{-# LANGUAGE FlexibleContexts , TypeFamilies , ViewPatterns #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Transform -- Copyright : (c) 2011 diagrams-lib team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- Transformations specific to two dimensions, with a few generic -- transformations (uniform scaling, translation) also re-exported for -- convenience. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Transform ( -- * Rotation rotation, rotate, rotateBy , rotationAbout, rotateAbout -- * Scaling , scalingX, scaleX , scalingY, scaleY , scaling, scale , scaleToX, scaleToY , scaleUToX, scaleUToY -- * Translation , translationX, translateX , translationY, translateY , translation, translate -- * Reflection , reflectionX, reflectX , reflectionY, reflectY , reflectionAbout, reflectAbout -- * Shears , shearingX, shearX , shearingY, shearY ) where import Graphics.Rendering.Diagrams import Control.Newtype (over) import Diagrams.TwoD.Types import Diagrams.TwoD.Size (width, height) import Diagrams.TwoD.Vector (direction) import Diagrams.Transform import Data.Semigroup import Data.AffineSpace import Control.Arrow (first, second) -- Rotation ------------------------------------------------ -- | Create a transformation which performs a rotation by the given -- angle. See also 'rotate'. rotation :: Angle a => a -> T2 rotation ang = fromLinear r (linv r) where r = rot theta <-> rot (-theta) Rad theta = convertAngle ang rot th (unr2 -> (x,y)) = r2 (cos th * x - sin th * y, sin th * x + cos th * y) -- | Rotate by the given angle. Positive angles correspond to -- counterclockwise rotation, negative to clockwise. The angle can -- be expressed using any type which is an instance of 'Angle'. For -- example, @rotate (1\/4 :: 'CircleFrac')@, @rotate (tau\/4 :: 'Rad')@, and -- @rotate (90 :: 'Deg')@ all represent the same transformation, namely, -- a counterclockwise rotation by a right angle. -- -- Note that writing @rotate (1\/4)@, with no type annotation, will -- yield an error since GHC cannot figure out which sort of angle -- you want to use. In this common situation you can use -- 'rotateBy', which is specialized to take a 'CircleFrac' argument. rotate :: (Transformable t, V t ~ R2, Angle a) => a -> t -> t rotate = transform . rotation -- | A synonym for 'rotate', specialized to only work with -- @CircleFrac@ arguments; it can be more convenient to write -- @rotateBy (1\/4)@ than @'rotate' (1\/4 :: 'CircleFrac')@. rotateBy :: (Transformable t, V t ~ R2) => CircleFrac -> t -> t rotateBy = transform . rotation -- | @rotationAbout p@ is a rotation about the point @p@ (instead of -- around the local origin). rotationAbout :: Angle a => P2 -> a -> T2 rotationAbout p angle = conjugate (translation (origin .-. p)) (rotation angle) -- | @rotateAbout p@ is like 'rotate', except it rotates around the -- point @p@ instead of around the local origin. rotateAbout :: (Transformable t, V t ~ R2, Angle a) => P2 -> a -> t -> t rotateAbout p angle = rotate angle `under` translation (origin .-. p) -- Scaling ------------------------------------------------- -- | Construct a transformation which scales by the given factor in -- the x (horizontal) direction. scalingX :: Double -> T2 scalingX c = fromLinear s s where s = (over r2 . first) (*c) <-> (over r2 . first) (/c) -- | Scale a diagram by the given factor in the x (horizontal) -- direction. To scale uniformly, use 'scale'. scaleX :: (Transformable t, V t ~ R2) => Double -> t -> t scaleX = transform . scalingX -- | Construct a transformation which scales by the given factor in -- the y (vertical) direction. scalingY :: Double -> T2 scalingY c = fromLinear s s where s = (over r2 . second) (*c) <-> (over r2 . second) (/c) -- | Scale a diagram by the given factor in the y (vertical) -- direction. To scale uniformly, use 'scale'. scaleY :: (Transformable t, V t ~ R2) => Double -> t -> t scaleY = transform . scalingY -- | @scaleToX w@ scales a diagram in the x (horizontal) direction by -- whatever factor required to make its width @w@. @scaleToX@ -- should not be applied to diagrams with a width of 0, such as -- 'vrule'. scaleToX :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleToX w d = scaleX (w / width d) d -- | @scaleToY h@ scales a diagram in the y (vertical) direction by -- whatever factor required to make its height @h@. @scaleToY@ -- should not be applied to diagrams with a height of 0, such as -- 'hrule'. scaleToY :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleToY h d = scaleY (h / height d) d -- | @scaleUToX w@ scales a diagram /uniformly/ by whatever factor -- required to make its width @w@. @scaleUToX@ should not be -- applied to diagrams with a width of 0, such as 'vrule'. scaleUToX :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleUToX w d = scale (w / width d) d -- | @scaleUToY h@ scales a diagram /uniformly/ by whatever factor -- required to make its height @h@. @scaleUToY@ should not be applied -- to diagrams with a height of 0, such as 'hrule'. scaleUToY :: (Enveloped t, Transformable t, V t ~ R2) => Double -> t -> t scaleUToY h d = scale (h / height d) d -- Translation --------------------------------------------- -- | Construct a transformation which translates by the given distance -- in the x (horizontal) direction. translationX :: Double -> T2 translationX x = translation (r2 (x,0)) -- | Translate a diagram by the given distance in the x (horizontal) -- direction. translateX :: (Transformable t, V t ~ R2) => Double -> t -> t translateX = transform . translationX -- | Construct a transformation which translates by the given distance -- in the y (vertical) direction. translationY :: Double -> T2 translationY y = translation (r2 (0,y)) -- | Translate a diagram by the given distance in the y (vertical) -- direction. translateY :: (Transformable t, V t ~ R2) => Double -> t -> t translateY = transform . translationY -- Reflection ---------------------------------------------- -- | Construct a transformation which flips a diagram from left to -- right, i.e. sends the point (x,y) to (-x,y). reflectionX :: T2 reflectionX = scalingX (-1) -- | Flip a diagram from left to right, i.e. send the point (x,y) to -- (-x,y). reflectX :: (Transformable t, V t ~ R2) => t -> t reflectX = transform reflectionX -- | Construct a transformation which flips a diagram from top to -- bottom, i.e. sends the point (x,y) to (x,-y). reflectionY :: T2 reflectionY = scalingY (-1) -- | Flip a diagram from top to bottom, i.e. send the point (x,y) to -- (x,-y). reflectY :: (Transformable t, V t ~ R2) => t -> t reflectY = transform reflectionY -- | @reflectionAbout p v@ is a reflection in the line determined by -- the point @p@ and vector @v@. reflectionAbout :: P2 -> R2 -> T2 reflectionAbout p v = conjugate (rotation (-direction v :: Rad) <> translation (origin .-. p)) reflectionY -- | @reflectAbout p v@ reflects a diagram in the line determined by -- the point @p@ and the vector @v@. reflectAbout :: (Transformable t, V t ~ R2) => P2 -> R2 -> t -> t reflectAbout p v = transform (reflectionAbout p v) -- Shears -------------------------------------------------- -- | @shearingX d@ is the linear transformation which is the identity on -- y coordinates and sends @(0,1)@ to @(d,1)@. shearingX :: Double -> T2 shearingX d = fromLinear (over r2 (sh d) <-> over r2 (sh (-d))) (over r2 (sh' d) <-> over r2 (sh' (-d))) where sh k (x, y) = (x+k*y, y) sh' k = swap . sh k . swap swap (x,y) = (y,x) -- | @shearX d@ performs a shear in the x-direction which sends -- @(0,1)@ to @(d,1)@. shearX :: (Transformable t, V t ~ R2) => Double -> t -> t shearX = transform . shearingX -- | @shearingY d@ is the linear transformation which is the identity on -- x coordinates and sends @(1,0)@ to @(1,d)@. shearingY :: Double -> T2 shearingY d = fromLinear (over r2 (sh d) <-> over r2 (sh (-d))) (over r2 (sh' d) <-> over r2 (sh' (-d))) where sh k (x,y) = (x, y+k*x) sh' k = swap . sh k . swap swap (x,y) = (y,x) -- | @shearY d@ performs a shear in the y-direction which sends -- @(1,0)@ to @(1,d)@. shearY :: (Transformable t, V t ~ R2) => Double -> t -> t shearY = transform . shearingY