xe7\xff\xe5\xff\xe8\xff\xe6\xff\xeb\xff\xe9\xff\xec\xff\xea\xff\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\xfd\xff\xfe\xff\xf6\xff\xf3\xff\x00\x00\x00\x00\xf2\xff\xf5\xff\x00\x00\xf1\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x07\x00\x01\x00\x02\x00\x03\x00\x0b\x00\x01\x00\x02\x00\x03\x00\x04\x00\x00\x00\x01\x00\x02\x00\x03\x00\x02\x00\x03\x00\x0b\x00\x01\x00\x02\x00\x03\x00\x04\x00\x01\x00\x02\x00\x03\x00\x05\x00\x06\x00\x07\x00\x06\x00\x07\x00\x01\x00\x02\x00\x01\x00\x02\x00\x0b\x00\x03\x00\x04\x00\x03\x00\x04\x00\x03\x00\x03\x00\x0b\x00\xff\xff\x08\x00\x0b\x00\xff\xff\xff\xff\x08\x00\x08\x00\x0b\x00\x08\x00\xff\xff\xff\xff\x0c\x00\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x1f\x00\x06\x00\x07\x00\x08\x00\x09\x00\x1b\x00\x04\x00\x0a\x00\x1d\x00\x03\x00\x04\x00\x0b\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x1c\x00\x04\x00\x0f\x00\x06\x00\x07\x00\x08\x00\x09\x00\x02\x00\x03\x00\x04\x00\x19\x00\x1a\x00\x1b\x00\x1a\x00\x1b\x00\x10\x00\x11\x00\x12\x00\x13\x00\x26\x00\x14\x00\x15\x00\x16\x00\x17\x00\x0c\x00\x0d\x00\x23\x00\x00\x00\x25\x00\x24\x00\x00\x00\x00\x00\x21\x00\x22\x00\x1f\x00\x18\x00\x00\x00\x00\x00\xff\xff\x00\x00"#
happyReduceArr = Happy_Data_Array.array (1, 26) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11),
(12 , happyReduce_12),
(13 , happyReduce_13),
(14 , happyReduce_14),
(15 , happyReduce_15),
(16 , happyReduce_16),
(17 , happyReduce_17),
(18 , happyReduce_18),
(19 , happyReduce_19),
(20 , happyReduce_20),
(21 , happyReduce_21),
(22 , happyReduce_22),
(23 , happyReduce_23),
(24 , happyReduce_24),
(25 , happyReduce_25),
(26 , happyReduce_26)
]
happy_n_terms = 13 :: Int
happy_n_nonterms = 4 :: Int
happyReduce_1 = happySpecReduce_3 0# happyReduction_1
happyReduction_1 happy_x_3
happy_x_2
happy_x_1
= case happyOut5 happy_x_1 of { happy_var_1 ->
case happyOut5 happy_x_3 of { happy_var_3 ->
happyIn4
(Equals happy_var_1 happy_var_3
)}}
happyReduce_2 = happySpecReduce_3 1# happyReduction_2
happyReduction_2 happy_x_3
happy_x_2
happy_x_1
= case happyOut5 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_3 of { happy_var_3 ->
happyIn5
(Plus happy_var_1 happy_var_3
)}}
happyReduce_3 = happySpecReduce_3 1# happyReduction_3
happyReduction_3 happy_x_3
happy_x_2
happy_x_1
= case happyOut5 happy_x_1 of { happy_var_1 ->
case happyOut6 happy_x_3 of { happy_var_3 ->
happyIn5
(Minus happy_var_1 happy_var_3
)}}
happyReduce_4 = happySpecReduce_1 1# happyReduction_4
happyReduction_4 happy_x_1
= case happyOut6 happy_x_1 of { happy_var_1 ->
happyIn5
(ETerm happy_var_1
)}
happyReduce_5 = happySpecReduce_1 2# happyReduction_5
happyReduction_5 happy_x_1
= case happyOutTok happy_x_1 of { (TokenInt happy_var_1) ->
happyIn6
(Constant happy_var_1
)}
happyReduce_6 = happySpecReduce_2 2# happyReduction_6
happyReduction_6 happy_x_2
happy_x_1
= case happyOutTok happy_x_2 of { (TokenInt happy_var_2) ->
happyIn6
(Constant (negate happy_var_2)
)}
happyReduce_7 = happySpecReduce_1 2# happyReduction_7
happyReduction_7 happy_x_1
= case happyOut7 happy_x_1 of { happy_var_1 ->
happyIn6
(Variable 1 happy_var_1 1
)}
happyReduce_8 = happySpecReduce_2 2# happyReduction_8
happyReduction_8 happy_x_2
happy_x_1
= case happyOut7 happy_x_2 of { happy_var_2 ->
happyIn6
(Variable (1) happy_var_2 1
)}
happyReduce_9 = happyMonadReduce 3# 2# happyReduction_9
happyReduction_9 (happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest) tk
= happyThen (case happyOut7 happy_x_1 of { happy_var_1 ->
case happyOutTok happy_x_3 of { (TokenInt happy_var_3) ->
( if happy_var_3 `notElem` [1,2]
then Invalid PowerOutOfBounds
else return $ Variable 1 happy_var_1 happy_var_3)}}
) (\r -> happyReturn (happyIn6 r))
happyReduce_10 = happyMonadReduce 4# 2# happyReduction_10
happyReduction_10 (happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest) tk
= happyThen (case happyOut7 happy_x_2 of { happy_var_2 ->
case happyOutTok happy_x_4 of { (TokenInt happy_var_4) ->
( if happy_var_4 `notElem` [1,2]
then Invalid PowerOutOfBounds
else return $ Variable (1) happy_var_2 happy_var_4)}}
) (\r -> happyReturn (happyIn6 r))
happyReduce_11 = happySpecReduce_2 2# happyReduction_11
happyReduction_11 happy_x_2
happy_x_1
= case happyOutTok happy_x_1 of { (TokenInt happy_var_1) ->
case happyOut7 happy_x_2 of { happy_var_2 ->
happyIn6
(Variable happy_var_1 happy_var_2 1
)}}
happyReduce_12 = happySpecReduce_3 2# happyReduction_12
happyReduction_12 happy_x_3
happy_x_2
happy_x_1
= case happyOutTok happy_x_2 of { (TokenInt happy_var_2) ->
case happyOut7 happy_x_3 of { happy_var_3 ->
happyIn6
(Variable (negate happy_var_2) happy_var_3 1
)}}
happyReduce_13 = happyMonadReduce 4# 2# happyReduction_13
happyReduction_13 (happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest) tk
= happyThen (case happyOutTok happy_x_1 of { (TokenInt happy_var_1) ->
case happyOut7 happy_x_2 of { happy_var_2 ->
case happyOutTok happy_x_4 of { (TokenInt happy_var_4) ->
( if happy_var_4 `notElem` [1,2]
|| (happy_var_2 == XYTerm && happy_var_4 == 2)
then Invalid PowerOutOfBounds
else return $ Variable happy_var_1 happy_var_2 happy_var_4)}}}
) (\r -> happyReturn (happyIn6 r))
happyReduce_14 = happyMonadReduce 5# 2# happyReduction_14
happyReduction_14 (happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest) tk
= happyThen (case happyOutTok happy_x_2 of { (TokenInt happy_var_2) ->
case happyOut7 happy_x_3 of { happy_var_3 ->
case happyOutTok happy_x_5 of { (TokenInt happy_var_5) ->
( if happy_var_5 `notElem` [1,2]
|| (happy_var_3 == XYTerm && happy_var_5 == 2)
then Invalid PowerOutOfBounds
else return
$ Variable (negate happy_var_2) happy_var_3 happy_var_5)}}}
) (\r -> happyReturn (happyIn6 r))
happyReduce_15 = happySpecReduce_1 3# happyReduction_15
happyReduction_15 happy_x_1
= happyIn7
(XTerm
)
happyReduce_16 = happySpecReduce_1 3# happyReduction_16
happyReduction_16 happy_x_1
= happyIn7
(XTerm
)
happyReduce_17 = happySpecReduce_1 3# happyReduction_17
happyReduction_17 happy_x_1
= happyIn7
(YTerm
)
happyReduce_18 = happySpecReduce_1 3# happyReduction_18
happyReduction_18 happy_x_1
= happyIn7
(YTerm
)
happyReduce_19 = happySpecReduce_2 3# happyReduction_19
happyReduction_19 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_20 = happySpecReduce_2 3# happyReduction_20
happyReduction_20 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_21 = happySpecReduce_2 3# happyReduction_21
happyReduction_21 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_22 = happySpecReduce_2 3# happyReduction_22
happyReduction_22 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_23 = happySpecReduce_2 3# happyReduction_23
happyReduction_23 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_24 = happySpecReduce_2 3# happyReduction_24
happyReduction_24 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_25 = happySpecReduce_2 3# happyReduction_25
happyReduction_25 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyReduce_26 = happySpecReduce_2 3# happyReduction_26
happyReduction_26 happy_x_2
happy_x_1
= happyIn7
(XYTerm
)
happyNewToken action sts stk [] =
happyDoAction 12# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
TokenX -> cont 1#;
TokenX -> cont 2#;
TokenY -> cont 3#;
TokenY -> cont 4#;
TokenEq -> cont 5#;
TokenPlus -> cont 6#;
TokenMinus -> cont 7#;
TokenExp -> cont 8#;
TokenO -> cont 9#;
TokenC -> cont 10#;
TokenInt happy_dollar_dollar -> cont 11#;
_ -> happyError' (tk:tks)
}
happyError_ 12# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)
happyThen :: () => EqParser a -> (a -> EqParser b) -> EqParser b
happyThen = (>>=)
happyReturn :: () => a -> EqParser a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> EqParser a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> EqParser a
happyError' = parseError
parseTokenStream tks = happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))
happySeq = happyDontSeq
parseError :: [Token] -> EqParser a
parseError _ = Invalid BadGrammar
data EqParser a = Valid a
| Invalid ParseError
deriving Show
data ParseError = PowerOutOfBounds
| BadGrammar
instance Show ParseError where
show PowerOutOfBounds = "Power out of bounds"
show BadGrammar = "Bad equation grammar"
instance Monad EqParser where
return t = Valid t
(>>=) (Valid v) f = f v
(>>=) (Invalid i) _ = Invalid i
data Equals = Equals Expr Expr deriving Show
data Expr = Plus Expr Term
| Minus Expr Term
| ETerm Term
deriving Show
data Term = Constant Integer
| Variable Integer VarTerm Integer
deriving Show
data VarTerm = XTerm
| YTerm
| XYTerm
deriving (Show, Eq)
data Token = TokenX
| TokenY
| TokenEq
| TokenPlus
| TokenMinus
| TokenExp
| TokenInt Integer
| TokenO
| TokenC
deriving Show
lexer :: String -> [Token]
lexer [] = []
lexer str@(c:cs)
| isSpace c = lexer cs
| isDigit c = lexNum str
lexer ('x':cs) = TokenX : lexer cs
lexer ('X':cs) = TokenX : lexer cs
lexer ('y':cs) = TokenY : lexer cs
lexer ('Y':cs) = TokenY : lexer cs
lexer ('=':cs) = TokenEq : lexer cs
lexer ('+':cs) = TokenPlus : lexer cs
lexer ('-':cs) = TokenMinus : lexer cs
lexer ('^':cs) = TokenExp : lexer cs
lexer ('(':cs) = TokenO : lexer cs
lexer (')':cs) = TokenC : lexer cs
lexNum :: String -> [Token]
lexNum cs = let (num,rest) = span isDigit cs
in TokenInt (read num) : lexer rest
parseRawEquation :: String -> EqParser Equals
parseRawEquation = parseTokenStream . lexer
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 17 "/usr/include/stdc-predef.h" 3 4
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail i tk st
1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = indexShortOffAddr happyActOffsets st
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else False
action
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = indexShortOffAddr happyGotoOffsets st1
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = indexShortOffAddr happyGotoOffsets st
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ i tk
happyFail i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b