module Darcs.Util.Crypt.SHA1 ( sha1PS, SHA1(..), showAsHex, sha1Xor, zero ) where
import Prelude ()
import Darcs.Prelude
import Darcs.Util.ByteString (unsafeWithInternals)
import qualified Data.ByteString as B (ByteString, pack, length, concat)
import Data.Binary ( Binary(..) )
import Data.Char (intToDigit)
import Data.Bits (xor, (.&.), (.|.), complement, rotateL, shiftL, shiftR)
import Data.Word (Word8, Word32)
import Foreign.Ptr (Ptr, castPtr)
import Foreign.Marshal.Array (advancePtr)
import Foreign.Storable (peek, poke)
import System.IO.Unsafe (unsafePerformIO)
data SHA1 = SHA1 !Word32 !Word32 !Word32 !Word32 !Word32
deriving (Eq,Ord)
data XYZ = XYZ !Word32 !Word32 !Word32
instance Show SHA1 where
show (SHA1 a b c d e) = concatMap showAsHex [a, b, c, d, e]
instance Binary SHA1 where
put (SHA1 a b c d e) = put a >> put b >> put c >> put d >> put e
get = do a <- get ; b <- get ; c <- get ; d <- get ; e <- get ; return (SHA1 a b c d e)
sha1Xor :: SHA1 -> SHA1 -> SHA1
sha1Xor (SHA1 a1 b1 c1 d1 e1) (SHA1 a2 b2 c2 d2 e2) =
SHA1 (a1 `xor` a2) (b1 `xor` b2) (c1 `xor` c2) (d1 `xor` d2) (e1 `xor` e2)
zero :: SHA1
zero = SHA1 0 0 0 0 0
sha1PS:: B.ByteString -> SHA1
sha1PS s = abcde'
where s1_2 = sha1Step12PadLength s
abcde = sha1Step3Init
abcde' = unsafePerformIO
$ unsafeWithInternals s1_2 (\ptr len ->
do let ptr' = castPtr ptr
#ifndef BIGENDIAN
fiddleEndianness ptr' len
#endif
sha1Step4Main abcde ptr' len)
fiddleEndianness :: Ptr Word32 -> Int -> IO ()
fiddleEndianness p 0 = p `seq` return ()
fiddleEndianness p n
= do x <- peek p
poke p $ shiftL x 24
.|. shiftL (x .&. 0xff00) 8
.|. (shiftR x 8 .&. 0xff00)
.|. shiftR x 24
fiddleEndianness (p `advancePtr` 1) (n 4)
sha1Step12PadLength :: B.ByteString -> B.ByteString
sha1Step12PadLength s
= let len = B.length s
num_nuls = (55 len) `mod` 64
padding = 128:replicate num_nuls 0
len_w8s = reverse $ sizeSplit 8 (fromIntegral len*8)
in B.concat [s, B.pack padding, B.pack len_w8s]
sizeSplit :: Int -> Integer -> [Word8]
sizeSplit 0 _ = []
sizeSplit p n = fromIntegral d:sizeSplit (p1) n'
where (n', d) = divMod n 256
sha1Step3Init :: SHA1
sha1Step3Init = SHA1 0x67452301 0xefcdab89 0x98badcfe 0x10325476 0xc3d2e1f0
sha1Step4Main :: SHA1 -> Ptr Word32 -> Int -> IO SHA1
sha1Step4Main abcde _ 0 = return $! abcde
sha1Step4Main (SHA1 a0@a b0@b c0@c d0@d e0@e) s len
= do
(e, b) <- doit f1 0x5a827999 (x 0) a b c d e
(d, a) <- doit f1 0x5a827999 (x 1) e a b c d
(c, e) <- doit f1 0x5a827999 (x 2) d e a b c
(b, d) <- doit f1 0x5a827999 (x 3) c d e a b
(a, c) <- doit f1 0x5a827999 (x 4) b c d e a
(e, b) <- doit f1 0x5a827999 (x 5) a b c d e
(d, a) <- doit f1 0x5a827999 (x 6) e a b c d
(c, e) <- doit f1 0x5a827999 (x 7) d e a b c
(b, d) <- doit f1 0x5a827999 (x 8) c d e a b
(a, c) <- doit f1 0x5a827999 (x 9) b c d e a
(e, b) <- doit f1 0x5a827999 (x 10) a b c d e
(d, a) <- doit f1 0x5a827999 (x 11) e a b c d
(c, e) <- doit f1 0x5a827999 (x 12) d e a b c
(b, d) <- doit f1 0x5a827999 (x 13) c d e a b
(a, c) <- doit f1 0x5a827999 (x 14) b c d e a
(e, b) <- doit f1 0x5a827999 (x 15) a b c d e
(d, a) <- doit f1 0x5a827999 (m 16) e a b c d
(c, e) <- doit f1 0x5a827999 (m 17) d e a b c
(b, d) <- doit f1 0x5a827999 (m 18) c d e a b
(a, c) <- doit f1 0x5a827999 (m 19) b c d e a
(e, b) <- doit f2 0x6ed9eba1 (m 20) a b c d e
(d, a) <- doit f2 0x6ed9eba1 (m 21) e a b c d
(c, e) <- doit f2 0x6ed9eba1 (m 22) d e a b c
(b, d) <- doit f2 0x6ed9eba1 (m 23) c d e a b
(a, c) <- doit f2 0x6ed9eba1 (m 24) b c d e a
(e, b) <- doit f2 0x6ed9eba1 (m 25) a b c d e
(d, a) <- doit f2 0x6ed9eba1 (m 26) e a b c d
(c, e) <- doit f2 0x6ed9eba1 (m 27) d e a b c
(b, d) <- doit f2 0x6ed9eba1 (m 28) c d e a b
(a, c) <- doit f2 0x6ed9eba1 (m 29) b c d e a
(e, b) <- doit f2 0x6ed9eba1 (m 30) a b c d e
(d, a) <- doit f2 0x6ed9eba1 (m 31) e a b c d
(c, e) <- doit f2 0x6ed9eba1 (m 32) d e a b c
(b, d) <- doit f2 0x6ed9eba1 (m 33) c d e a b
(a, c) <- doit f2 0x6ed9eba1 (m 34) b c d e a
(e, b) <- doit f2 0x6ed9eba1 (m 35) a b c d e
(d, a) <- doit f2 0x6ed9eba1 (m 36) e a b c d
(c, e) <- doit f2 0x6ed9eba1 (m 37) d e a b c
(b, d) <- doit f2 0x6ed9eba1 (m 38) c d e a b
(a, c) <- doit f2 0x6ed9eba1 (m 39) b c d e a
(e, b) <- doit f3 0x8f1bbcdc (m 40) a b c d e
(d, a) <- doit f3 0x8f1bbcdc (m 41) e a b c d
(c, e) <- doit f3 0x8f1bbcdc (m 42) d e a b c
(b, d) <- doit f3 0x8f1bbcdc (m 43) c d e a b
(a, c) <- doit f3 0x8f1bbcdc (m 44) b c d e a
(e, b) <- doit f3 0x8f1bbcdc (m 45) a b c d e
(d, a) <- doit f3 0x8f1bbcdc (m 46) e a b c d
(c, e) <- doit f3 0x8f1bbcdc (m 47) d e a b c
(b, d) <- doit f3 0x8f1bbcdc (m 48) c d e a b
(a, c) <- doit f3 0x8f1bbcdc (m 49) b c d e a
(e, b) <- doit f3 0x8f1bbcdc (m 50) a b c d e
(d, a) <- doit f3 0x8f1bbcdc (m 51) e a b c d
(c, e) <- doit f3 0x8f1bbcdc (m 52) d e a b c
(b, d) <- doit f3 0x8f1bbcdc (m 53) c d e a b
(a, c) <- doit f3 0x8f1bbcdc (m 54) b c d e a
(e, b) <- doit f3 0x8f1bbcdc (m 55) a b c d e
(d, a) <- doit f3 0x8f1bbcdc (m 56) e a b c d
(c, e) <- doit f3 0x8f1bbcdc (m 57) d e a b c
(b, d) <- doit f3 0x8f1bbcdc (m 58) c d e a b
(a, c) <- doit f3 0x8f1bbcdc (m 59) b c d e a
(e, b) <- doit f2 0xca62c1d6 (m 60) a b c d e
(d, a) <- doit f2 0xca62c1d6 (m 61) e a b c d
(c, e) <- doit f2 0xca62c1d6 (m 62) d e a b c
(b, d) <- doit f2 0xca62c1d6 (m 63) c d e a b
(a, c) <- doit f2 0xca62c1d6 (m 64) b c d e a
(e, b) <- doit f2 0xca62c1d6 (m 65) a b c d e
(d, a) <- doit f2 0xca62c1d6 (m 66) e a b c d
(c, e) <- doit f2 0xca62c1d6 (m 67) d e a b c
(b, d) <- doit f2 0xca62c1d6 (m 68) c d e a b
(a, c) <- doit f2 0xca62c1d6 (m 69) b c d e a
(e, b) <- doit f2 0xca62c1d6 (m 70) a b c d e
(d, a) <- doit f2 0xca62c1d6 (m 71) e a b c d
(c, e) <- doit f2 0xca62c1d6 (m 72) d e a b c
(b, d) <- doit f2 0xca62c1d6 (m 73) c d e a b
(a, c) <- doit f2 0xca62c1d6 (m 74) b c d e a
(e, b) <- doit f2 0xca62c1d6 (m 75) a b c d e
(d, a) <- doit f2 0xca62c1d6 (m 76) e a b c d
(c, e) <- doit f2 0xca62c1d6 (m 77) d e a b c
(b, d) <- doit f2 0xca62c1d6 (m 78) c d e a b
(a, c) <- doit f2 0xca62c1d6 (m 79) b c d e a
let abcde' = SHA1 (a0 + a) (b0 + b) (c0 + c) (d0 + d) (e0 + e)
sha1Step4Main abcde' (s `advancePtr` 16) (len 64)
where
f1 (XYZ x y z) = (x .&. y) .|. (complement x .&. z)
f2 (XYZ x y z) = x `xor` y `xor` z
f3 (XYZ x y z) = (x .&. y) .|. (x .&. z) .|. (y .&. z)
x n = peek (s `advancePtr` n)
m n = do let base = s `advancePtr` (n .&. 15)
x0 <- peek base
x1 <- peek (s `advancePtr` ((n 14) .&. 15))
x2 <- peek (s `advancePtr` ((n 8) .&. 15))
x3 <- peek (s `advancePtr` ((n 3) .&. 15))
let res = rotateL (x0 `xor` x1 `xor` x2 `xor` x3) 1
poke base res
return res
doit f k i a b c d e = a `seq` c `seq`
do i' <- i
return (rotateL a 5 + f (XYZ b c d) + e + i' + k,
rotateL b 30)
showAsHex :: Word32 -> String
showAsHex n = showIt 8 n ""
where
showIt :: Int -> Word32 -> String -> String
showIt 0 _ r = r
showIt i x r = case quotRem x 16 of
(y, z) -> let c = intToDigit (fromIntegral z)
in c `seq` showIt (i1) y (c:r)