{-# LANGUAGE LambdaCase #-} {-# LANGUAGE RecordWildCards #-} {-# OPTIONS -Wall #-} {-# OPTIONS -fno-warn-incomplete-patterns #-} -- | -- Module : Network.DFINITY.RadixTree -- Copyright : 2018 DFINITY Stiftung -- License : GPL-3 -- Maintainer : Enzo Haussecker -- Stability : Stable -- -- A Merkleized key–value data store. module Network.DFINITY.RadixTree ( -- ** Types RadixRoot , RadixTree , RadixError(..) -- ** Create , createRadixTree , subtreeRadixTree -- ** Insert , insertRadixTree -- ** Delete , deleteRadixTree -- ** Merkleize , merkleizeRadixTree -- ** Query , lookupMerkleizedRadixTree , lookupNonMerkleizedRadixTree -- ** Test , isEmptyRadixTree , isValidRadixRoot -- ** Stream , sourceMerkleizedRadixTree -- ** Debug , printMerkleizedRadixTree , printNonMerkleizedRadixTree ) where import Codec.Serialise (deserialise) import Control.Concurrent (forkIO, killThread) import Control.Concurrent.BoundedChan (BoundedChan, readChan) import Control.Concurrent.MVar (modifyMVar_, newMVar, readMVar) import Control.Exception (throw) import Control.Monad (forM_, forever, when) import Control.Monad.IO.Class (MonadIO(..)) import Control.Monad.Trans.Resource (MonadResource, ResourceT, allocate, release) import Data.BloomFilter as Bloom (elem, insert, insertList) import Data.Bool (bool) import Data.ByteString.Char8 (ByteString) import Data.ByteString.Lazy (fromStrict) import Data.ByteString.Short (fromShort) import Data.Conduit (Source, yield) import Data.Default.Class (def) import Data.List.NonEmpty (NonEmpty(..), fromList) import Data.LruCache as LRU (empty, insert, lookup) import Data.Map.Strict as Map (empty) import Data.Maybe (fromJust, isJust, isNothing, listToMaybe) import Data.Tuple (swap) import Database.LevelDB (Options(..), defaultReadOptions, get, open) import Network.DFINITY.RadixTree.Bits import Network.DFINITY.RadixTree.Bloom import Network.DFINITY.RadixTree.Lenses import Network.DFINITY.RadixTree.Memory import Network.DFINITY.RadixTree.Types import Network.DFINITY.RadixTree.Utilities -- | -- Create a radix tree. createRadixTree :: MonadResource m => Int -- ^ Bloom filter size in bits. -> Int -- ^ LRU cache size in items. -> FilePath -- ^ LevelDB database. -> Maybe RadixRoot -- ^ Last valid state root. -> m RadixTree {-# SPECIALISE createRadixTree :: Int -> Int -> FilePath -> Maybe RadixRoot -> ResourceT IO RadixTree #-} createRadixTree bloomSize cacheSize file checkpoint | bloomSize <= 0 = throw $ InvalidArgument "invalid Bloom filter size" | cacheSize <= 0 = throw $ InvalidArgument "invalid LRU cache size" | otherwise = do database <- open file $ def {createIfMissing = True} (root, cache') <- case checkpoint of Nothing -> storeCold def cache database Just root -> do result <- loadCold root cache database case snd <$> result of Nothing -> throw $ StateRootDoesNotExist root Just cache' -> pure (root, cache') pure $ RadixTree bloom bloomSize Map.empty cache' cacheSize root database root where bloom = emptyRadixBloom bloomSize cache = LRU.empty cacheSize -- | -- Create a radix subtree from a radix tree. subtreeRadixTree :: MonadIO m => RadixRoot -- ^ State root. -> RadixTree -- ^ Radix tree. -> m RadixTree {-# SPECIALISE subtreeRadixTree :: RadixRoot -> RadixTree -> ResourceT IO RadixTree #-} subtreeRadixTree root RadixTree {..} = do result <- loadCold root cache _radixDatabase case result of Nothing -> throw $ StateRootDoesNotExist root _ -> pure $ RadixTree bloom _radixBloomSize Map.empty cache _radixCacheSize root _radixDatabase root where bloom = emptyRadixBloom _radixBloomSize cache = LRU.empty _radixCacheSize -- | -- Check if a radix tree is empty. isEmptyRadixTree :: RadixTree -- ^ Radix tree. -> Bool {-# INLINE isEmptyRadixTree #-} isEmptyRadixTree = (==) defaultRoot . _radixRoot -- | -- Check if a state root is valid. isValidRadixRoot :: MonadIO m => RadixRoot -- ^ State root. -> RadixTree -- ^ Radix tree. -> m Bool {-# SPECIALISE isValidRadixRoot :: RadixRoot -> RadixTree -> ResourceT IO Bool #-} isValidRadixRoot root RadixTree {..} = isJust <$> get _radixDatabase defaultReadOptions key where key = fromShort root -- | -- Search for a value in a radix tree. searchRadixTree :: MonadIO m => Bool -- ^ Overwrite state root? -> (RadixTree -> m (Maybe (RadixBranch, RadixCache))) -- ^ Loading strategy. -> ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m (Either RadixError RadixSearchResult) {-# SPECIALISE searchRadixTree :: Bool -> (RadixTree -> ResourceT IO (Maybe (RadixBranch, RadixCache))) -> ByteString -> RadixTree -> ResourceT IO (Either RadixError RadixSearchResult) #-} searchRadixTree flag load = \ key tree@RadixTree {..} -> do let key' = toBits key let tree' = tree `bool` setRoot _radixCheckpoint tree $ flag loop Nothing [] [] [] key' tree' where loop implicit branches roots prefixes key tree@RadixTree {..} = do -- Load the root branch. result <- load tree case result of Nothing -> pure $ Left $ StateRootDoesNotExist _radixRoot Just (branch@RadixBranch {..}, cache') -> do -- Calculate the prefix and overflow. let bits = maybe id (:) implicit $ maybe [] toBits _radixPrefix let prefix = matchBits bits key let n = length prefix let overflow = drop n bits -- Update the accumulators. let roots' = _radixRoot:roots let branches' = branch:branches let prefixes' = prefix:prefixes let key' = drop n key -- Check the termination criteria. let residue = not $ null overflow let bit = head key' let child = bool _radixLeft _radixRight bit if null key' || residue || isNothing child then pure $ Right (fromList roots', fromList branches', fromList prefixes', overflow, key', cache') else do -- Recurse. let root' = fromJust child let tree' = setCache cache' $ setRoot root' tree let implicit' = Just bit loop implicit' branches' roots' prefixes' key' tree' -- | -- Search for a value in a Merkleized radix tree. searchMerkleizedRadixTree :: MonadIO m => ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m (Either RadixError RadixSearchResult) {-# SPECIALISE searchMerkleizedRadixTree :: ByteString -> RadixTree -> ResourceT IO (Either RadixError RadixSearchResult) #-} searchMerkleizedRadixTree = searchRadixTree True $ \ RadixTree {..} -> loadCold _radixRoot _radixCache _radixDatabase -- | -- Search for a value in a non-Merkleized radix tree. searchNonMerkleizedRadixTree :: MonadIO m => ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m (Either RadixError RadixSearchResult) {-# SPECIALISE searchNonMerkleizedRadixTree :: ByteString -> RadixTree -> ResourceT IO (Either RadixError RadixSearchResult) #-} searchNonMerkleizedRadixTree = searchRadixTree False $ \ RadixTree {..} -> loadHot _radixRoot _radixBuffer _radixCache _radixDatabase -- | -- Insert a key and value into a radix tree. insertRadixTree :: MonadIO m => ByteString -- ^ Key. -> ByteString -- ^ Value. -> RadixTree -- ^ Radix tree. -> m RadixTree {-# SPECIALISE insertRadixTree :: ByteString -> ByteString -> RadixTree -> ResourceT IO RadixTree #-} insertRadixTree key value tree = if isEmptyRadixTree tree then pure $ initializeRadixTree key value tree else searchNonMerkleizedRadixTree key tree >>= \ case Left err -> throw err Right result@(_, _, _, [], [], _) -> pure $ insertRadixTreeAt result value tree Right result@(_, _, _, [], _, _) -> pure $ insertRadixTreeAfter result value tree Right result@(_, _, _, _, [], _) -> pure $ insertRadixTreeBefore result value tree Right result -> pure $ insertRadixTreeBetween result value tree -- TODO (enzo): Documentation. initializeRadixTree :: ByteString -- ^ Key. -> ByteString -- ^ Value. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE initializeRadixTree #-} initializeRadixTree key value tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setRoot root tree where prefix = createPrefix $ toBits key branch = setPrefix prefix $ Just value `setLeaf` def root = createRoot branch bloom = Bloom.insert root _radixBloom buffer = storeHot root branch _radixBuffer -- TODO (enzo): Documentation. insertRadixTreeAt :: RadixSearchResult -- ^ Search result. -> ByteString -- ^ Value. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE insertRadixTreeAt #-} insertRadixTreeAt (_:|roots, branch:|branches, prefix:|_, _, _, cache) value tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where branch' = Just value `setLeaf` branch root' = createRoot branch' parent = listToMaybe $ zip3 roots branches prefix bloom = flip insertList _radixBloom $ root':roots buffer = merkleSpoof root' parent $ storeHot root' branch' _radixBuffer state = bool _radixRoot root' $ isNothing parent -- TODO (enzo): Documentation. insertRadixTreeAfter :: RadixSearchResult -- ^ Search result. -> ByteString -- ^ Value. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE insertRadixTreeAfter #-} insertRadixTreeAfter (_:|roots, branch:|branches, prefix:|_, _, keyOverflow, cache) value tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where prefix' = createPrefix $ drop 1 keyOverflow branch' = setPrefix prefix' $ Just value `setLeaf` def root' = createRoot branch' branch'' = test `setChild` Just root' $ branch root'' = createRoot branch'' test = head keyOverflow parent = listToMaybe $ zip3 roots branches prefix bloom = flip insertList _radixBloom $ root'':root':roots buffer = merkleSpoof root'' parent $ storeHot root'' branch'' $ storeHot root' branch' _radixBuffer state = bool _radixRoot root'' $ isNothing parent -- TODO (enzo): Documentation. insertRadixTreeBefore :: RadixSearchResult -- ^ Search result. -> ByteString -- ^ Value. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE insertRadixTreeBefore #-} insertRadixTreeBefore (_:|roots, branch:|branches, prefix:|_, prefixOverflow, _, cache) value tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where prefix' = createPrefix $ drop 1 prefixOverflow branch' = setPrefix prefix' branch root' = createRoot branch' prefix'' = createPrefix $ drop 1 prefix `bool` prefix $ isNothing parent branch'' = setPrefix prefix'' $ test `setChild` Just root' $ Just value `setLeaf` def root'' = createRoot branch'' test = head prefixOverflow parent = listToMaybe $ zip3 roots branches prefix bloom = flip insertList _radixBloom $ root'':root':roots buffer = merkleSpoof root'' parent $ storeHot root'' branch'' $ storeHot root' branch' _radixBuffer state = bool _radixRoot root'' $ isNothing parent -- TODO (enzo): Documentation. insertRadixTreeBetween :: RadixSearchResult -- ^ Search result. -> ByteString -- ^ Value. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE insertRadixTreeBetween #-} insertRadixTreeBetween (_:|roots, branch:|branches, prefix:|_, prefixOverflow, keyOverflow, cache) value tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where prefix' = createPrefix $ drop 1 keyOverflow branch' = setPrefix prefix' $ Just value `setLeaf` def root' = createRoot branch' prefix'' = createPrefix $ drop 1 prefixOverflow branch'' = setPrefix prefix'' branch root'' = createRoot branch'' prefix''' = createPrefix $ drop 1 prefix `bool` prefix $ isNothing parent branch''' = setPrefix prefix''' $ setChildren children def root''' = createRoot branch''' test = head keyOverflow children = bool id swap test (Just root', Just root'') parent = listToMaybe $ zip3 roots branches prefix bloom = flip insertList _radixBloom $ root''':root'':root':roots buffer = merkleSpoof root''' parent $ storeHot root''' branch''' $ storeHot root'' branch'' $ storeHot root' branch' _radixBuffer state = bool _radixRoot root''' $ isNothing parent -- | -- Delete a value from a radix tree. deleteRadixTree :: MonadIO m => ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m RadixTree {-# SPECIALISE deleteRadixTree :: ByteString -> RadixTree -> ResourceT IO RadixTree #-} deleteRadixTree key tree@RadixTree {..} = if isEmptyRadixTree tree then pure tree else searchNonMerkleizedRadixTree key tree >>= \ case Left err -> throw err Right result@(_, branches, prefix:|_, [], [], cache) -> case branches of -- No children and no parent. RadixBranch _ Nothing Nothing _:|[] -> pure $ deleteRadixTreeNoChildrenNoParent result tree -- No children and parent with leaf. RadixBranch _ Nothing Nothing _:|parent:_ | isJust $ getLeaf parent -> pure $ deleteRadixTreeNoChildrenParentWithLeaf result tree -- No children and parent without leaf. RadixBranch _ Nothing Nothing _:|parent:_ -> do let test = not $ head prefix let root = fromJust $ getChild test parent loadHot root _radixBuffer cache _radixDatabase >>= \ case Nothing -> throw $ StateRootDoesNotExist root Just (branch, cache') -> pure $ deleteRadixTreeNoChildrenParentWithoutLeaf result branch cache' test tree -- One left child. RadixBranch _ child Nothing _:|_ | isJust child -> do let test = False let root = fromJust child loadHot root _radixBuffer cache _radixDatabase >>= \ case Nothing -> throw $ StateRootDoesNotExist root Just (branch, cache') -> pure $ deleteRadixTreeOneChild result branch cache' test tree -- One right child. RadixBranch _ Nothing child _:|_ | isJust child -> do let test = True let root = fromJust child loadHot root _radixBuffer cache _radixDatabase >>= \ case Nothing -> throw $ StateRootDoesNotExist root Just (branch, cache') -> pure $ deleteRadixTreeOneChild result branch cache' test tree -- Two children. _ -> pure $ deleteRadixTreeTwoChildren result tree Right _ -> pure tree -- TODO (enzo): Documentation. deleteRadixTreeNoChildrenNoParent :: RadixSearchResult -- ^ Search result. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE deleteRadixTreeNoChildrenNoParent #-} deleteRadixTreeNoChildrenNoParent (_, _, _, _, _, cache) tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where bloom = Bloom.insert defaultRoot _radixBloom buffer = storeHot defaultRoot def _radixBuffer state = defaultRoot -- TODO (enzo): Documentation. deleteRadixTreeNoChildrenParentWithLeaf :: RadixSearchResult -- ^ Search result. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE deleteRadixTreeNoChildrenParentWithLeaf #-} deleteRadixTreeNoChildrenParentWithLeaf (_:|_:roots, _:|branch:branches, prefix:|prefixes, _, _, cache) tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where branch' = setChild test Nothing branch root' = createRoot branch' test = head prefix parent = listToMaybe $ zip3 roots branches $ map head prefixes bloom = flip insertList _radixBloom $ root':roots buffer = merkleSpoof root' parent $ storeHot root' branch' _radixBuffer state = bool _radixRoot root' $ isNothing parent -- TODO (enzo): Documentation. deleteRadixTreeNoChildrenParentWithoutLeaf :: RadixSearchResult -- ^ Search result. -> RadixBranch -- ^ Branch. -> RadixCache -- ^ Cache. -> Bool -- ^ Lineage. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE deleteRadixTreeNoChildrenParentWithoutLeaf #-} deleteRadixTreeNoChildrenParentWithoutLeaf (_:|_:roots, _:|_:branches, _:|prefixes, _, _, _) branch@RadixBranch {..} cache test tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where prefix' = createPrefix $ drop 1 bits `bool` bits $ isNothing parent branch' = setPrefix prefix' branch root' = createRoot branch' bits = head prefixes ++ test:maybe [] toBits _radixPrefix parent = listToMaybe $ zip3 roots branches $ map head prefixes bloom = flip insertList _radixBloom $ root':roots buffer = merkleSpoof root' parent $ storeHot root' branch' _radixBuffer state = bool _radixRoot root' $ isNothing parent -- TODO (enzo): Documentation. deleteRadixTreeOneChild :: RadixSearchResult -- ^ Search result. -> RadixBranch -- ^ Branch. -> RadixCache -- ^ Cache. -> Bool -- ^ Lineage. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE deleteRadixTreeOneChild #-} deleteRadixTreeOneChild (_:|roots, _:|branches, prefix:|_, _, _, _) branch@RadixBranch {..} cache test tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where prefix' = createPrefix $ drop 1 bits `bool` bits $ isNothing parent branch' = setPrefix prefix' branch root' = createRoot branch' bits = prefix ++ test:maybe [] toBits _radixPrefix parent = listToMaybe $ zip3 roots branches prefix bloom = flip insertList _radixBloom $ root':roots buffer = merkleSpoof root' parent $ storeHot root' branch' _radixBuffer state = bool _radixRoot root' $ isNothing parent -- TODO (enzo): Documentation. deleteRadixTreeTwoChildren :: RadixSearchResult -- ^ Search result. -> RadixTree -- ^ Radix tree. -> RadixTree {-# INLINE deleteRadixTreeTwoChildren #-} deleteRadixTreeTwoChildren (_:|roots, branch:|branches, prefix:|_, _, _, cache) tree@RadixTree {..} = seq bloom $ setBloom bloom $ setBuffer buffer $ setCache cache $ setRoot state tree where branch' = setLeaf Nothing branch root' = createRoot branch' parent = listToMaybe $ zip3 roots branches prefix bloom = flip insertList _radixBloom $ root':roots buffer = merkleSpoof root' parent $ storeHot root' branch' _radixBuffer state = bool _radixRoot root' $ isNothing parent -- | -- Lookup a value in a radix tree. lookupRadixTree :: MonadIO m => (ByteString -> RadixTree -> m (Either RadixError RadixSearchResult)) -- ^ Search algorithm. -> ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m (Maybe (ByteString, RadixTree)) {-# SPECIALISE lookupRadixTree :: (ByteString -> RadixTree -> ResourceT IO (Either RadixError RadixSearchResult)) -> ByteString -> RadixTree -> ResourceT IO (Maybe (ByteString, RadixTree)) #-} lookupRadixTree search key tree = do found <- search key tree case found of Left err -> throw err Right (_, RadixBranch {..}:|_, _, prefixOverflow, keyOverflow, cache') -> if not $ null prefixOverflow && null keyOverflow then pure Nothing else pure $ do value <- _radixLeaf let tree' = setCache cache' tree pure (value, tree') -- | -- Lookup a value in a Merkleized radix tree. lookupMerkleizedRadixTree :: MonadIO m => ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m (Maybe (ByteString, RadixTree)) {-# SPECIALISE lookupMerkleizedRadixTree :: ByteString -> RadixTree -> ResourceT IO (Maybe (ByteString, RadixTree)) #-} lookupMerkleizedRadixTree = lookupRadixTree searchMerkleizedRadixTree -- | -- Lookup a value in a non-Merkleized radix tree. lookupNonMerkleizedRadixTree :: MonadIO m => ByteString -- ^ Key. -> RadixTree -- ^ Radix tree. -> m (Maybe (ByteString, RadixTree)) {-# SPECIALISE lookupNonMerkleizedRadixTree :: ByteString -> RadixTree -> ResourceT IO (Maybe (ByteString, RadixTree)) #-} lookupNonMerkleizedRadixTree = lookupRadixTree searchNonMerkleizedRadixTree -- | -- Mask a branch in a Merkleized radix tree. merkleSpoof :: RadixRoot -- ^ State root. -> Maybe (RadixRoot, RadixBranch, Bool) -- ^ Parent. -> RadixBuffer -- ^ Buffer. -> RadixBuffer {-# INLINE merkleSpoof #-} merkleSpoof mask = \ case Nothing -> id Just (root, branch, test) -> storeHot root $ test `setChild` Just mask $ branch -- | -- Merkleize a radix tree. This will flush the buffer to disk. merkleizeRadixTree :: MonadIO m => RadixTree -- ^ Radix tree. -> m (RadixRoot, RadixTree) {-# SPECIALISE merkleizeRadixTree :: RadixTree -> ResourceT IO (RadixRoot, RadixTree) #-} merkleizeRadixTree RadixTree {..} = do (root, cache) <- loop _radixRoot _radixCache let tree = RadixTree bloom _radixBloomSize Map.empty cache _radixCacheSize root _radixDatabase root pure (root, tree) where bloom = emptyRadixBloom _radixBloomSize loop root cache = if not $ Bloom.elem root _radixBloom then pure (root, cache) else do -- Load the root branch. result <- loadHot root _radixBuffer cache _radixDatabase case result of Nothing -> throw $ StateRootDoesNotExist root Just (branch@RadixBranch {..}, cache') -> case (_radixLeft, _radixRight) of -- No children. (Nothing, Nothing) -> storeCold branch cache' _radixDatabase -- One left child. (Just child, Nothing) -> do (root', cache'') <- loop child cache' let branch' = False `setChild` Just root' $ branch storeCold branch' cache'' _radixDatabase -- One right child. (Nothing, Just child) -> do (root', cache'') <- loop child cache' let branch' = True `setChild` Just root' $ branch storeCold branch' cache'' _radixDatabase -- Two children. (Just left, Just right) -> do (root', cache'') <- loop left cache' (root'', cache''') <- loop right cache'' let branch' = setChildren (Just root', Just root'') branch storeCold branch' cache''' _radixDatabase -- | -- Create a conduit from a Merkleized radix tree. sourceMerkleizedRadixTree :: MonadResource m => [Bool] -- ^ Bit patten. -> Int -- ^ LRU cache size in items. -> BoundedChan RadixRoot -- ^ Terminal state root producer. -> RadixTree -- ^ Radix tree. -> Source m ByteString {-# SPECIALISE sourceMerkleizedRadixTree :: [Bool] -> Int -> BoundedChan RadixRoot -> RadixTree -> Source (ResourceT IO) ByteString #-} sourceMerkleizedRadixTree patten cacheSize chan | cacheSize <= 0 = throw $ InvalidArgument "invalid LRU cache size" | otherwise = \ tree -> do cache <- liftIO $ newMVar $ LRU.empty cacheSize (,) action _ <- flip allocate killThread $ forkIO $ forever $ do root <- readChan chan modifyMVar_ cache $ pure . LRU.insert root () loop cache tree [] release action where loop cache tree@RadixTree {..} roots = do seen <- liftIO $ readMVar cache let roots' = _radixCheckpoint:roots if flip any roots' $ isJust . flip LRU.lookup seen then pure () else do let key = fromShort _radixCheckpoint result <- get _radixDatabase defaultReadOptions key case result of Nothing -> pure () Just bytes -> do let RadixBranch {..} = deserialise $ fromStrict bytes let success = all id $ zipWith (==) patten $ toBits $ fromShort _radixCheckpoint when success $ yield bytes forM_ [_radixLeft, _radixRight] $ \ case Nothing -> pure () Just root -> loop cache `flip` roots' $ setCheckpoint root tree -- | -- Print a radix tree. printRadixTree :: MonadIO m => Bool -- ^ Overwrite state root? -> (RadixTree -> m (Maybe (RadixBranch, RadixCache))) -- ^ Loading strategy. -> RadixTree -- ^ Radix tree. -> m () {-# SPECIALISE printRadixTree :: Bool -> (RadixTree -> ResourceT IO (Maybe (RadixBranch, RadixCache))) -> RadixTree -> ResourceT IO () #-} printRadixTree flag load = \ tree@RadixTree {..} -> do let tree' = tree `bool` setRoot _radixCheckpoint tree $ flag loop tree' 0 where loop tree@RadixTree {..} i = do result <- load tree case fst <$> result of Nothing -> throw $ StateRootDoesNotExist _radixRoot Just branch@RadixBranch {..} -> do let indent = (++) $ concat $ replicate i "|" liftIO $ putStrLn $ indent $ show branch let j = i + 1 forM_ [_radixLeft, _radixRight] $ \ case Nothing -> pure () Just root -> setRoot root tree `loop` j -- | -- Print a Merkleized radix tree. printMerkleizedRadixTree :: MonadIO m => RadixTree -- ^ Radix tree. -> m () {-# SPECIALISE printMerkleizedRadixTree :: RadixTree -> ResourceT IO () #-} printMerkleizedRadixTree = printRadixTree True $ \ RadixTree {..} -> loadCold _radixRoot _radixCache _radixDatabase -- | -- Print a non-Merkleized radix tree. printNonMerkleizedRadixTree :: MonadIO m => RadixTree -- ^ Radix tree. -> m () {-# SPECIALISE printNonMerkleizedRadixTree :: RadixTree -> ResourceT IO () #-} printNonMerkleizedRadixTree = printRadixTree False $ \ RadixTree {..} -> loadHot _radixRoot _radixBuffer _radixCache _radixDatabase