module Data.Interval
(
Interval
, module Data.ExtendedReal
, EndPoint
, interval
, (<=..<=)
, (<..<=)
, (<=..<)
, (<..<)
, whole
, empty
, singleton
, null
, member
, notMember
, isSubsetOf
, isProperSubsetOf
, lowerBound
, upperBound
, lowerBound'
, upperBound'
, width
, (<!), (<=!), (==!), (>=!), (>!), (/=!)
, (<?), (<=?), (==?), (>=?), (>?), (/=?)
, (<??), (<=??), (==??), (>=??), (>??), (/=??)
, intersection
, intersections
, hull
, hulls
, pickup
, simplestRationalWithin
) where
import Algebra.Lattice
import Control.DeepSeq
import Control.Exception (assert)
import Control.Monad hiding (join)
import Data.Data
import Data.ExtendedReal
import Data.Hashable
import Data.List hiding (null)
import Data.Maybe
import Data.Monoid
import Data.Ratio
import Prelude hiding (null)
infix 5 <=..<=
infix 5 <..<=
infix 5 <=..<
infix 5 <..<
infix 4 <!
infix 4 <=!
infix 4 ==!
infix 4 >=!
infix 4 >!
infix 4 /=!
infix 4 <?
infix 4 <=?
infix 4 ==?
infix 4 >=?
infix 4 >?
infix 4 /=?
infix 4 <??
infix 4 <=??
infix 4 ==??
infix 4 >=??
infix 4 >??
infix 4 /=??
data Interval r = Interval !(Extended r, Bool) !(Extended r, Bool)
deriving (Eq, Typeable)
lowerBound :: Interval r -> Extended r
lowerBound (Interval (lb,_) _) = lb
upperBound :: Interval r -> Extended r
upperBound (Interval _ (ub,_)) = ub
lowerBound' :: Interval r -> (Extended r, Bool)
lowerBound' (Interval lb _) = lb
upperBound' :: Interval r -> (Extended r, Bool)
upperBound' (Interval _ ub) = ub
instance NFData r => NFData (Interval r) where
rnf (Interval lb ub) = rnf lb `seq` rnf ub
instance Hashable r => Hashable (Interval r) where
hashWithSalt s (Interval lb ub) = s `hashWithSalt` lb `hashWithSalt` ub
instance (Ord r) => JoinSemiLattice (Interval r) where
join = hull
instance (Ord r) => MeetSemiLattice (Interval r) where
meet = intersection
instance (Ord r) => Lattice (Interval r)
instance (Ord r) => BoundedJoinSemiLattice (Interval r) where
bottom = empty
instance (Ord r) => BoundedMeetSemiLattice (Interval r) where
top = whole
instance (Ord r) => BoundedLattice (Interval r)
instance (Ord r, Show r) => Show (Interval r) where
showsPrec _ x | null x = showString "empty"
showsPrec p x = showParen (p > appPrec) $
showString "interval " .
showsPrec (appPrec+1) (lowerBound' x) .
showChar ' ' .
showsPrec (appPrec+1) (upperBound' x)
instance (Ord r, Read r) => Read (Interval r) where
readsPrec p r =
(readParen (p > appPrec) $ \s0 -> do
("interval",s1) <- lex s0
(lb,s2) <- readsPrec (appPrec+1) s1
(ub,s3) <- readsPrec (appPrec+1) s2
return (interval lb ub, s3)) r
++
(do ("empty", s) <- lex r
return (empty, s))
instance (Ord r, Data r) => Data (Interval r) where
gfoldl k z x = z interval `k` lowerBound' x `k` upperBound' x
toConstr _ = error "toConstr"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "Data.Interval.Interval"
dataCast1 f = gcast1 f
interval
:: (Ord r)
=> (Extended r, Bool)
-> (Extended r, Bool)
-> Interval r
interval lb@(x1,in1) ub@(x2,in2) =
case x1 `compare` x2 of
GT -> empty
LT -> Interval (normalize lb) (normalize ub)
EQ -> if in1 && in2 && isFinite x1 then Interval lb ub else empty
where
normalize x@(Finite _, _) = x
normalize (x, _) = (x, False)
(<=..<=)
:: (Ord r)
=> Extended r
-> Extended r
-> Interval r
(<=..<=) lb ub = interval (lb, True) (ub, True)
(<..<=)
:: (Ord r)
=> Extended r
-> Extended r
-> Interval r
(<..<=) lb ub = interval (lb, False) (ub, True)
(<=..<)
:: (Ord r)
=> Extended r
-> Extended r
-> Interval r
(<=..<) lb ub = interval (lb, True) (ub, False)
(<..<)
:: (Ord r)
=> Extended r
-> Extended r
-> Interval r
(<..<) lb ub = interval (lb, False) (ub, False)
whole :: Ord r => Interval r
whole = Interval (NegInf, False) (PosInf, False)
empty :: Ord r => Interval r
empty = Interval (PosInf, False) (NegInf, False)
singleton :: Ord r => r -> Interval r
singleton x = interval (Finite x, True) (Finite x, True)
intersection :: forall r. Ord r => Interval r -> Interval r -> Interval r
intersection (Interval l1 u1) (Interval l2 u2) = interval (maxLB l1 l2) (minUB u1 u2)
where
maxLB :: (Extended r, Bool) -> (Extended r, Bool) -> (Extended r, Bool)
maxLB (x1,in1) (x2,in2) =
( max x1 x2
, case x1 `compare` x2 of
EQ -> in1 && in2
LT -> in2
GT -> in1
)
minUB :: (Extended r, Bool) -> (Extended r, Bool) -> (Extended r, Bool)
minUB (x1,in1) (x2,in2) =
( min x1 x2
, case x1 `compare` x2 of
EQ -> in1 && in2
LT -> in1
GT -> in2
)
intersections :: Ord r => [Interval r] -> Interval r
intersections xs = foldl' intersection whole xs
hull :: forall r. Ord r => Interval r -> Interval r -> Interval r
hull x1 x2
| null x1 = x2
| null x2 = x1
hull (Interval l1 u1) (Interval l2 u2) = interval (minLB l1 l2) (maxUB u1 u2)
where
maxUB :: (Extended r, Bool) -> (Extended r, Bool) -> (Extended r, Bool)
maxUB (x1,in1) (x2,in2) =
( max x1 x2
, case x1 `compare` x2 of
EQ -> in1 || in2
LT -> in2
GT -> in1
)
minLB :: (Extended r, Bool) -> (Extended r, Bool) -> (Extended r, Bool)
minLB (x1,in1) (x2,in2) =
( min x1 x2
, case x1 `compare` x2 of
EQ -> in1 || in2
LT -> in1
GT -> in2
)
hulls :: Ord r => [Interval r] -> Interval r
hulls xs = foldl' hull empty xs
null :: Ord r => Interval r -> Bool
null (Interval (x1,in1) (x2,in2)) =
case x1 `compare` x2 of
EQ -> assert (in1 && in2) False
LT -> False
GT -> True
isSingleton :: Ord r => Interval r -> Bool
isSingleton (Interval (Finite l, True) (Finite u, True)) = l==u
isSingleton _ = False
member :: Ord r => r -> Interval r -> Bool
member x (Interval (x1,in1) (x2,in2)) = condLB && condUB
where
condLB = if in1 then x1 <= Finite x else x1 < Finite x
condUB = if in2 then Finite x <= x2 else Finite x < x2
notMember :: Ord r => r -> Interval r -> Bool
notMember a i = not $ member a i
isSubsetOf :: Ord r => Interval r -> Interval r -> Bool
isSubsetOf (Interval lb1 ub1) (Interval lb2 ub2) = testLB lb1 lb2 && testUB ub1 ub2
where
testLB (x1,in1) (x2,in2) =
case x1 `compare` x2 of
GT -> True
LT -> False
EQ -> not in1 || in2
testUB (x1,in1) (x2,in2) =
case x1 `compare` x2 of
LT -> True
GT -> False
EQ -> not in1 || in2
isProperSubsetOf :: Ord r => Interval r -> Interval r -> Bool
isProperSubsetOf i1 i2 = i1 /= i2 && i1 `isSubsetOf` i2
width :: (Num r, Ord r) => Interval r -> r
width x | null x = 0
width (Interval (Finite l, _) (Finite u, _)) = u l
width _ = error "Data.Interval.width: unbounded interval"
pickup :: (Real r, Fractional r) => Interval r -> Maybe r
pickup (Interval (NegInf,_) (PosInf,_)) = Just 0
pickup (Interval (Finite x1, in1) (PosInf,_)) = Just $ if in1 then x1 else x1+1
pickup (Interval (NegInf,_) (Finite x2, in2)) = Just $ if in2 then x2 else x21
pickup (Interval (Finite x1, in1) (Finite x2, in2)) =
case x1 `compare` x2 of
GT -> Nothing
LT -> Just $ (x1+x2) / 2
EQ -> if in1 && in2 then Just x1 else Nothing
pickup _ = Nothing
simplestRationalWithin :: RealFrac r => Interval r -> Maybe Rational
simplestRationalWithin i | null i = Nothing
simplestRationalWithin i
| 0 <! i = Just $ go i
| i <! 0 = Just $ go ( i)
| otherwise = assert (0 `member` i) $ Just $ 0
where
go i
| fromInteger lb_floor `member` i = fromInteger lb_floor
| fromInteger (lb_floor + 1) `member` i = fromInteger (lb_floor + 1)
| otherwise = fromInteger lb_floor + recip (go (recip (i singleton (fromInteger lb_floor))))
where
Finite lb = lowerBound i
lb_floor = floor lb
(<!) :: Ord r => Interval r -> Interval r -> Bool
a <! b =
case ub_a `compare` lb_b of
LT -> True
GT -> False
EQ ->
case ub_a of
NegInf -> True
PosInf -> True
Finite _ -> not (in1 && in2)
where
(ub_a, in1) = upperBound' a
(lb_b, in2) = lowerBound' b
(<=!) :: Ord r => Interval r -> Interval r -> Bool
a <=! b = upperBound a <= lowerBound b
(==!) :: Ord r => Interval r -> Interval r -> Bool
a ==! b = a <=! b && a >=! b
(/=!) :: Ord r => Interval r -> Interval r -> Bool
a /=! b = null $ a `intersection` b
(>=!) :: Ord r => Interval r -> Interval r -> Bool
(>=!) = flip (<=!)
(>!) :: Ord r => Interval r -> Interval r -> Bool
(>!) = flip (<!)
(<?) :: Ord r => Interval r -> Interval r -> Bool
a <? b = lb_a < ub_b
where
lb_a = lowerBound a
ub_b = upperBound b
(<??) :: (Real r, Fractional r) => Interval r -> Interval r -> Maybe (r,r)
a <?? b = do
guard $ lowerBound a < upperBound b
let c = intersection a b
case pickup c of
Nothing -> do
x <- pickup a
y <- pickup b
return (x,y)
Just z -> do
let x:y:_ = take 2 $
maybeToList (pickup (intersection a (inf <..< Finite z))) ++
[z] ++
maybeToList (pickup (intersection b (Finite z <..< inf)))
return (x,y)
(<=?) :: Ord r => Interval r -> Interval r -> Bool
a <=? b =
case lb_a `compare` ub_b of
LT -> True
GT -> False
EQ ->
case lb_a of
NegInf -> False
PosInf -> False
Finite _ -> in1 && in2
where
(lb_a, in1) = lowerBound' a
(ub_b, in2) = upperBound' b
(<=??) :: (Real r, Fractional r) => Interval r -> Interval r -> Maybe (r,r)
a <=?? b = do
case pickup (intersection a b) of
Just x -> return (x,x)
Nothing -> do
guard $ upperBound a <= lowerBound b
x <- pickup a
y <- pickup b
return (x,y)
(==?) :: Ord r => Interval r -> Interval r -> Bool
a ==? b = not $ null $ intersection a b
(==??) :: (Real r, Fractional r) => Interval r -> Interval r -> Maybe (r,r)
a ==?? b = do
x <- pickup (intersection a b)
return (x,x)
(/=?) :: Ord r => Interval r -> Interval r -> Bool
a /=? b = not (null a) && not (null b) && not (a == b && isSingleton a)
(/=??) :: (Real r, Fractional r) => Interval r -> Interval r -> Maybe (r,r)
a /=?? b = do
guard $ not $ null a
guard $ not $ null b
guard $ not $ a == b && isSingleton a
if not (isSingleton b)
then f a b
else liftM (\(y,x) -> (x,y)) $ f b a
where
f a b = do
x <- pickup a
y <- msum [pickup (b `intersection` c) | c <- [inf <..< Finite x, Finite x <..< inf]]
return (x,y)
(>=?) :: Ord r => Interval r -> Interval r -> Bool
(>=?) = flip (<=?)
(>?) :: Ord r => Interval r -> Interval r -> Bool
(>?) = flip (<?)
(>=??) :: (Real r, Fractional r) => Interval r -> Interval r -> Maybe (r,r)
(>=??) = flip (<=??)
(>??) :: (Real r, Fractional r) => Interval r -> Interval r -> Maybe (r,r)
(>??) = flip (<??)
appPrec :: Int
appPrec = 10
scaleInterval :: (Num r, Ord r) => r -> Interval r -> Interval r
scaleInterval _ x | null x = empty
scaleInterval c (Interval lb ub) =
case compare c 0 of
EQ -> singleton 0
LT -> interval (scaleInf' c ub) (scaleInf' c lb)
GT -> interval (scaleInf' c lb) (scaleInf' c ub)
instance (Num r, Ord r) => Num (Interval r) where
a + b | null a || null b = empty
Interval lb1 ub1 + Interval lb2 ub2 = interval (f lb1 lb2) (g ub1 ub2)
where
f (Finite x1, in1) (Finite x2, in2) = (Finite (x1+x2), in1 && in2)
f (NegInf,_) _ = (inf, False)
f _ (NegInf,_) = (inf, False)
f _ _ = error "Interval.(+) should not happen"
g (Finite x1, in1) (Finite x2, in2) = (Finite (x1+x2), in1 && in2)
g (PosInf,_) _ = (inf, False)
g _ (PosInf,_) = (inf, False)
g _ _ = error "Interval.(+) should not happen"
negate a = scaleInterval (1) a
fromInteger i = singleton (fromInteger i)
abs x = ((x `intersection` nonneg) `hull` (negate x `intersection` nonneg))
where
nonneg = 0 <=..< inf
signum x = zero `hull` pos `hull` neg
where
zero = if member 0 x then singleton 0 else empty
pos = if null $ (0 <..< inf) `intersection` x
then empty
else singleton 1
neg = if null $ (inf <..< 0) `intersection` x
then empty
else singleton (1)
a * b | null a || null b = empty
Interval lb1 ub1 * Interval lb2 ub2 = interval lb3 ub3
where
xs = [ mulInf' x1 x2 | x1 <- [lb1, ub1], x2 <- [lb2, ub2] ]
ub3 = maximumBy cmpUB xs
lb3 = minimumBy cmpLB xs
instance forall r. (Real r, Fractional r) => Fractional (Interval r) where
fromRational r = singleton (fromRational r)
recip a | null a = empty
recip i | 0 `member` i = whole
recip (Interval lb ub) = interval lb3 ub3
where
ub3 = maximumBy cmpUB xs
lb3 = minimumBy cmpLB xs
xs = [recipLB lb, recipUB ub]
cmpUB, cmpLB :: Ord r => (Extended r, Bool) -> (Extended r, Bool) -> Ordering
cmpUB (x1,in1) (x2,in2) = compare x1 x2 `mappend` compare in1 in2
cmpLB (x1,in1) (x2,in2) = compare x1 x2 `mappend` flip compare in1 in2
type EndPoint r = Extended r
scaleInf' :: (Num r, Ord r) => r -> (Extended r, Bool) -> (Extended r, Bool)
scaleInf' a (x1, in1) = (scaleEndPoint a x1, in1)
scaleEndPoint :: (Num r, Ord r) => r -> Extended r -> Extended r
scaleEndPoint a e =
case a `compare` 0 of
EQ -> 0
GT ->
case e of
NegInf -> NegInf
Finite b -> Finite (a*b)
PosInf -> PosInf
LT ->
case e of
NegInf -> PosInf
Finite b -> Finite (a*b)
PosInf -> NegInf
mulInf' :: (Num r, Ord r) => (Extended r, Bool) -> (Extended r, Bool) -> (Extended r, Bool)
mulInf' (0, True) _ = (0, True)
mulInf' _ (0, True) = (0, True)
mulInf' (x1,in1) (x2,in2) = (x1*x2, in1 && in2)
recipLB :: (Fractional r, Ord r) => (Extended r, Bool) -> (Extended r, Bool)
recipLB (0, _) = (PosInf, False)
recipLB (x1, in1) = (recip x1, in1)
recipUB :: (Fractional r, Ord r) => (Extended r, Bool) -> (Extended r, Bool)
recipUB (0, _) = (NegInf, False)
recipUB (x1, in1) = (recip x1, in1)