-- | -- Module : Cryptol.ModuleSystem.Renamer -- Copyright : (c) 2013-2016 Galois, Inc. -- License : BSD3 -- Maintainer : cryptol@galois.com -- Stability : provisional -- Portability : portable {-# Language RecordWildCards #-} {-# Language FlexibleInstances #-} {-# Language FlexibleContexts #-} {-# Language BlockArguments #-} {-# Language OverloadedStrings #-} module Cryptol.ModuleSystem.Renamer ( NamingEnv(), shadowing , BindsNames, InModule(..) , shadowNames , Rename(..), runRenamer, RenameM() , RenamerError(..) , RenamerWarning(..) , renameVar , renameType , renameModule , renameTopDecls , RenamerInfo(..) , NameType(..) , RenamedModule(..) ) where import Prelude () import Prelude.Compat import Data.Either(partitionEithers) import Data.Maybe(mapMaybe) import Data.List(find,groupBy,sortBy) import Data.Function(on) import Data.Foldable(toList) import Data.Map(Map) import qualified Data.Map.Strict as Map import qualified Data.Set as Set import Data.Graph(SCC(..)) import Data.Graph.SCC(stronglyConnComp) import MonadLib hiding (mapM, mapM_) import Cryptol.ModuleSystem.Name import Cryptol.ModuleSystem.Names import Cryptol.ModuleSystem.NamingEnv import Cryptol.ModuleSystem.Exports import Cryptol.Parser.Position(Range) import Cryptol.Parser.AST import Cryptol.Parser.Selector(selName) import Cryptol.Utils.Panic (panic) import Cryptol.Utils.RecordMap import Cryptol.Utils.Ident(allNamespaces,OrigName(..),modPathCommon, undefinedModName) import Cryptol.Utils.PP import Cryptol.ModuleSystem.Interface import Cryptol.ModuleSystem.Renamer.Error import Cryptol.ModuleSystem.Binds import Cryptol.ModuleSystem.Renamer.Monad import Cryptol.ModuleSystem.Renamer.Imports import Cryptol.ModuleSystem.Renamer.ImplicitImports {- The Renamer Algorithm ===================== 1. Add implicit imports for visible nested modules 2. Compute what each module defines (see "Cryptol.ModuleSystem.Binds") - This assigns unique names to names introduces by various declarations - Here we detect repeated top-level definitions in a module. - Module instantiations also get a name, but are not yet resolved, so we don't know what's defined by them. - We do not generate unique names for functor parameters---those will be matched textually to the arguments when applied. - We *do* generate unique names for declarations in "signatures" * those are only really needed when renaming the signature (step 4) (e.g., to determine if a name refers to something declared in the signature or something else). * when validating a module against a signature the names of the declarations are matched textually, *not* using the unique names (e.g., `x` in a signature is matched with the thing named `x` in a module, even though these two `x`s will have different unique `id`s) 3. Resolve imports and instantiations (see "Cryptol.ModuleSystem.Imports") - Resolves names in submodule imports - Resolves functor instantiations: * generate new names for declarations in the functors. * this includes any nested modules, and things nested within them. - At this point we have enough information to know what's exported by each module. 4. Do the renaming (this module) - Using step 3 we compute the scoping environment for each module/signature - We traverse all declarations and replace the parser names with the corresponding names in scope: * Here we detect ambiguity and undefined errors * During this pass is also where we keep track of information of what names are used by declarations: - this is used to compute the dependencies between declarations - which are in turn used to order the declarations in dependency order * this is assumed by the TC * here we also report errors about invalid recursive dependencies * During this stage we also issue warning about unused type names (and we should probably do unused value names too one day) - During the rewriting we also do: - rebalance expression trees using the operator fixities - desugar record update notation -} -- | The result of renaming a module data RenamedModule = RenamedModule { rmModule :: Module Name -- ^ The renamed module , rmDefines :: NamingEnv -- ^ What this module defines , rmImported :: IfaceDecls -- ^ Imported declarations. This provides the types for external -- names (used by the type-checker). } -- | Entry point. This is used for renaming a top-level module. renameModule :: Module PName -> RenameM RenamedModule renameModule m0 = do -- Step 1: add implicit imports let m = m0 { mDef = case mDef m0 of NormalModule ds -> NormalModule (addImplicitNestedImports ds) FunctorInstance f as i -> FunctorInstance f as i InterfaceModule s -> InterfaceModule s } -- Step 2: compute what's defined (defs,errs) <- liftSupply (modBuilder (topModuleDefs m)) mapM_ recordError errs -- Step 3: resolve imports extern <- getExternal resolvedMods <- liftSupply (resolveImports extern defs) let pathToName = Map.fromList [ (Nested (nameModPath x) (nameIdent x), x) | ImpNested x <- Map.keys resolvedMods ] let mname = ImpTop (thing (mName m)) setResolvedLocals resolvedMods $ setNestedModule pathToName do (ifs,m1) <- collectIfaceDeps (renameModule' mname m) env <- rmodDefines <$> lookupResolved mname pure RenamedModule { rmModule = m1 , rmDefines = env , rmImported = ifs -- XXX: maybe we should keep the nested defines too? } {- | Entry point. Rename a list of top-level declarations. This is used for declaration that don't live in a module (e.g., define on the command line.) We assume that these declarations do not contain any nested modules. -} renameTopDecls :: ModName -> [TopDecl PName] -> RenameM (NamingEnv,[TopDecl Name]) renameTopDecls m ds0 = do -- Step 1: add implicit imports let ds = addImplicitNestedImports ds0 -- Step 2: compute what's defined (defs,errs) <- liftSupply (modBuilder (topDeclsDefs (TopModule m) ds)) mapM_ recordError errs -- Step 3: resolve imports extern <- getExternal resolvedMods <- liftSupply (resolveImports extern (TopMod m defs)) let pathToName = Map.fromList [ (Nested (nameModPath x) (nameIdent x), x) | ImpNested x <- Map.keys resolvedMods ] setResolvedLocals resolvedMods $ setNestedModule pathToName do env <- rmodDefines <$> lookupResolved (ImpTop m) -- we already checked for duplicates in Step 2 ds1 <- shadowNames' CheckNone env (renameTopDecls' ds) -- record a use of top-level names to avoid -- unused name warnings let exports = exportedDecls ds1 mapM_ recordUse (exported NSType exports) pure (env,ds1) -------------------------------------------------------------------------------- -- Stuff below is related to Step 4 of the algorithm. class Rename f where rename :: f PName -> RenameM (f Name) -- | This is used for both top-level and nested modules. -- Returns: -- -- * Things defined in the module -- * Renamed module renameModule' :: ImpName Name {- ^ Resolved name for this module -} -> ModuleG mname PName -> RenameM (ModuleG mname Name) renameModule' mname m = setCurMod (impNameModPath mname) do resolved <- lookupResolved mname shadowNames' CheckNone (rmodImports resolved) case mDef m of NormalModule ds -> do let env = rmodDefines resolved (paramEnv,params) <- shadowNames' CheckNone env (doModParams (mModParams m)) -- we check that defined names and ones that came -- from parameters do not clash, as this would be -- very confusing. shadowNames' CheckOverlap (env <> paramEnv) $ setModParams params do ds1 <- renameTopDecls' ds let exports = exportedDecls ds1 mapM_ recordUse (exported NSType exports) inScope <- getNamingEnv pure m { mDef = NormalModule ds1, mInScope = inScope } -- The things defined by this module are the *results* -- of the instantiation, so we should *not* add them -- in scope when resolving. FunctorInstance f as _ -> do f' <- rnLocated rename f as' <- rename as checkFunctorArgs as' let l = Just (srcRange f') imap <- mkInstMap l mempty (thing f') mname -- This inScope is incomplete; it only contains names from the -- enclosing scope, but we also want the names in scope from the -- functor, for ease of testing at the command line. We will fix -- this up in doFunctorInst in the typechecker, because right now -- we don't have access yet to the inScope of the functor. inScope <- getNamingEnv pure m { mDef = FunctorInstance f' as' imap, mInScope = inScope } InterfaceModule s -> shadowNames' CheckNone (rmodDefines resolved) do d <- InterfaceModule <$> renameIfaceModule mname s inScope <- getNamingEnv pure m { mDef = d, mInScope = inScope } checkFunctorArgs :: ModuleInstanceArgs Name -> RenameM () checkFunctorArgs args = case args of DefaultInstAnonArg {} -> panic "checkFunctorArgs" ["Nested DefaultInstAnonArg"] DefaultInstArg l -> checkArg l NamedInstArgs as -> mapM_ checkNamedArg as where checkNamedArg (ModuleInstanceNamedArg _ l) = checkArg l checkArg l = case thing l of ModuleArg m | isFakeName m -> pure () | otherwise -> checkIsModule (srcRange l) m AModule ParameterArg {} -> pure () -- we check these in the type checker AddParams -> pure () mkInstMap :: Maybe Range -> Map Name Name -> ImpName Name -> ImpName Name -> RenameM (Map Name Name) mkInstMap checkFun acc0 ogname iname | isFakeName ogname = pure Map.empty | otherwise = do case checkFun of Nothing -> pure () Just r -> checkIsModule r ogname AFunctor (onames,osubs) <- lookupDefinesAndSubs ogname inames <- lookupDefines iname let mp = zipByTextName onames inames subs = [ (ImpNested k, ImpNested v) | k <- Set.toList osubs, Just v <- [Map.lookup k mp] ] foldM doSub (Map.union mp acc0) subs where doSub acc (k,v) = mkInstMap Nothing acc k v -- | This is used to rename local declarations (e.g. `where`) renameDecls :: [Decl PName] -> RenameM [Decl Name] renameDecls ds = do (ds1,deps) <- depGroup (traverse rename ds) let toNode d = let x = NamedThing (declName d) in ((d,x), x, map NamedThing $ Set.toList $ Map.findWithDefault Set.empty x deps) ordered = toList (stronglyConnComp (map toNode ds1)) fromSCC x = case x of AcyclicSCC (d,_) -> pure [d] CyclicSCC ds_xs -> let (rds,xs) = unzip ds_xs in case mapM validRecursiveD rds of Nothing -> do recordError (InvalidDependency xs) pure rds Just bs -> do checkSameModule xs pure [DRec bs] concat <$> mapM fromSCC ordered -- | Rename declarations in a signature (i.e., type/prop synonyms) renameSigDecls :: [SigDecl PName] -> RenameM [SigDecl Name] renameSigDecls ds = do (ds1,deps) <- depGroup (traverse rename ds) let toNode d = let nm = case d of SigTySyn ts _ -> thing (tsName ts) SigPropSyn ps _ -> thing (psName ps) x = NamedThing nm in ((d,x), x, map NamedThing $ Set.toList $ Map.findWithDefault Set.empty x deps) ordered = toList (stronglyConnComp (map toNode ds1)) fromSCC x = case x of AcyclicSCC (d,_) -> pure [d] CyclicSCC ds_xs -> do let (rds,xs) = unzip ds_xs recordError (InvalidDependency xs) pure rds concat <$> mapM fromSCC ordered validRecursiveD :: Decl name -> Maybe (Bind name) validRecursiveD d = case d of DBind b -> Just b DLocated d' _ -> validRecursiveD d' _ -> Nothing checkSameModule :: [DepName] -> RenameM () checkSameModule xs = case ms of a : as | let bad = [ fst b | b <- as, snd a /= snd b ] , not (null bad) -> recordError (InvalidDependency $ map NamedThing $ fst a : bad) _ -> pure () where ms = [ (x,ogModule og) | NamedThing x <- xs, GlobalName _ og <- [ nameInfo x ] ] {- NOTE: Dependencies on Top Level Constraints =========================================== For the new module system, things using a parameter depend on the parameter declaration (i.e., `import signature`), which depends on the signature, so dependencies on constraints in there should be OK. However, we'd like to have a mechanism for declaring top level constraints in a functor, that can impose constraints across types from *different* parameters. For the moment, we reuse `parameter type constraint C` for this. Such constraints need to be: 1. After the signature import 2. After any type synonyms/newtypes using the parameters 3. Before any value or type declarations that need to use the parameters. Note that type declarations used by a constraint cannot use the constraint, so they need to be well formed without it. For other types, we use the following rule to determine if they use a constraint: If: 1. We have a constraint and type declaration 2. They both mention the same type parameter 3. There is no explicit dependency of the constraint on the DECL Then: The type declaration depends on the constraint. Example: type T = 10 // Does not depend on anything so can go first signature A where type n : # import signature A // Depends on A, so need to be after A parameter type constraint n > T // Depends on the import (for @n@) and T type Q = [n-T] // Depends on the top-level constraint -} -- This assumes imports have already been processed renameTopDecls' :: [TopDecl PName] -> RenameM [TopDecl Name] renameTopDecls' ds = do -- rename and compute what names we depend on (ds1,deps) <- depGroup (traverse rename ds) fromParams <- getNamesFromModParams localParams <- getLocalModParamDeps let rawDepsFor x = Map.findWithDefault Set.empty x deps isTyParam x = nameNamespace x == NSType && x `Map.member` fromParams (noNameDs,nameDs) = partitionEithers (map topDeclName ds1) ctrs = [ nm | (_,nm@(ConstratintAt {}),_) <- nameDs ] indirect = Map.fromList [ (y,x) | (_,x,ys) <- nameDs, y <- ys ] mkDepName x = case Map.lookup x fromParams of Just dn -> dn Nothing -> NamedThing x depsFor x = [ Map.findWithDefault (mkDepName y) (NamedThing y) indirect | y <- Set.toList (Map.findWithDefault Set.empty x deps) ] {- See [NOTE: Dependencies on Top Level Constraints] -} addCtr nm ctr = case nm of NamedThing x | nameNamespace x == NSType , let ctrDeps = rawDepsFor ctr tyDeps = rawDepsFor nm , not (x `Set.member` ctrDeps) , not (Set.null (Set.intersection (Set.filter isTyParam ctrDeps) (Set.filter isTyParam tyDeps))) -> Just ctr _ -> Nothing addCtrs (d,x) | usesCtrs d = ctrs | otherwise = mapMaybe (addCtr x) ctrs addModParams d = case d of DModule tl | NestedModule m <- tlValue tl , FunctorInstance _ as _ <- mDef m -> case as of DefaultInstArg arg -> depsOfArg arg NamedInstArgs args -> concatMap depsOfNamedArg args DefaultInstAnonArg {} -> [] where depsOfNamedArg (ModuleInstanceNamedArg _ a) = depsOfArg a depsOfArg a = case thing a of AddParams -> [] ModuleArg {} -> [] ParameterArg p -> case Map.lookup p localParams of Just i -> [i] Nothing -> [] _ -> [] toNode (d,x,_) = ((d,x),x, addCtrs (d,x) ++ addModParams d ++ depsFor x) ordered = stronglyConnComp (map toNode nameDs) fromSCC x = case x of AcyclicSCC (d,_) -> pure [d] CyclicSCC ds_xs -> let (rds,xs) = unzip ds_xs in case mapM valid rds of Nothing -> do recordError (InvalidDependency xs) pure rds Just bs -> do checkSameModule xs pure [Decl TopLevel { tlDoc = Nothing , tlExport = Public , tlValue = DRec bs }] where valid d = case d of Decl tl -> validRecursiveD (tlValue tl) _ -> Nothing rds <- mapM fromSCC ordered pure (concat (noNameDs:rds)) where -- This indicates if a declaration might depend on the constraints in scope. -- Since uses of constraints are not implicitly named, value declarations -- are assumed to potentially use the constraints. -- XXX: This is inaccurate, and *I think* it amounts to checking that something -- is in the value namespace. Perhaps the rule should be that a value -- depends on a parameter constraint if it mentions at least one -- type parameter somewhere. -- XXX: Besides, types might need constraints for well-formedness... -- This is just bogus -- Although not that type/prop synonyms may be defined wherever as they -- keep the validity constraints they need and emit them at the *use* sites. usesCtrs td = case td of Decl tl -> isValDecl (tlValue tl) DPrimType {} -> False TDNewtype {} -> False TDEnum {} -> False DParamDecl {} -> False DInterfaceConstraint {} -> False DModule tl -> any usesCtrs (mDecls m) where NestedModule m = tlValue tl DImport {} -> False DModParam {} -> False -- no definitions here Include {} -> bad "Include" isValDecl d = case d of DLocated d' _ -> isValDecl d' DBind {} -> True DRec {} -> True DType {} -> False DProp {} -> False DSignature {} -> bad "DSignature" DFixity {} -> bad "DFixity" DPragma {} -> bad "DPragma" DPatBind {} -> bad "DPatBind" bad msg = panic "renameTopDecls'" [msg] declName :: Decl Name -> Name declName decl = case decl of DLocated d _ -> declName d DBind b -> thing (bName b) DType (TySyn x _ _ _) -> thing x DProp (PropSyn x _ _ _) -> thing x DSignature {} -> bad "DSignature" DFixity {} -> bad "DFixity" DPragma {} -> bad "DPragma" DPatBind {} -> bad "DPatBind" DRec {} -> bad "DRec" where bad x = panic "declName" [x] topDeclName :: TopDecl Name -> Either (TopDecl Name) (TopDecl Name, DepName, [DepName]) topDeclName topDecl = case topDecl of Decl d -> hasName (declName (tlValue d)) DPrimType d -> hasName (thing (primTName (tlValue d))) TDNewtype d -> hasName' (thing (nName (tlValue d))) [ nConName (tlValue d) ] TDEnum d -> hasName' (thing (eName (tlValue d))) (map (thing . ecName . tlValue) (eCons (tlValue d))) DModule d -> hasName (thing (mName m)) where NestedModule m = tlValue d DInterfaceConstraint _ ds -> special (ConstratintAt (srcRange ds)) DImport {} -> noName DModParam m -> special (ModParamName (srcRange (mpSignature m)) (mpName m)) Include {} -> bad "Include" DParamDecl {} -> bad "DParamDecl" where noName = Left topDecl hasName n = hasName' n [] hasName' n ms = Right (topDecl, NamedThing n, map NamedThing ms) special x = Right (topDecl, x, []) bad x = panic "topDeclName" [x] {- | Compute the names introduced by a module parameter. This should be run in a context containing everything that's in scope except for the module parameters. We don't need to compute a fixed point here because the signatures (and hence module parameters) cannot contain signatures. The resulting naming environment contains the new names introduced by this parameter. -} doModParam :: ModParam PName -> RenameM (NamingEnv, RenModParam) doModParam mp = do let sigName = mpSignature mp loc = srcRange sigName withLoc loc do me <- getCurMod (sigName',isFake) <- case thing sigName of ImpTop t -> pure (ImpTop t, False) -- XXX: should we record a dependency here? -- Not sure what the dependencies are for.. ImpNested n -> do mb <- resolveNameMaybe NameUse NSModule n (nm,isFake) <- case mb of Just rnm -> pure (rnm,False) Nothing -> do rnm <- reportUnboundName NSModule n pure (rnm,True) case modPathCommon me (nameModPath nm) of Just (_,[],_) -> recordError (InvalidDependency [ModPath me, NamedThing nm]) _ -> pure () pure (ImpNested nm, isFake) unless isFake (checkIsModule (srcRange sigName) sigName' ASignature) sigEnv <- if isFake then pure mempty else lookupDefines sigName' {- XXX: It seems a bit odd to use "newModParam" for the names to be used for the instantiated type synonyms, but what other name could we use? -} let newP x = do y <- lift (newModParam me (mpName mp) loc x) sets_ (Map.insert y x) pure y (newEnv',nameMap) <- runStateT Map.empty (travNamingEnv newP sigEnv) let paramName = mpAs mp let newEnv = case paramName of Nothing -> newEnv' Just q -> qualify q newEnv' pure ( newEnv , RenModParam { renModParamName = mpName mp , renModParamRange = loc , renModParamSig = sigName' , renModParamInstance = nameMap } ) {- | Process the parameters of a module. Should be executed in a context where everything's already in the context, except the module parameters. -} doModParams :: [ModParam PName] -> RenameM (NamingEnv, [RenModParam]) doModParams srcParams = do (paramEnvs,params) <- unzip <$> mapM doModParam srcParams let repeated = groupBy ((==) `on` renModParamName) $ sortBy (compare `on` renModParamName) params forM_ repeated \ps -> case ps of [] -> panic "doModParams" ["[]"] [_] -> pure () (p : _) -> recordError (MultipleModParams (renModParamName p) (map renModParamRange ps)) pure (mconcat paramEnvs,params) -------------------------------------------------------------------------------- rnLocated :: (a -> RenameM b) -> Located a -> RenameM (Located b) rnLocated f loc = withLoc loc $ do a' <- f (thing loc) return loc { thing = a' } instance Rename TopDecl where rename td = case td of Decl d -> Decl <$> traverse rename d DPrimType d -> DPrimType <$> traverse rename d TDNewtype n -> TDNewtype <$> traverse rename n TDEnum n -> TDEnum <$> traverse rename n Include n -> return (Include n) DModule m -> DModule <$> traverse rename m DImport li -> DImport <$> renI li DModParam mp -> DModParam <$> rename mp DInterfaceConstraint d ds -> depsOf (ConstratintAt (srcRange ds)) (DInterfaceConstraint d <$> rnLocated (mapM rename) ds) DParamDecl {} -> panic "rename" ["DParamDecl"] renI :: Located (ImportG (ImpName PName)) -> RenameM (Located (ImportG (ImpName Name))) renI li = withLoc (srcRange li) do m <- rename (iModule i) unless (isFakeName m) (recordImport (srcRange li) m) pure li { thing = i { iModule = m } } where i = thing li instance Rename ModParam where rename mp = do x <- rnLocated rename (mpSignature mp) depsOf (ModParamName (srcRange (mpSignature mp)) (mpName mp)) do ren <- renModParamInstance <$> getModParam (mpName mp) {- Here we add 2 "uses" to all type-level names introduced, so that we don't get unused warnings for type parameters. -} mapM_ recordUse [ s | t <- Map.keys ren, nameNamespace t == NSType , s <- [t,t] ] pure mp { mpSignature = x, mpRenaming = ren } renameIfaceModule :: ImpName Name -> Signature PName -> RenameM (Signature Name) renameIfaceModule nm sig = do env <- rmodDefines <$> lookupResolved nm let depName = case nm of ImpNested n -> NamedThing n ImpTop t -> ModPath (TopModule t) shadowNames' CheckOverlap env $ depsOf depName do imps <- traverse renI (sigImports sig) tps <- traverse rename (sigTypeParams sig) ds <- renameSigDecls (sigDecls sig) cts <- traverse (rnLocated rename) (sigConstraints sig) fun <- traverse rename (sigFunParams sig) -- we record a use here to avoid getting a warning in interfaces -- that declare only types, and so appear "unused". forM_ tps \tp -> recordUse (thing (ptName tp)) forM_ ds \d -> recordUse $ case d of SigTySyn ts _ -> thing (tsName ts) SigPropSyn ps _ -> thing (psName ps) pure Signature { sigImports = imps , sigTypeParams = tps , sigDecls = ds , sigConstraints = cts , sigFunParams = fun } instance Rename ImpName where rename i = case i of ImpTop m -> pure (ImpTop m) ImpNested m -> ImpNested <$> resolveName NameUse NSModule m instance Rename ModuleInstanceArgs where rename args = case args of DefaultInstArg a -> DefaultInstArg <$> rnLocated rename a NamedInstArgs xs -> NamedInstArgs <$> traverse rename xs DefaultInstAnonArg {} -> panic "rename" ["DefaultInstAnonArg"] instance Rename ModuleInstanceNamedArg where rename (ModuleInstanceNamedArg x m) = ModuleInstanceNamedArg x <$> rnLocated rename m instance Rename ModuleInstanceArg where rename arg = case arg of ModuleArg m -> ModuleArg <$> rename m ParameterArg a -> pure (ParameterArg a) AddParams -> pure AddParams instance Rename NestedModule where rename (NestedModule m) = do let lnm = mName m nm = thing lnm n <- resolveName NameBind NSModule nm depsOf (NamedThing n) do let m' = m { mName = ImpNested <$> mName m } m1 <- renameModule' (ImpNested n) m' pure (NestedModule m1 { mName = lnm { thing = n } }) instance Rename PrimType where rename pt = do x <- rnLocated (renameType NameBind) (primTName pt) depsOf (NamedThing (thing x)) do let (as,ps) = primTCts pt (_,cts) <- renameQual as ps $ \as' ps' -> pure (as',ps') -- Record an additional use for each parameter since we checked -- earlier that all the parameters are used exactly once in the -- body of the signature. This prevents incorrect warnings -- about unused names. mapM_ (recordUse . tpName) (fst cts) pure pt { primTCts = cts, primTName = x } instance Rename ParameterType where rename a = do n' <- rnLocated (renameType NameBind) (ptName a) return a { ptName = n' } instance Rename ParameterFun where rename a = do n' <- rnLocated (renameVar NameBind) (pfName a) depsOf (NamedThing (thing n')) do sig' <- renameSchema (pfSchema a) return a { pfName = n', pfSchema = snd sig' } instance Rename SigDecl where rename decl = case decl of SigTySyn ts mb -> SigTySyn <$> rename ts <*> pure mb SigPropSyn ps mb -> SigPropSyn <$> rename ps <*> pure mb instance Rename Decl where rename d = case d of DBind b -> DBind <$> rename b DType syn -> DType <$> rename syn DProp syn -> DProp <$> rename syn DLocated d' r -> withLoc r $ DLocated <$> rename d' <*> pure r DFixity{} -> panic "rename" [ "DFixity" ] DSignature {} -> panic "rename" [ "DSignature" ] DPragma {} -> panic "rename" [ "DPragma" ] DPatBind {} -> panic "rename" [ "DPatBind " ] DRec {} -> panic "rename" [ "DRec" ] instance Rename Newtype where rename n = shadowNames (nParams n) $ do nameT <- rnLocated (renameType NameBind) (nName n) nameC <- renameCon NameBind (nConName n) depsOf (NamedThing nameC) (addDep (thing nameT)) depsOf (NamedThing (thing nameT)) $ do ps' <- traverse rename (nParams n) body' <- traverse (traverse rename) (nBody n) return Newtype { nName = nameT , nConName = nameC , nParams = ps' , nBody = body' } instance Rename EnumDecl where rename n = shadowNames (eParams n) $ do nameT <- rnLocated (renameType NameBind) (eName n) nameCs <- forM (eCons n) \tlEc -> do let con = tlValue tlEc nameC <- rnLocated (renameCon NameBind) (ecName con) depsOf (NamedThing (thing nameC)) (addDep (thing nameT)) pure (nameC,tlEc) depsOf (NamedThing (thing nameT)) $ do ps' <- traverse rename (eParams n) cons <- forM nameCs \(c,tlEc) -> do ts' <- traverse rename (ecFields (tlValue tlEc)) let con = EnumCon { ecName = c, ecFields = ts' } pure tlEc { tlValue = con } pure EnumDecl { eName = nameT , eParams = ps' , eCons = cons } -- | Try to resolve a name. -- SPECIAL CASE: if we have a NameUse for NSValue, we also look in NSConstructor resolveNameMaybe :: NameType -> Namespace -> PName -> RenameM (Maybe Name) resolveNameMaybe nt expected qn = do ro <- RenameM ask let lkpIn here = Map.lookup qn (namespaceMap here (roNames ro)) use = case expected of NSType -> recordUse _ -> const (pure ()) checkCon = case (nt,expected) of (NameUse, NSValue) -> lkpIn NSConstructor _ -> Nothing found = case (lkpIn expected, checkCon) of (Just a, Just b) -> Just (a <> b) (Nothing, y) -> y (x, Nothing) -> x case found of Just xs -> case xs of One n -> do case nt of NameBind -> pure () NameUse -> addDep n use n -- for warning return (Just n) Ambig symSet -> do let syms = Set.toList symSet mapM_ use syms -- mark as used to avoid unused warnings n <- located qn recordError (MultipleSyms n syms) return (Just (head syms)) Nothing -> pure Nothing reportUnboundName :: Namespace -> PName -> RenameM Name reportUnboundName expected qn = do ro <- RenameM ask let lkpIn here = Map.lookup qn (namespaceMap here (roNames ro)) others = [ ns | ns <- allNamespaces , ns /= expected , Just _ <- [lkpIn ns] ] nm <- located qn case others of -- name exists in a different namespace actual : _ -> recordError (WrongNamespace expected actual nm) -- the value is just missing [] -> recordError (UnboundName expected nm) mkFakeName expected qn isFakeName :: ImpName Name -> Bool isFakeName m = case m of ImpTop x -> x == undefinedModName ImpNested x -> case nameTopModuleMaybe x of Just y -> y == undefinedModName Nothing -> False -- | Resolve a name, and report error on failure. resolveName :: NameType -> Namespace -> PName -> RenameM Name resolveName nt expected qn = do mb <- resolveNameMaybe nt expected qn case mb of Just n -> pure n Nothing -> reportUnboundName expected qn renameVar :: NameType -> PName -> RenameM Name renameVar nt = resolveName nt NSValue renameCon :: NameType -> PName -> RenameM Name renameCon nt = resolveName nt NSConstructor renameType :: NameType -> PName -> RenameM Name renameType nt = resolveName nt NSType -- | Assuming an error has been recorded already, construct a fake name that's -- not expected to make it out of the renamer. mkFakeName :: Namespace -> PName -> RenameM Name mkFakeName ns pn = do ro <- RenameM ask liftSupply (mkDeclared ns (TopModule undefinedModName) SystemName (getIdent pn) Nothing (roLoc ro)) -- | Rename a schema, assuming that none of its type variables are already in -- scope. instance Rename Schema where rename s = snd `fmap` renameSchema s -- | Rename a schema, assuming that the type variables have already been brought -- into scope. renameSchema :: Schema PName -> RenameM (NamingEnv,Schema Name) renameSchema (Forall ps p ty loc) = renameQual ps p $ \ps' p' -> do ty' <- rename ty pure (Forall ps' p' ty' loc) -- | Rename a qualified thing. renameQual :: [TParam PName] -> [Prop PName] -> ([TParam Name] -> [Prop Name] -> RenameM a) -> RenameM (NamingEnv, a) renameQual as ps k = do env <- liftSupply (defsOf as) res <- shadowNames env $ do as' <- traverse rename as ps' <- traverse rename ps k as' ps' pure (env,res) instance Rename TParam where rename TParam { .. } = do n <- renameType NameBind tpName return TParam { tpName = n, .. } instance Rename Prop where rename (CType t) = CType <$> rename t instance Rename Type where rename ty0 = case ty0 of TFun a b -> TFun <$> rename a <*> rename b TSeq n a -> TSeq <$> rename n <*> rename a TBit -> return TBit TNum c -> return (TNum c) TChar c -> return (TChar c) TUser qn ps -> TUser <$> renameType NameUse qn <*> traverse rename ps TTyApp fs -> TTyApp <$> traverse (traverse rename) fs TRecord fs -> TRecord <$> traverse (traverse rename) fs TTuple fs -> TTuple <$> traverse rename fs TWild -> return TWild TLocated t' r -> withLoc r (TLocated <$> rename t' <*> pure r) TParens t' k -> (`TParens` k) <$> rename t' TInfix a o _ b -> do o' <- renameTypeOp o a' <- rename a b' <- rename b mkTInfix a' o' b' mkTInfix :: Type Name -> (Located Name, Fixity) -> Type Name -> RenameM (Type Name) mkTInfix t@(TInfix x o1 f1 y) op@(o2,f2) z = case compareFixity f1 f2 of FCLeft -> return (TInfix t o2 f2 z) FCRight -> do r <- mkTInfix y op z return (TInfix x o1 f1 r) FCError -> do recordError (FixityError o1 f1 o2 f2) return (TInfix t o2 f2 z) mkTInfix (TLocated t' _) op z = mkTInfix t' op z mkTInfix t (o,f) z = return (TInfix t o f z) -- | Rename a binding. instance Rename Bind where rename b = do n' <- rnLocated (renameVar NameBind) (bName b) depsOf (NamedThing (thing n')) do mbSig <- traverse renameSchema (bSignature b) shadowNames (fst `fmap` mbSig) $ do (patEnv,pats') <- renamePats (bParams b) -- NOTE: renamePats will generate warnings, -- so we don't need to trigger them again here. e' <- shadowNames' CheckNone patEnv (rnLocated rename (bDef b)) return b { bName = n' , bParams = pats' , bDef = e' , bSignature = snd `fmap` mbSig , bPragmas = bPragmas b } instance Rename BindDef where rename DPrim = return DPrim rename (DForeign i) = DForeign <$> traverse rename i rename (DImpl i) = DImpl <$> rename i instance Rename BindImpl where rename (DExpr e) = DExpr <$> rename e rename (DPropGuards cases) = DPropGuards <$> traverse rename cases instance Rename PropGuardCase where rename g = PropGuardCase <$> traverse (rnLocated rename) (pgcProps g) <*> rename (pgcExpr g) instance Rename Pattern where rename p = case p of PVar lv -> PVar <$> rnLocated (renameVar NameBind) lv PCon c ps -> PCon <$> rnLocated (renameCon NameUse) c <*> traverse rename ps PWild -> pure PWild PTuple ps -> PTuple <$> traverse rename ps PRecord nps -> PRecord <$> traverse (traverse rename) nps PList elems -> PList <$> traverse rename elems PTyped p' t -> PTyped <$> rename p' <*> rename t PSplit l r -> PSplit <$> rename l <*> rename r PLocated p' loc -> withLoc loc $ PLocated <$> rename p' <*> pure loc -- | Note that after this point the @->@ updates have an explicit function -- and there are no more nested updates. instance Rename UpdField where rename (UpdField h ls e) = -- The plan: -- x = e ~~~> x = e -- x -> e ~~~> x -> \x -> e -- x.y = e ~~~> x -> { _ | y = e } -- x.y -> e ~~~> x -> { _ | y -> e } case ls of l : more -> case more of [] -> case h of UpdSet -> UpdField UpdSet [l] <$> rename e UpdFun -> UpdField UpdFun [l] <$> rename (EFun emptyFunDesc [PVar p] e) where p = UnQual . selName <$> last ls _ -> UpdField UpdFun [l] <$> rename (EUpd Nothing [ UpdField h more e]) [] -> panic "rename@UpdField" [ "Empty label list." ] instance Rename FunDesc where rename (FunDesc nm offset) = do nm' <- traverse (renameVar NameBind) nm pure (FunDesc nm' offset) instance Rename Expr where rename expr = case expr of EVar n -> EVar <$> renameVar NameUse n ELit l -> return (ELit l) EGenerate e -> EGenerate <$> rename e ETuple es -> ETuple <$> traverse rename es ERecord fs -> ERecord <$> traverse (traverse rename) fs ESel e' s -> ESel <$> rename e' <*> pure s EUpd mb fs -> do checkLabels fs EUpd <$> traverse rename mb <*> traverse rename fs EList es -> EList <$> traverse rename es EFromTo s n e t -> EFromTo <$> rename s <*> traverse rename n <*> rename e <*> traverse rename t EFromToBy isStrict s e b t -> EFromToBy isStrict <$> rename s <*> rename e <*> rename b <*> traverse rename t EFromToDownBy isStrict s e b t -> EFromToDownBy isStrict <$> rename s <*> rename e <*> rename b <*> traverse rename t EFromToLessThan s e t -> EFromToLessThan <$> rename s <*> rename e <*> traverse rename t EInfFrom a b -> EInfFrom<$> rename a <*> traverse rename b EComp e' bs -> do arms' <- traverse renameArm bs let (envs,bs') = unzip arms' -- NOTE: renameArm will generate shadowing warnings; we only -- need to check for repeated names across multiple arms shadowNames' CheckOverlap envs (EComp <$> rename e' <*> pure bs') EApp f x -> EApp <$> rename f <*> rename x EAppT f ti -> EAppT <$> rename f <*> traverse rename ti EIf b t f -> EIf <$> rename b <*> rename t <*> rename f ECase e as -> ECase <$> rename e <*> traverse rename as EWhere e' ds -> shadowNames (map (InModule Nothing) ds) $ EWhere <$> rename e' <*> renameDecls ds ETyped e' ty -> ETyped <$> rename e' <*> rename ty ETypeVal ty -> ETypeVal<$> rename ty EFun desc ps e' -> do desc' <- rename desc (env,ps') <- renamePats ps -- NOTE: renamePats will generate warnings, so we don't -- need to duplicate them here shadowNames' CheckNone env (EFun desc' ps' <$> rename e') ELocated e' r -> withLoc r $ ELocated <$> rename e' <*> pure r ESplit e -> ESplit <$> rename e EParens p -> EParens <$> rename p EInfix x y _ z -> do op <- renameOp y x' <- rename x z' <- rename z mkEInfix x' op z' EPrefix op e -> EPrefix op <$> rename e checkLabels :: [UpdField PName] -> RenameM () checkLabels = foldM_ check [] . map labs where labs (UpdField _ ls _) = ls check done l = do case find (overlap l) done of Just l' -> recordError (OverlappingRecordUpdate (reLoc l) (reLoc l')) Nothing -> pure () pure (l : done) overlap xs ys = case (xs,ys) of ([],_) -> True (_, []) -> True (x : xs', y : ys') -> same x y && overlap xs' ys' same x y = case (thing x, thing y) of (TupleSel a _, TupleSel b _) -> a == b (ListSel a _, ListSel b _) -> a == b (RecordSel a _, RecordSel b _) -> a == b _ -> False reLoc xs = (head xs) { thing = map thing xs } mkEInfix :: Expr Name -- ^ May contain infix expressions -> (Located Name,Fixity) -- ^ The operator to use -> Expr Name -- ^ Will not contain infix expressions -> RenameM (Expr Name) mkEInfix e@(EInfix x o1 f1 y) op@(o2,f2) z = case compareFixity f1 f2 of FCLeft -> return (EInfix e o2 f2 z) FCRight -> do r <- mkEInfix y op z return (EInfix x o1 f1 r) FCError -> do recordError (FixityError o1 f1 o2 f2) return (EInfix e o2 f2 z) mkEInfix e@(EPrefix o1 x) op@(o2, f2) y = case compareFixity (prefixFixity o1) f2 of FCRight -> do let warning = PrefixAssocChanged o1 x o2 f2 y RenameM $ sets_ (\rw -> rw {rwWarnings = warning : rwWarnings rw}) r <- mkEInfix x op y return (EPrefix o1 r) -- Even if the fixities conflict, we make the prefix operator take -- precedence. _ -> return (EInfix e o2 f2 y) -- Note that for prefix operator on RHS of infix operator we make the prefix -- operator always have precedence, so we allow a * -b instead of requiring -- a * (-b). mkEInfix (ELocated e' _) op z = mkEInfix e' op z mkEInfix e (o,f) z = return (EInfix e o f z) renameOp :: Located PName -> RenameM (Located Name, Fixity) renameOp ln = withLoc ln $ do n <- renameVar NameUse (thing ln) fixity <- lookupFixity n return (ln { thing = n }, fixity) renameTypeOp :: Located PName -> RenameM (Located Name, Fixity) renameTypeOp ln = withLoc ln $ do n <- renameType NameUse (thing ln) fixity <- lookupFixity n return (ln { thing = n }, fixity) lookupFixity :: Name -> RenameM Fixity lookupFixity n = case nameFixity n of Just fixity -> return fixity Nothing -> return defaultFixity -- FIXME: should we raise an error instead? instance Rename TypeInst where rename ti = case ti of NamedInst nty -> NamedInst <$> traverse rename nty PosInst ty -> PosInst <$> rename ty renameArm :: [Match PName] -> RenameM (NamingEnv,[Match Name]) renameArm (m:ms) = do (me,m') <- renameMatch m -- NOTE: renameMatch will generate warnings, so we don't -- need to duplicate them here shadowNames' CheckNone me $ do (env,rest) <- renameArm ms -- NOTE: the inner environment shadows the outer one, for examples -- like this: -- -- [ x | x <- xs, let x = 10 ] return (env `shadowing` me, m':rest) renameArm [] = return (mempty,[]) -- | The name environment generated by a single match. renameMatch :: Match PName -> RenameM (NamingEnv,Match Name) renameMatch (Match p e) = do (pe,p') <- renamePat p e' <- rename e return (pe,Match p' e') renameMatch (MatchLet b) = do be <- liftSupply (defsOf (InModule Nothing b)) b' <- shadowNames be (rename b) return (be,MatchLet b') -- | Rename patterns, and collect the new environment that they introduce. renamePat :: Pattern PName -> RenameM (NamingEnv, Pattern Name) renamePat p = do pe <- patternEnv p p' <- shadowNames pe (rename p) return (pe, p') -- | Rename patterns, and collect the new environment that they introduce. renamePats :: [Pattern PName] -> RenameM (NamingEnv,[Pattern Name]) renamePats = loop where loop ps = case ps of p:rest -> do pe <- patternEnv p shadowNames pe $ do p' <- rename p (env',rest') <- loop rest return (pe `mappend` env', p':rest') [] -> return (mempty, []) patternEnv :: Pattern PName -> RenameM NamingEnv patternEnv = go where go (PVar Located { .. }) = do n <- liftSupply (mkLocal NSValue (getIdent thing) srcRange) -- XXX: for deps, we should record a use return (singletonNS NSValue thing n) go (PCon _ ps) = bindVars ps go PWild = return mempty go (PTuple ps) = bindVars ps go (PRecord fs) = bindVars (fmap snd (recordElements fs)) go (PList ps) = foldMap go ps go (PTyped p ty) = go p `mappend` typeEnv ty go (PSplit a b) = go a `mappend` go b go (PLocated p loc) = withLoc loc (go p) bindVars [] = return mempty bindVars (p:ps) = do env <- go p shadowNames env $ do rest <- bindVars ps return (env `mappend` rest) typeEnv (TFun a b) = bindTypes [a,b] typeEnv (TSeq a b) = bindTypes [a,b] typeEnv TBit = return mempty typeEnv TNum{} = return mempty typeEnv TChar{} = return mempty typeEnv (TUser pn ps) = do mb <- resolveNameMaybe NameUse NSType pn case mb of -- The type is already bound, don't introduce anything. Just _ -> bindTypes ps Nothing -- The type isn't bound, and has no parameters, so it names a portion -- of the type of the pattern. | null ps -> do loc <- curLoc n <- liftSupply (mkLocal NSType (getIdent pn) loc) return (singletonNS NSType pn n) -- This references a type synonym that's not in scope. Record an -- error and continue with a made up name. | otherwise -> do loc <- curLoc recordError (UnboundName NSType (Located loc pn)) n <- liftSupply (mkLocal NSType (getIdent pn) loc) return (singletonNS NSType pn n) typeEnv (TRecord fs) = bindTypes (map snd (recordElements fs)) typeEnv (TTyApp fs) = bindTypes (map value fs) typeEnv (TTuple ts) = bindTypes ts typeEnv TWild = return mempty typeEnv (TLocated ty loc) = withLoc loc (typeEnv ty) typeEnv (TParens ty _) = typeEnv ty typeEnv (TInfix a _ _ b) = bindTypes [a,b] bindTypes [] = return mempty bindTypes (t:ts) = do env' <- typeEnv t shadowNames env' $ do res <- bindTypes ts return (env' `mappend` res) instance Rename CaseAlt where rename (CaseAlt p e) = shadowNames p (CaseAlt <$> rename p <*> rename e) instance Rename Match where rename m = case m of Match p e -> Match <$> rename p <*> rename e MatchLet b -> shadowNames (InModule Nothing b) (MatchLet <$> rename b) instance Rename TySyn where rename (TySyn n f ps ty) = shadowNames ps do n' <- rnLocated (renameType NameBind) n depsOf (NamedThing (thing n')) $ TySyn n' <$> pure f <*> traverse rename ps <*> rename ty instance Rename PropSyn where rename (PropSyn n f ps cs) = shadowNames ps do n' <- rnLocated (renameType NameBind) n PropSyn n' <$> pure f <*> traverse rename ps <*> traverse rename cs -------------------------------------------------------------------------------- instance PP RenamedModule where ppPrec _ rn = updPPCfg (\cfg -> cfg { ppcfgShowNameUniques = True }) doc where doc = vcat [ "// --- Defines -----------------------------" , pp (rmDefines rn) , "// -- Module -------------------------------" , pp (rmModule rn) , "// -----------------------------------------" ]