-- | -- Module : Cryptol.TypeCheck.Subst -- Copyright : (c) 2013-2016 Galois, Inc. -- License : BSD3 -- Maintainer : cryptol@galois.com -- Stability : provisional -- Portability : portable {-# LANGUAGE PatternGuards #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE Safe #-} module Cryptol.TypeCheck.Subst ( Subst , emptySubst , SubstError(..) , singleSubst , singleTParamSubst , uncheckedSingleSubst , (@@) , defaultingSubst , listSubst , listParamSubst , isEmptySubst , FVS(..) , apSubstMaybe , TVars(..) , apSubstTypeMapKeys , substBinds , applySubstToVar , substToList ) where import Data.Maybe import Data.Either (partitionEithers) import qualified Data.Map.Strict as Map import qualified Data.IntMap as IntMap import Data.Set (Set) import qualified Data.Set as Set import Cryptol.TypeCheck.AST import Cryptol.TypeCheck.PP import Cryptol.TypeCheck.TypeMap import qualified Cryptol.TypeCheck.SimpType as Simp import qualified Cryptol.TypeCheck.SimpleSolver as Simp import Cryptol.Utils.Panic(panic) import Cryptol.Utils.Misc(anyJust) -- | A 'Subst' value represents a substitution that maps each 'TVar' -- to a 'Type'. -- -- Invariant 1: If there is a mapping from @TVFree _ _ tps _@ to a -- type @t@, then @t@ must not mention (directly or indirectly) any -- type parameter that is not in @tps@. In particular, if @t@ contains -- a variable @TVFree _ _ tps2 _@, then @tps2@ must be a subset of -- @tps@. This ensures that applying the substitution will not permit -- any type parameter to escape from its scope. -- -- Invariant 2: The substitution must be idempotent, in that applying -- a substitution to any 'Type' in the map should leave that 'Type' -- unchanged. In other words, 'Type' values in the range of a 'Subst' -- should not mention any 'TVar' in the domain of the 'Subst'. In -- particular, this implies that a substitution must not contain any -- recursive variable mappings. -- -- Invariant 3: The substitution must be kind correct: Each 'TVar' in -- the substitution must map to a 'Type' of the same kind. data Subst = S { suFreeMap :: !(IntMap.IntMap (TVar, Type)) , suBoundMap :: !(IntMap.IntMap (TVar, Type)) , suDefaulting :: !Bool } deriving Show emptySubst :: Subst emptySubst = S { suFreeMap = IntMap.empty , suBoundMap = IntMap.empty , suDefaulting = False } -- | Reasons to reject a single-variable substitution. data SubstError = SubstRecursive -- ^ 'TVar' maps to a type containing the same variable. | SubstEscaped [TParam] -- ^ 'TVar' maps to a type containing one or more out-of-scope bound variables. | SubstKindMismatch Kind Kind -- ^ 'TVar' maps to a type with a different kind. singleSubst :: TVar -> Type -> Either SubstError Subst singleSubst x t | kindOf x /= kindOf t = Left (SubstKindMismatch (kindOf x) (kindOf t)) | x `Set.member` fvs t = Left SubstRecursive | not (Set.null escaped) = Left (SubstEscaped (Set.toList escaped)) | otherwise = Right (uncheckedSingleSubst x t) where escaped = case x of TVBound _ -> Set.empty TVFree _ _ scope _ -> freeParams t `Set.difference` scope uncheckedSingleSubst :: TVar -> Type -> Subst uncheckedSingleSubst v@(TVFree i _ _tps _) t = S { suFreeMap = IntMap.singleton i (v, t) , suBoundMap = IntMap.empty , suDefaulting = False } uncheckedSingleSubst v@(TVBound tp) t = S { suFreeMap = IntMap.empty , suBoundMap = IntMap.singleton (tpUnique tp) (v, t) , suDefaulting = False } singleTParamSubst :: TParam -> Type -> Subst singleTParamSubst tp t = uncheckedSingleSubst (TVBound tp) t (@@) :: Subst -> Subst -> Subst s2 @@ s1 | isEmptySubst s2 = if suDefaulting s1 || not (suDefaulting s2) then s1 else s1{ suDefaulting = True } s2 @@ s1 = S { suFreeMap = IntMap.map (fmap (apSubst s2)) (suFreeMap s1) `IntMap.union` suFreeMap s2 , suBoundMap = IntMap.map (fmap (apSubst s2)) (suBoundMap s1) `IntMap.union` suBoundMap s2 , suDefaulting = suDefaulting s1 || suDefaulting s2 } -- | A defaulting substitution maps all otherwise-unmapped free -- variables to a kind-appropriate default type (@Bit@ for value types -- and @0@ for numeric types). defaultingSubst :: Subst -> Subst defaultingSubst s = s { suDefaulting = True } -- | Makes a substitution out of a list. -- WARNING: We do not validate the list in any way, so the caller should -- ensure that we end up with a valid (e.g., idempotent) substitution. listSubst :: [(TVar, Type)] -> Subst listSubst xs | null xs = emptySubst | otherwise = S { suFreeMap = IntMap.fromList frees , suBoundMap = IntMap.fromList bounds , suDefaulting = False } where (frees, bounds) = partitionEithers (map classify xs) classify x = case fst x of TVFree i _ _ _ -> Left (i, x) TVBound tp -> Right (tpUnique tp, x) -- | Makes a substitution out of a list. -- WARNING: We do not validate the list in any way, so the caller should -- ensure that we end up with a valid (e.g., idempotent) substitution. listParamSubst :: [(TParam, Type)] -> Subst listParamSubst xs | null xs = emptySubst | otherwise = S { suFreeMap = IntMap.empty , suBoundMap = IntMap.fromList bounds , suDefaulting = False } where bounds = [ (tpUnique tp, (TVBound tp, t)) | (tp, t) <- xs ] isEmptySubst :: Subst -> Bool isEmptySubst su = IntMap.null (suFreeMap su) && IntMap.null (suBoundMap su) -- Returns the empty set if this is a defaulting substitution substBinds :: Subst -> Set TVar substBinds su | suDefaulting su = Set.empty | otherwise = Set.fromList (map fst (assocsSubst su)) substToList :: Subst -> [(TVar, Type)] substToList s | suDefaulting s = panic "substToList" ["Defaulting substitution."] | otherwise = assocsSubst s assocsSubst :: Subst -> [(TVar, Type)] assocsSubst s = frees ++ bounds where frees = IntMap.elems (suFreeMap s) bounds = IntMap.elems (suBoundMap s) instance PP (WithNames Subst) where ppPrec _ (WithNames s mp) | null els = text "(empty substitution)" | otherwise = text "Substitution:" $$ nest 2 (vcat (map pp1 els)) where pp1 (x,t) = ppWithNames mp x <+> text "=" <+> ppWithNames mp t els = assocsSubst s instance PP Subst where ppPrec n = ppWithNamesPrec IntMap.empty n -- | Apply a substitution. Returns `Nothing` if nothing changed. apSubstMaybe :: Subst -> Type -> Maybe Type apSubstMaybe su ty = case ty of TCon t ts -> do ss <- anyJust (apSubstMaybe su) ts case t of TF _ -> Just $! Simp.tCon t ss PC _ -> Just $! Simp.simplify mempty (TCon t ss) _ -> Just (TCon t ss) TUser f ts t -> do t1 <- apSubstMaybe su t return (TUser f (map (apSubst su) ts) t1) TRec fs -> TRec `fmap` (anyJust (apSubstMaybe su) fs) TVar x -> applySubstToVar su x lookupSubst :: TVar -> Subst -> Maybe Type lookupSubst x su = fmap snd $ case x of TVFree i _ _ _ -> IntMap.lookup i (suFreeMap su) TVBound tp -> IntMap.lookup (tpUnique tp) (suBoundMap su) applySubstToVar :: Subst -> TVar -> Maybe Type applySubstToVar su x = case lookupSubst x su of -- For a defaulting substitution, we must recurse in order to -- replace unmapped free vars with default types. Just t -> Just (if suDefaulting su then apSubst su t else t) Nothing | suDefaulting su -> Just $! defaultFreeVar x | otherwise -> Nothing class TVars t where apSubst :: Subst -> t -> t -- ^ replaces free vars instance TVars t => TVars (Maybe t) where apSubst s = fmap (apSubst s) instance TVars t => TVars [t] where apSubst s = map (apSubst s) instance (TVars s, TVars t) => TVars (s,t) where apSubst s (x,y) = (apSubst s x, apSubst s y) instance TVars Type where apSubst su ty = fromMaybe ty (apSubstMaybe su ty) -- | Pick types for unconstrained unification variables. defaultFreeVar :: TVar -> Type defaultFreeVar x@(TVBound {}) = TVar x defaultFreeVar (TVFree _ k _ d) = case k of KType -> tBit KNum -> tNum (0 :: Int) _ -> panic "Cryptol.TypeCheck.Subst.defaultFreeVar" [ "Free variable of unexpected kind." , "Source: " ++ show d , "Kind: " ++ show (pp k) ] instance (Functor m, TVars a) => TVars (List m a) where apSubst su = fmap (apSubst su) instance TVars a => TVars (TypeMap a) where apSubst su = fmap (apSubst su) -- | Apply the substitution to the keys of a type map. apSubstTypeMapKeys :: Subst -> TypeMap a -> TypeMap a apSubstTypeMapKeys su = go (\_ x -> x) id where go :: (a -> a -> a) -> (a -> a) -> TypeMap a -> TypeMap a go merge atNode TM { .. } = foldl addKey tm' tys where addKey tm (ty,a) = insertWithTM merge ty a tm tm' = TM { tvar = Map.fromList vars , tcon = fmap (lgo merge atNode) tcon , trec = fmap (lgo merge atNode) trec } -- partition out variables that have been replaced with more specific types (vars,tys) = partitionEithers [ case applySubstToVar su v of Just ty -> Right (ty,a') Nothing -> Left (v, a') | (v,a) <- Map.toList tvar , let a' = atNode a ] lgo :: (a -> a -> a) -> (a -> a) -> List TypeMap a -> List TypeMap a lgo merge atNode k = k { nil = fmap atNode (nil k) , cons = go (unionTM merge) (lgo merge atNode) (cons k) } {- | This instance does not need to worry about bound variable capture, because we rely on the 'Subst' datatype invariant to ensure that variable scopes will be properly preserved. -} instance TVars Schema where apSubst su (Forall xs ps t) = Forall xs (concatMap pSplitAnd (apSubst su ps)) (apSubst su t) instance TVars Expr where apSubst su = go where go expr = case expr of EApp e1 e2 -> EApp (go e1) (go e2) EAbs x t e1 -> EAbs x (apSubst su t) (go e1) ETAbs a e -> ETAbs a (go e) ETApp e t -> ETApp (go e) (apSubst su t) EProofAbs p e -> EProofAbs hmm (go e) where hmm = case pSplitAnd (apSubst su p) of [p1] -> p1 res -> panic "apSubst@EProofAbs" [ "Predicate split or disappeared after" , "we applied a substitution." , "Predicate:" , show (pp p) , "Became:" , show (map pp res) , "subst:" , show (pp su) ] EProofApp e -> EProofApp (go e) EVar {} -> expr ETuple es -> ETuple (map go es) ERec fs -> ERec (fmap go fs) ESet e x v -> ESet (go e) x (go v) EList es t -> EList (map go es) (apSubst su t) ESel e s -> ESel (go e) s EComp len t e mss -> EComp (apSubst su len) (apSubst su t) (go e) (apSubst su mss) EIf e1 e2 e3 -> EIf (go e1) (go e2) (go e3) EWhere e ds -> EWhere (go e) (apSubst su ds) instance TVars Match where apSubst su (From x len t e) = From x (apSubst su len) (apSubst su t) (apSubst su e) apSubst su (Let b) = Let (apSubst su b) instance TVars DeclGroup where apSubst su (NonRecursive d) = NonRecursive (apSubst su d) apSubst su (Recursive ds) = Recursive (apSubst su ds) instance TVars Decl where apSubst su d = d { dSignature = apSubst su (dSignature d) , dDefinition = apSubst su (dDefinition d) } instance TVars DeclDef where apSubst su (DExpr e) = DExpr (apSubst su e) apSubst _ DPrim = DPrim instance TVars Module where apSubst su m = m { mDecls = apSubst su (mDecls m) }