{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -fno-warn-missing-methods #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.TwoD.Apollonian -- Copyright : (c) 2011 Brent Yorgey -- License : BSD-style (see LICENSE) -- Maintainer : byorgey@cis.upenn.edu -- -- Generation of Apollonian gaskets. Any three mutually tangent -- circles uniquely determine exactly two others which are mutually -- tangent to all three. This process can be repeated, generating a -- fractal circle packing. -- -- See J. Lagarias, C. Mallows, and A. Wilks, \"Beyond the Descartes -- circle theorem\", /Amer. Math. Monthly/ 109 (2002), 338--361. -- <http://arxiv.org/abs/math/0101066>. -- -- A few examples: -- -- > import Diagrams.TwoD.Apollonian -- > apollonian1 = apollonianGasket 0.01 2 2 2 -- -- <<diagrams/src_Diagrams_TwoD_Apollonian_apollonian1.svg#diagram=apollonian1&width=400>> -- -- > import Diagrams.TwoD.Apollonian -- > apollonian2 = apollonianGasket 0.01 2 3 3 -- -- <<diagrams/src_Diagrams_TwoD_Apollonian_apollonian2.svg#diagram=apollonian2&width=400>> -- -- > import Diagrams.TwoD.Apollonian -- > apollonian3 = apollonianGasket 0.01 2 4 7 -- -- <<diagrams/src_Diagrams_TwoD_Apollonian_apollonian3.svg#diagram=apollonian3&width=400>> -- ----------------------------------------------------------------------------- module Diagrams.TwoD.Apollonian ( -- * Circles Circle(..), mkCircle, center, radius -- * Descartes' Theorem , descartes, other, initialConfig -- * Apollonian gasket generation , apollonian -- * Diagram generation , drawCircle , drawGasket , apollonianGasket ) where import Data.Complex import Data.Foldable (foldMap) import Diagrams.Prelude hiding (center, radius) import Control.Arrow (second) ------------------------------------------------------------ -- Circles ------------------------------------------------------------ -- | Representation for circles that lets us quickly compute an -- Apollonian gasket. data Circle = Circle { bend :: Double -- ^ The bend is the reciprocal of signed -- radius: a negative radius means the -- outside and inside of the circle are -- switched. The bends of any four mutually -- tangent circles satisfy Descartes' -- Theorem. , cb :: Complex Double -- ^ /Product/ of bend and center represented -- as a complex number. Amazingly, these -- products also satisfy the equation of -- Descartes' Theorem. } deriving (Eq, Show) -- | Create a @Circle@ given a signed radius and a location for its center. mkCircle :: Double -- ^ signed radius -> P2 -- ^ center -> Circle mkCircle r (unp2 -> (x,y)) = Circle (1/r) (b*x :+ b*y) where b = 1/r -- | Get the center of a circle. center :: Circle -> P2 center (Circle b (cbx :+ cby)) = p2 (cbx / b, cby / b) -- | Get the (unsigned) radius of a circle. radius :: Circle -> Double radius = abs . recip . bend liftF :: (forall a. Floating a => a -> a) -> Circle -> Circle liftF f (Circle b c) = Circle (f b) (f c) liftF2 :: (forall a. Floating a => a -> a -> a) -> Circle -> Circle -> Circle liftF2 f (Circle b1 cb1) (Circle b2 cb2) = Circle (f b1 b2) (f cb1 cb2) instance Num Circle where (+) = liftF2 (+) (-) = liftF2 (-) (*) = liftF2 (*) negate = liftF negate abs = liftF abs fromInteger n = Circle (fromInteger n) (fromInteger n) instance Fractional Circle where (/) = liftF2 (/) recip = liftF recip -- | The @Num@, @Fractional@, and @Floating@ instances for @Circle@ -- (all simply lifted elementwise over @Circle@'s fields) let us use -- Descartes' Theorem directly on circles. instance Floating Circle where sqrt = liftF sqrt ------------------------------------------------------------ -- Descartes' Theorem ------------------------------------------------------------ -- | Descartes' Theorem states that if @b1@, @b2@, @b3@ and @b4@ are -- the bends of four mutually tangent circles, then -- -- @ -- b1^2 + b2^2 + b3^2 + b4^2 = 1/2 * (b1 + b2 + b3 + b4)^2. -- @ -- -- Surprisingly, if we replace each of the @bi@ with the /product/ -- of @bi@ and the center of the corresponding circle (represented -- as a complex number), the equation continues to hold! (See the -- paper referenced at the top of the module.) -- -- @descartes [b1,b2,b3]@ solves for @b4@, returning both solutions. -- Notably, @descartes@ works for any instance of @Floating@, which -- includes both @Double@ (for bends), @Complex Double@ (for -- bend/center product), and @Circle@ (for both at once). descartes :: Floating a => [a] -> [a] descartes [b1,b2,b3] = [r + s, -r + s] where r = 2 * sqrt (b1*b2 + b1*b3 + b2*b3) s = b1+b2+b3 descartes _ = error "descartes must be called on a list of length 3" -- | If we have /four/ mutually tangent circles we can choose one of -- them to replace; the remaining three determine exactly one other -- circle which is mutually tangent. However, in this situation -- there is no need to apply 'descartes' again, since the two -- solutions @b4@ and @b4'@ satisfy -- -- @ -- b4 + b4' = 2 * (b1 + b2 + b3) -- @ -- -- Hence, to replace @b4@ with its dual, we need only sum the other -- three, multiply by two, and subtract @b4@. Again, this works for -- bends as well as bend/center products. other :: Num a => [a] -> a -> a other xs x = 2 * sum xs - x -- | Generate an initial configuration of four mutually tangent -- circles, given just the signed bends of three of them. initialConfig :: Double -> Double -> Double -> [Circle] initialConfig b1 b2 b3 = cs ++ [c4] where cs = [Circle b1 0, Circle b2 ((b2/b1 + 1) :+ 0), Circle b3 cb3] a = 1/b1 + 1/b2 b = 1/b1 + 1/b3 c = 1/b2 + 1/b3 x = (b*b + a*a - c*c)/(2*a) y = sqrt (b*b - x*x) cb3 = b3*x :+ b3*y [c4,_] = descartes cs ------------------------------------------------------------ -- Gasket generation ------------------------------------------------------------ select :: [a] -> [(a, [a])] select [] = [] select (x:xs) = (x,xs) : (map . second) (x:) (select xs) -- | Given a threshold radius and a list of /four/ mutually tangent -- circles, generate the Apollonian gasket containing those circles. -- Stop the recursion when encountering a circle with an (unsigned) -- radius smaller than the threshold. apollonian :: Double -> [Circle] -> [Circle] apollonian thresh cs = cs ++ (concat . map (\(c,cs') -> apollonian' thresh (other cs' c) cs') . select $ cs) apollonian' :: Double -> Circle -> [Circle] -> [Circle] apollonian' thresh cur others | radius cur < thresh = [] | otherwise = cur : (concat $ map (\(c, cs') -> apollonian' thresh (other (cur:cs') c) (cur:cs') ) (select others) ) ------------------------------------------------------------ -- Diagram generation ------------------------------------------------------------ -- | Draw a circle. drawCircle :: (Renderable (Path R2) b) => Double -> Circle -> Diagram b R2 drawCircle w c = circle (radius c) # moveTo (center c) # lw w # fcA transparent -- | Draw a generated gasket, using a line width 0.003 times the -- radius of the largest circle. drawGasket :: (Renderable (Path R2) b) => [Circle] -> Diagram b R2 drawGasket cs = foldMap (drawCircle w) cs where w = (*0.003) . maximum . map radius $ cs -- | Draw an Apollonian gasket: the first argument is the threshold; -- the recursion will stop upon reaching circles with radii less than -- it. The next three arguments are bends of three circles. apollonianGasket :: (Renderable (Path R2) b) => Double -> Double -> Double -> Double -> Diagram b R2 apollonianGasket thresh b1 b2 b3 = drawGasket . apollonian thresh $ (initialConfig b1 b2 b3)