{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeFamilies #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Path.IteratedSubset -- Copyright : (c) 2012 Brent Yorgey -- License : BSD-style (see LICENSE) -- Maintainer : byorgey@cis.upenn.edu -- -- Generate fractal trails by the \"iterated subset\" construction, -- iteratively replacing each segment with a given pattern. -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Path.IteratedSubset ( -- * Iterated subset algorithm iterTrail, refineSegment -- * Examples -- ** Example seed trails -- $seeds , koch , levy , zag , sqUp , sqUpDown , sqUpDown' -- ** Other stuff -- $other , snowflake , sqUpDownOverlay , IterTrailConfig(..), randITC, drawITC, drawITCScaled , randIterGrid ) where -- Diagrams.Core.Points needed for V (Point a) instance on GHC < 7.6 import Diagrams.Core.Points () import Diagrams.Prelude import Control.Monad (replicateM) import Control.Monad.Random (evalRandIO, getRandom, getRandomR) import Control.Monad.Random.Class (MonadRandom) import Data.Colour.SRGB (sRGB) import Data.List.Split (chunksOf) import Data.Maybe (mapMaybe) ------------------------------------------------------------ -- Iterated subset algorithm ------------------------------------------------------------ -- | Given a \"seed pattern\", produce a list of successive -- refinements, where the nth trail in the list has iteratively had -- all segments replaced by the seed pattern n times, starting from -- a horizontal line. In other words, the zeroth trail in the -- output list is a horizontal unit segment, and each subsequent -- trail is equal to the previous with all segments replaced by the -- seed pattern. -- -- > import Diagrams.TwoD.Path.IteratedSubset -- > iterTrailEx = vcat' (with & sep .~ 0.3) . map strokeLine . take 5 -- > $ iterTrail koch -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_iterTrailEx.svg#diagram=iterTrailEx&width=200>> iterTrail :: Trail' Line R2 -> [Trail' Line R2] iterTrail t = iterate (mconcat . mapMaybe (refineSegment t) . lineSegments) (fromOffsets [unitX]) -- | Use a trail to \"refine\" a segment, returning a scaled and/or -- rotated copy of the trail with the same endpoint as the segment. refineSegment :: Trail' Line R2 -> Segment Closed R2 -> Maybe (Trail' Line R2) refineSegment t seg | tOff == zeroV || sOff == zeroV = Nothing | otherwise = Just $ t # scale k # rotate r where sOff = segOffset seg tOff = lineOffset t k = magnitude sOff / magnitude tOff r = direction sOff ^-^ direction tOff ------------------------------------------------------------ -- Examples ------------------------------------------------------------ -------------------------------------------------- -- Example seed trails -- $seeds -- These are just a few sample seed trails which give interesting -- results, but by no means the only ones! Use them directly, or use -- them as inspiration for creating your own seed trails. -- > import Diagrams.TwoD.Path.IteratedSubset -- > showTrail n t = hcat' (with & sep .~ 0.2) [ iters !! 1, iters !! n ] -- > # centerXY # pad 1.1 -- > where iters = map strokeLine $ iterTrail t -- | Seed for the Koch curve (side of the famous Koch 'snowflake'). -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_kochD.svg#diagram=kochD&width=400>> koch :: (TrailLike t, V t ~ R2) => t koch = fromOffsets [unitX, unitX # rotateBy (1/6), unitX # rotateBy (-1/6), unitX] -- > kochD = showTrail 4 koch -- | Seed for the Lévy dragon curve. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_levyD.svg#diagram=levyD&width=400>> levy :: (TrailLike t, V t ~ R2) => t levy = fromOffsets [unitY, unitX] -- > levyD = showTrail 9 levy -- | Strange zig-zag seed that produces a dense fractal path with lots -- of triangles. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_zagD.svg#diagram=zagD&width=400>> zag :: (TrailLike t, V t ~ R2) => t zag = fromOffsets [unitX, (-0.5) ^& 1, unitX] -- > zagD = showTrail 5 zag -- | A \"square impulse\" seed which produces a quadratic von Koch -- curve. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_sqUpD.svg#diagram=sqUpD&width=400>> sqUp :: (TrailLike t, V t ~ R2) => t sqUp = fromOffsets [unitX, unitY, unitX, unit_Y, unitX] -- > sqUpD = showTrail 3 sqUp -- | A \"double square impulse\" seed which produces fantastic -- rectilinear spiral patterns. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_sqUpDownD.svg#diagram=sqUpDownD&width=400>> sqUpDown :: (TrailLike t, V t ~ R2) => t sqUpDown = fromOffsets [unitX, unitY, unitX, 2 *^ unit_Y, unitX, unitY, unitX] -- > sqUpDownD = showTrail 3 sqUpDown -- | Like 'sqUpDown' but with 'cubicSpline' applied to produce a curvy -- version. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_sqUpDownD2.svg#diagram=sqUpDownD2&width=400>> sqUpDown' :: (TrailLike t, V t ~ R2) => t sqUpDown' = cubicSpline False sqUpDown -- > sqUpDownD2 = showTrail 3 sqUpDown' -------------------------------------------------- -- Miscellaneous examples -- $other -- A random collection of other fun things you can do with -- 'iterTrail'. There is no particular emphasis on making these -- configurable or generic; the point is just to suggest some fun -- things you can do. If you want to play with them, copy the source -- code and modify it as you see fit. -- | The famous Koch snowflake, made by putting three Koch curves -- together. @snowflake n@ yields an order-@n@ snowflake. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_snowflake4.svg#diagram=snowflake4&width=300>> snowflake :: Int -> Trail R2 snowflake n = iterateN 3 (rotateBy (-1/3)) edge # mconcat # glueLine # wrapTrail where edge = iterTrail koch !! n -- > import Diagrams.TwoD.Path.IteratedSubset -- > snowflake4 = snowflake 4 # strokeT # centerXY # pad 1.1 -- | A cool diagram featuring successive iterations of @sqUpDown'@ -- superimposed atop one another. -- -- <<diagrams/src_Diagrams_TwoD_Path_IteratedSubset_sqUpDownOverlayD.svg#diagram=sqUpDownOverlayD&width=400>> sqUpDownOverlay :: Renderable (Path R2) b => Diagram b R2 sqUpDownOverlay = sized (Width 4) . mconcat . zipWith lc (iterate (blend 0.1 white) blue) . map strokeLine . take 5 . iterTrail $ sqUpDown' -- > import Diagrams.TwoD.Path.IteratedSubset -- > sqUpDownOverlayD = sqUpDownOverlay -------------------------------------------------- -- Generating random iterated subset fractals -- | Parameters to generate an iterated subset fractal. data IterTrailConfig = ITC { seed :: Trail' Line R2 -- ^ The seed trail , color :: Colour Double -- ^ The line color to use , iters :: Int -- ^ Number of iterations } -- | Generate a random 'IterTrailConfig'. This features many -- hard-coded values. If you want to play with it just copy the -- code and modify it to suit. randITC :: (MonadRandom m, Applicative m) => m IterTrailConfig randITC = do -- use between two and five segments for the seed pattern nSegs <- getRandomR (2,5) -- should we make the seed pattern a cubic spline? spline <- getRandom -- generate a random list of linear segments drawn from (-1,1)^2. s <- fromOffsets <$> replicateM nSegs ((^&) <$> getRandomR (-1,1) <*> getRandomR (-1,1)) -- generate a random color. c <- sRGB <$> getRandom <*> getRandom <*> getRandom -- generate a random number of iterations, with a lower bound of 3 -- (since fewer is not very interesting) and an upper bound chosen -- to ensure we won't get more than 10000 segments in the final -- path. i <- getRandomR (3, floor (logBase (fromIntegral nSegs :: Double) 10000)) let s' | spline = cubicSpline False s | otherwise = fromVertices s return $ ITC s' c i -- | Generate an iterated subset fractal based on the given parameters. drawITC :: Renderable (Path R2) b => IterTrailConfig -> Diagram b R2 drawITC (ITC s c i) = (iterTrail s !! i) # strokeLine # lc c -- | Like 'drawITC', but also scales, centers, and pads the result so -- that it fits nicely inside a 4x4 box. drawITCScaled :: (Renderable (Path R2) b, Backend b R2) => IterTrailConfig -> Diagram b R2 drawITCScaled itc = drawITC itc # sized (Dims 4 4) # centerXY # pad 1.1 -- | Create a grid of 100 random iterated subset fractals. Impress -- your friends! randIterGrid :: (Renderable (Path R2) b, Backend b R2) => IO (Diagram b R2) randIterGrid = do itcs <- evalRandIO (replicateM 100 randITC) return (vcat . map hcat . chunksOf 10 . map drawITCScaled $ itcs)