{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Sunburst -- Copyright : (c) 2013 Jeffrey Rosenbluth -- License : BSD-style (see LICENSE) -- Maintainer : jeffrey.rosenbluth@gmail.com -- -- Generation of Sunburst Partitions. A radial view of a Treemap. -- -- The partitions are created without examining the contents of the tree nodes -- which allows us to create a sunburst for any @Tree a@. As a consequence we cannot -- base the size or color of the sections on the data in the tree, but only -- on depth and number of children. Of course the code could easily be adapted -- to handle more specific tree data. -- -- See John Stasko, Richard Catrambone, \"An evaluation of space-filling -- information visualizations for depicting hierarchical structures\", 2000. -- <http://www.cc.gatech.edu/~john.stasko/papers/ijhcs00.pdf>. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Sunburst ( -- * Sunburst sunburst' , sunburst , SunburstOpts(..), radius, sectionWidth, colors ) where import Control.Lens (makeLenses, (^.)) import Data.Tree import Data.Foldable (foldMap) import Data.Default.Class import Diagrams.Prelude hiding (radius) data SunburstOpts = SunburstOpts { _radius :: Double -- ^ Relative size of the root circle, usually 1. , _sectionWidth :: Double -- ^ Relative width of the sections. , _colors :: [Colour Double] -- ^ Color list one for each ring. } instance Default SunburstOpts where def = SunburstOpts { _radius = 1.0 , _sectionWidth = 0.3 , _colors = [ lightcoral, lightseagreen, paleturquoise ,lightsteelblue, plum, violet, coral, honeydew] } makeLenses ''SunburstOpts -- Section data: Will be stored in nodes of a new rose tree and used to -- make each section of the sunburst partition. -- radius, ring width, start angle, end angle, number of sections, color. data SData = SData Double Double Angle Angle Int (Colour Double) -- Make n sections (annular wedges) spanning a1 to a2. sections :: Renderable (Path R2) b => Double -> Double -> Angle -> Angle -> Int -> (Colour Double) -> Diagram b R2 sections r s a1 a2 n c = mconcat $ iterateN n (rotate theta) w where theta = (a2 ^-^ a1) ^/ (fromIntegral n) w = annularWedge (s + r) r a1 (a1 ^+^ theta) # lc white # lw 0.008 # fc c -- Convert an arbitrary @Tree a@ to a @Tree SData@ storing the sections info -- in the nodes. If color list is shorter than depth of tree than the first -- color of the list is repeated. If the color list is empty, lightgray is used. toTree :: Double -> Double-> [(Colour Double)] -> Tree a -> Angle -> Angle -> Tree SData toTree r s [] x q1 q2 = toTree r s (repeat lightgray) x q1 q2 toTree r s (c:cs) (Node _ ts) q1 q2 = Node (SData r s q1 q2 n c) ts' where n = length ts dt = (q2 ^-^ q1) ^/ (fromIntegral n) qs = [q1 ^+^ ((fromIntegral i) *^ dt ) | i <- [0..n]] fs = toTree (r + s) s (cs ++ [c]) ts' = zipWith3 fs ts (take (n-1) qs) (drop 1 qs) -- | Take any @Tree a@ and @SunburstOpts@ and make a sunburst partition. -- Basically a treemap with a radial layout. -- The root is the center of the sunburst and its circumference is divided -- evenly according to the number of child nodes it has. Then each of those -- sections is treated the same way. sunburst' :: Renderable (Path R2) b => SunburstOpts -> Tree a -> Diagram b R2 sunburst' opts t = sunB $ toTree r s cs t zeroV fullTurn where r = opts^.radius s = opts^.sectionWidth cs = opts^.colors sunB (Node (SData r' m a1 a2 n c) ts') = sections r' m a1 a2 n c <> (foldMap sunB ts') -- | @sunburst@ with default opts -- -- > import Diagrams.TwoD.Sunburst -- > import Data.Tree (unfoldTree) -- > aTree = unfoldTree (\n -> (0, replicate n (n-1))) 6 -- > sunburstEx = sunburst aTree # pad 1.1 -- -- <<diagrams/src_Diagrams_TwoD_Sunburst_sunburstEx.svg#diagram=sunburstEx&width=500>> sunburst :: Renderable (Path R2) b => Tree a -> Diagram b R2 sunburst = sunburst' def