-- | -- Module : Crypto.PubKey.RSA.Types -- License : BSD-style -- Maintainer : Vincent Hanquez <vincent@snarc.org> -- Stability : experimental -- Portability : Good -- {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module Crypto.PubKey.RSA.Types ( Error(..) , Blinder(..) , PublicKey(..) , PrivateKey(..) , KeyPair(..) , toPublicKey , toPrivateKey , private_size , private_n , private_e ) where import Data.Data import Crypto.Internal.Imports -- | Blinder which is used to obfuscate the timing -- of the decryption primitive (used by decryption and signing). data Blinder = Blinder !Integer !Integer deriving (Show,Eq) -- | error possible during encryption, decryption or signing. data Error = MessageSizeIncorrect -- ^ the message to decrypt is not of the correct size (need to be == private_size) | MessageTooLong -- ^ the message to encrypt is too long | MessageNotRecognized -- ^ the message decrypted doesn't have a PKCS15 structure (0 2 .. 0 msg) | SignatureTooLong -- ^ the message's digest is too long | InvalidParameters -- ^ some parameters lead to breaking assumptions. deriving (Show,Eq) -- | Represent a RSA public key data PublicKey = PublicKey { public_size :: Int -- ^ size of key in bytes , public_n :: Integer -- ^ public p*q , public_e :: Integer -- ^ public exponant e } deriving (Show,Read,Eq,Data,Typeable) instance NFData PublicKey where rnf (PublicKey sz n e) = rnf n `seq` rnf e `seq` sz `seq` () -- | Represent a RSA private key. -- -- Only the pub, d fields are mandatory to fill. -- -- p, q, dP, dQ, qinv are by-product during RSA generation, -- but are useful to record here to speed up massively -- the decrypt and sign operation. -- -- implementations can leave optional fields to 0. -- data PrivateKey = PrivateKey { private_pub :: PublicKey -- ^ public part of a private key (size, n and e) , private_d :: Integer -- ^ private exponant d , private_p :: Integer -- ^ p prime number , private_q :: Integer -- ^ q prime number , private_dP :: Integer -- ^ d mod (p-1) , private_dQ :: Integer -- ^ d mod (q-1) , private_qinv :: Integer -- ^ q^(-1) mod p } deriving (Show,Read,Eq,Data,Typeable) instance NFData PrivateKey where rnf (PrivateKey pub d p q dp dq qinv) = rnf pub `seq` rnf d `seq` rnf p `seq` rnf q `seq` rnf dp `seq` rnf dq `seq` qinv `seq` () -- | get the size in bytes from a private key private_size :: PrivateKey -> Int private_size = public_size . private_pub -- | get n from a private key private_n :: PrivateKey -> Integer private_n = public_n . private_pub -- | get e from a private key private_e :: PrivateKey -> Integer private_e = public_e . private_pub -- | Represent RSA KeyPair -- -- note the RSA private key contains already an instance of public key for efficiency newtype KeyPair = KeyPair PrivateKey deriving (Show,Read,Eq,Data,Typeable,NFData) -- | Public key of a RSA KeyPair toPublicKey :: KeyPair -> PublicKey toPublicKey (KeyPair priv) = private_pub priv -- | Private key of a RSA KeyPair toPrivateKey :: KeyPair -> PrivateKey toPrivateKey (KeyPair priv) = priv