
The Cryptographic Protocol Shapes Analyzer:
A Manual

Moses D. Liskov John D. Ramsdell
Joshua D. Guttman Paul D. Rowe

The MITRE Corporation

CPSA Version 3.6

August 29, 2018

c© 2016 The MITRE Corporation. Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed for direct commercial advantage,
this copyright notice and the title of the publication and its date appear, and notice in given that
copying is by permission of The MITRE Corporation.

i

Contents

1 Introduction 1
1.1 Recommended reading . 2
1.2 Tool components . 2

I Basic use of CPSA 4

2 Setup and Installation 5
2.1 Basic Installation . 5

2.1.1 Getting the Source . 6
2.2 Finding Documentation . 6
2.3 Running cpsa . 6

2.3.1 Using the cpsa Makefile . 7
2.3.2 Using the Haskell Makefile . 8
2.3.3 Memory usage . 8
2.3.4 Parallelism . 8

3 Basic Protocol Modeling and Analysis with CPSA 9
3.1 Basic CPSA modeling . 10
3.2 CPSA input . 11
3.3 CPSA output . 13
3.4 Interpreting shapes . 17
3.5 Blanchet’s simple example protocol 20

4 Algebra Features of CPSA 26
4.1 Generic messages and long-term keys 26
4.2 Modeling Diffie-Hellman . 33

4.2.1 Other examples . 35
4.3 Other Algebra Features . 37

ii

4.3.1 Hashing . 37
4.3.2 Constants . 37
4.3.3 Bidirectional Long-Term Keys 38

II Understanding and Guiding CPSA 40

5 The CPSA Search Algorithm 41
5.1 Solving tests . 42
5.2 Flawed Kerberos, revisited . 43

5.2.1 The operation field . 43

6 Constraining CPSA’s search 47
6.1 Bundles: A Strand-Based Execution Model 47
6.2 Secrecy assumptions . 48
6.3 Distinctness assumptions . 49
6.4 Functional dependence assumptions 50

6.4.1 Equality constraints . 51
6.5 Role declarations and conditional role declarations 52
6.6 Diffie-Hellman declarations . 53
6.7 Other declarations . 53

III Advanced features of CPSA 55

7 Modeling Stateful Protocols 56
7.1 The Envelope Protocol . 56

7.1.1 Macros for Simplifying Complex Protocols 62

8 Logical Security Goals 64
8.1 Overview . 67
8.2 Syntax . 67
8.3 Semantics . 69
8.4 Examples . 72

8.4.1 Needham-Schroeder Responder 72
8.4.2 A Needham-Schroeder Secrecy Goal 74

8.5 The Rest of the Story . 74
8.5.1 Shape Analysis Sentences . 75

8.6 Rules . 76

iii

8.6.1 Facts . 77
8.6.2 DoorSEP . 78

IV Reference material 81

9 Troubleshooting 82
9.1 Non-termination . 82

9.1.1 Tweaking the search . 83
9.2 Error messages . 84

10 CPSA input syntax 91
10.1 CPSA pre-processing . 91
10.2 CPSA input syntax . 92
10.3 Algebra reference . 94

10.3.1 Basic crypto algebra . 94
10.3.2 The Diffie-Hellman crypto algebra 95

10.4 Declaration syntax . 97
10.5 Command-line options . 99

10.5.1 Heralds . 101

iv

List of Figures

2.1 Makefile . 7

3.1 Needham-Schroeder roles . 10
3.2 Needham-Schroeder defprotocol . 12
3.3 Initiator point of view . 12
3.4 Responder point of view . 12
3.5 Needham-Schroeder search tree . 14
3.6 Needham-Schroeder skeleton . 16
3.7 NS shape for initiator point of view 18
3.8 NS shape for responder point of view 19
3.9 The Blanchet simple example protocol 21
3.10 Blanchet points of view . 22
3.11 Blanchet privacy search tree . 23
3.12 Blanchet shape for responder’s point of view 24

4.1 A flawed version of Kerberos . 28
4.2 Flawed Kerberos point of view . 28
4.3 Flawed Kerberos dead skeleton . 29
4.4 Flawed Kerberos with a generic ticket 30
4.5 Flawed Kerberos shape . 32
4.6 Diffie-Hellman defprotocol . 34
4.7 Deletion of strand . 36

5.1 Flawed Kerberos key moment in analysis 45

7.1 TPM roles . 59
7.2 Alice’s role . 60
7.3 Graph of a stateful skeleton . 61
7.4 State-respecting semantics . 62

v

8.1 Needham-Schroeder Initiator and Responder Roles 65
8.2 Needham-Schroeder Initiator Point of View 66
8.3 Needham-Schroeder Responder Point of View 73
8.4 Needham-Schroeder Secrecy Goal . 74
8.5 Two Initiator Authentication Goals 75
8.6 Initiator Shape Analysis Sentence . 76
8.7 DoorSEP Protocol . 78
8.8 DoorSEP Weakness . 79
8.9 Door Simple Example Protocol . 80

vi

List of Tables

8.1 Goal syntax . 68
8.2 Predicates . 70

10.1 cpsa Input Syntax . 93
10.2 The Basic Cryptoalgebra . 94
10.3 cpsa Basic Algebra Syntax . 95
10.4 The Diffie-Hellman Cryptoalgebra . 96
10.5 cpsa Diffie-Hellman Algebra Syntax 97
10.6 Declaration syntax . 98

vii

Chapter 1

Introduction

cpsa, the Cryptographic Protocol Shapes Analyzer, is a software tool designed to
assist in the design and analysis of cryptographic protocols. A cryptographic pro-
tocol is a specific pattern of interaction between principals. TLS and IKE are some
examples of well-known cryptographic protocols.

The tool takes as input a protocol definition and a partial description of an execu-
tion, each built within a particular formal model by the user. It attempts to produce
descriptions of all possible executions of the protocol that complete the partial de-
scription, consistent with the presence of a powerful network adversary capable of
diverting, altering, replaying, or dropping network messages. Such an adversary may
be able to manipulate honest participants into an unexpected execution, breaking a
secrecy or authentication property that the protocol was intended to achieve.

Naturally, there are infinitely many possible executions of a useful protocol, since
different participants can run it with varying parameters, and the participants can
run it repeatedly. However, for many naturally occurring protocols, there are only
finitely many of these runs that are essentially different. Indeed, there are frequently
very few, often just one or two, even in cases where the protocol is flawed. We call
these minimal, essentially different executions the shapes of the protocol. Authenti-
cation and secrecy properties are easy to “read off” from the shapes, as are attacks
and anomalies.

The analysis performed by cpsa is done within a pure Dolev-Yao model [4]; as
such, the analysis reveals only structural flaws in the protocols it analyzes. It cannot
detect flaws in underlying cryptographic algorithms or in actual implementations of
protocol participants.

The purpose of this document is to provide the background required to make
effective use of the cpsa software distribution.

1

1.1 Recommended reading

If you are new to cpsa, it is recommended that you first read Part I, which is
introductory in nature and presented as a tutorial. Chapter 2 discusses how to
download, install, and run the tool. Chapter 3 begins the tutorial describing how to
use the tool, and Chapter 4 describes some of the more important additional features.

Readers, especially those without direct access to an experienced user of the tool,
are encouraged to attempt the “explorations” present from Chapter 3 onwards. The
purpose of the explorations is to give the reader experience in the use of the tool and
a chance to test his or her understanding of its features. After reading through the
first part, you should be ready to attempt to use the tool to analyze a protocol that
interests you, whether it be an existing protocol or one you need to design.

When you are ready for a deeper base of knowledge, read Part II. The chapters
in Part II will be helpful as you cross from trying to understand how to use the tool
to trying to impact your work on protocol design through use of the tool. Chapter 5
will be of general use as you try to understand the analyses cpsa conducts, and
Chapter 6 will help you narrow the tool’s focus to what interests you.

Part III deals with special-purpose features of the tool. Chapter 7 deals with
stateful protocols and Chapter 8 deals with logic-based protocol goals. You should
read these chapters if those features seem important to you.

Part IV is reference material. Chapter 9 contains reference material about dealing
with errors of various sorts that arise during the use of cpsa, while Chapter 10
documents the complete syntax of the tool.

1.2 Tool components

The distribution includes a number of separate executable command-line tools. Of
these, three are key components of the core expected workflow: cpsa, cpsagraph,
and cpsashape. The other tools are auxiliary utilities most general users will not
need to use, although cpsadiff is of some use to a general user when updating the
tool.

The cpsa program takes as input one or more analysis problems (at least, a
protocol and a partial description of an execution), and analyzes them one at a time.
It outputs the full, step-by-step analysis for each problem, ultimately describing all
possible full executions that complete the partial execution.

The cpsashape program takes an analysis and reduces it to an analysis that skips
directly from analysis input to the set of shapes associated with that input.

2

The cpsagraph program takes an analysis (from either cpsa or cpsashape) and
formats it into an xhtml file and includes svg(scalable vector graphics) diagrams
of each partial execution as well as the overall branching pattern of the analysis.

The expected work flow follows. An analysis problem is entered using an ordinary
text editor, preferably one with support for Lisp syntax. The cpsa program uses an
S-expression-based syntax for both input and output. S-expression is an abbreviation
for a Symbolic Expression (as in the Lisp programming language).

The body of the input consists of two forms: defprotocol statements that de-
scribe a protocol, and defskeleton statements that describe a partial execution of
a protocol. The exact details of both forms depend on the message algebra specified
by the protocol.

Assuming there are no errors in the input, the analyzer will produce output as a
text document. The text document contains each step used to derive a shape from a
problem statement. It is common to filter the output using the cpsashapes program,
and look only at the computed shapes associated with each problem statement.

The cpsagraph program is applied to the output to produce a more readable,
hyperlinked xhtml document that can be displayed in a standards-compliant web
browser. The cpsa User Guide contains the up-to-date description of cpsagraph

generated documents. The guide is also the place to find command-line usage infor-
mation for all programs in a release. The user guide is an xhtml document delivered
with the software.

3

Part I

Basic use of CPSA

4

Chapter 2

Setup and Installation

2.1 Basic Installation

The use of cpsa requires Haskell, the programming language in which cpsa is coded.
Our recommendation is to use the Haskell Platform, which is available for Windows,
Mac, and Linux. The “Core” platform is sufficient, but the “Full” platform is also
fine. On Linux, install the haskell-platform package. Otherwise, follow the down-
load and installation instructions at:

http://www.haskell.org/platform/

To install cpsa, run in a terminal or command prompt:
$ cabal update (to get the latest package list; this may take a while.)
$ cabal install cpsa

Note that if you are behind a proxy, you may have to set the http proxy for your
shell if you haven’t already. For example, on a mac:
$ export http proxy=http://proxy.myorg:port

On Windows:
$ set HTTP PROXY=http://proxy.myorg:port

Cabal will install cpsa in a directory specified in its config file (usually in /.ca-
bal/config, unless you’ve installed Haskell in a different directory). Instructions for
changing your path are included in the config file. The final step in the cabal install
process should print the location that cpsa has been installed in.

5

http://www.haskell.org/platform/

2.1.1 Getting the Source

If you have trouble with cabal, or if you’d like extra features such as the cpsa
test suite of example protocols, you can download the current source distribution
directly at:

http://github.com/mitre/cpsa

There is a directory named cpsa at the top-level of the repository. It contains a
copy of the cpsa sources downloaded and compiled using cabal. On all platforms,
to install from this source, change into the cpsa directory and type:

$ cabal update

$ cabal install parallel

$ cabal configure

$ cabal build

$ cabal install

Alternatively, there are other install options described in README.txt in the cpsa
directory.

2.2 Finding Documentation

cpsa comes with documentation, but it can be difficult to locate by hand when the
tool has been installed through cabal. Run

$ cpsa -h

to see the program’s help message, including the documentation directory, where this
manual should be found.

2.3 Running cpsa

To analyze a protocol you have put in prob.scm type:

$ cpsa -o prob.txt prob.scm

$ cpsashapes -o prob_shapes.txt prob.txt

$ cpsagraph -o prob_shapes.xhtml prob_shapes.txt

6

http://github.com/mitre/cpsa

CPSAFLAGS = +RTS -M512m -RTS

SRCS := $(wildcard *.scm) $(wildcard *.lsp)

include cpsa.mk

all: $(SRCS:%.scm=%_shapes.xhtml) $(SRCS:%.scm=%.xhtml) \

$(SRCS:%.lsp=%_shapes.xhtml) $(SRCS:%.lsp=%.xhtml)

clean:

-rm *.txt *.xhtml

Figure 2.1: Makefile

See Section 10.5 for command-line options.
The cpsashapes command is optional, but recommended; it cuts down cpsa’s

output to only show final results. Unless you’re doing detailed debugging, using it
will make the output much easier to read.

To analyze a protocol without using the cpsashapes comment, type:

$ cpsa -o prob.txt prob.scm

$ cpsagraph -o prob.xhtml prob.txt

The .xhtml results can be opened in a web browser.
The distribution provides two ways to relieve users of the tedium of issuing indi-

vidual commands.

2.3.1 Using the cpsa Makefile

The easiest way to orchestrate cpsa programs is to use GNU make. The distribution
comes with the file cpsa.mk for inclusion into your makefile. Figure 2.1 contains a
sample makefile. If you cut-and-paste, be sure to convert the leading spaces in the
last line into a tab character. To analyze protocols, copy these two files into a
directory containing your protocol sources, and type make.

The cpsa program is Emacs friendly. If you run the above makefile via M-x

compile, the results will be displayed in a buffer in Compilation Mode. The com-
mand C-x ‘ will visit the locus of the next error message or match (next-error) in
your cpsa input file.

7

2.3.2 Using the Haskell Makefile

This approach is designed to be easy for Windows users, who do not want to bother
installing Cygwin or MSYS.

Copy Make.hs from the documentation directory into your working directory. If
using Windows, double-click on the file and it will open up a new window with a
prompt. On a Mac or linux machine, run $ ghci Make.hs

From the Make.hs prompt, you can use the following commands:

• build: Run cpsa on all protocols (.scm files) in the directory, and produce
.xhtml output files displaying the results.

• clean: Remove all cpsa output files, to ensure that any changes to protocol
files are reflected in the output.

– Because intermediate files are used for behind-the-scenes processing, it
can be possible to have the results in the .xhtml output files not reflect
the most up-to-date protocol file contents. If you make changes and don’t
see them reflected in the output, try running clean. Getting into the
habit of running clean before build is a good idea.

• cpsa "protocolname " Run cpsa on just the protocol provided. Note that the
file extension (.scm) should not be included in the name; if your protocol is in
foo.scm, you would run cpsa "foo". Most useful if you have an exceptionally
large number of protocols in a single directory.

• :q Quit.

2.3.3 Memory usage

On large problems, cpsa can consume large amounts of memory. To protect against
memory exhaustion, run cpsa with the command-line options +RTS -M512m -RTS.
The makefile include cpsa.mk adds these options by default.

2.3.4 Parallelism

CPSA is built so it can make use of multiple processors. To make use of more
than one processor, start CPSA with a runtime flag that specifies the number of
processors to be used, such as +RTS -N4 -RTS. The GHC documentation describes
the -N option in detail.

8

Chapter 3

Basic Protocol Modeling and
Analysis with CPSA

This chapter is designed to be a tutorial for a new user with access to the tool,
but totally unfamiliar with the ideas behind it. We will explain the basics of the
tool while stepping through an example input and its output. Input and output for
the examples in this chapter and in other chapters are included in the distribution.
Explorations are included for readers to build their understanding of the tool through
experience. If you are a new user but do not intend to work through the explorations,
we recommend that you at least copy the input files and run the tool yourself to check
that you can produce outputs mirroring those in the distribution.

The first protocol we discuss is the Needham-Schroeder protocol for establishing
key transport over insecure networks. The protocol has two participants: an initiator
a and a responder b. The intention is for the following interaction to take place:

1. a picks a fresh, random nonce n1 and encrypts a message containing n1 and a’s
name under b’s public encryption key, and sends the result to b.

2. b, on receiving such a message, picks a fresh random nonce n2 and encrypts a
message containing n1 and n2 under a’s public encryption key, and sends the
result to a.

3. a, on receiving this reply, encrypts n2 under b’s public encryption key and sends
the result to b.

The intention is that a and b should have authenticated each other (that is, that
a is communicating with b and vice versa) and that the pair of nonces establish a

9

init //

��

{|n1, a|}Kb
{|n1, a|}Kb

// resp

��
•

��

{|n1, n2|}Ka
oo {|n1, n2|}Ka •oo

��
• // {|n2|}Kb

{|n2|}Kb
// •

Figure 3.1: Needham-Schroeder initiator and responder roles

unique session of such authentication. The nonces should also be unreadable by the
network adversary, so that they can be used to create a session key between a and b.

This protocol has a well known but non-obvious flaw discovered by Lowe [8] that
cpsa can discover automatically.

3.1 Basic CPSA modeling

In order to use cpsa on this protocol, we must first understand some basics about
how cpsa models protocols and messages.

Since cpsa’s aim is to analyze protocols in the presence of a powerful network
attacker, we equate the network with the attacker, and do not model the notion
of addressing of messages. The description provided above for Needham-Schroeder
describes messages that (for instance) a sends to b. In cpsa, we ignore the intended
recipient because the attacker is free to ignore it.

The protocol can be thought of as made up of the roles that entities can play
during the protocol. In the case of Needham-Schroeder, there are two: the initiator
and the responder. These roles describe the sequence of message-related events each
party observes during the protocol. The events are described by giving a formula
for the format of each message, along with an indiciation whether each event is a
reception of a message or a transmission of one.

Messages in cpsa are represented as formally structured objects, specifically as
terms in an order-sorted algebra [5]. Terms are either variables or functional outputs
of simpler terms. Variables have types called sorts, and function symbols have specific
signatures that specifies the sorts of each input and the sort of the output. The roles
of Needham-Schroeder are given in Figure 3.1.

The messages in these roles are built from variables (n1, n2, a, b) and function

10

symbols; the three function symbols used in this protocol are encryption, pairing, and
the “key of” function. {|m|}k denotes the encryption of message m under encryption
key k. Terms in a pair are represented in comma-separated lists. And Ka denotes
the result of the “key of” function symbol on input a. This represents the public key
(either an encryption key or a signature verification key) of a. The values n1 and n2

are of a different sort than a and b: the latter are names to which the K(·) function
can be applied, while n1 and n2 are simple values.

In addition to a description of the protocol, cpsa expects the description of a
what we call a skeleton—a partial protocol execution. A skeleton is made up of
instances of the roles, that is, viewpoints of honest parties, along with what values
are associated with the variables in those viewpoints. These viewpoints may be
partial, but they always represent a prefix of a full role.

3.2 CPSA input

The ns.scm file in the examples directory contains a protocol description for Needham-
Schroeder and two skeletons: one representing the viewpoint of a completed initiator,
and one representing the viewpoint of a completed responder. The .scm extension
used for cpsa input files refers to the Scheme programming language, which is a
language derived from Lisp. This allows the user to make use of an IDE or text edi-
tor that knows about Scheme syntax, for ease of editing input files. The cpsa tool
itself does not require any particular extension, but auxiliary tools may, including
the Make.hs program described in Section 2.3.

The input file for Needham-Schroeder contains comments found on lines begin-
ning with ‘;’, and four top-level S-Expressions: a herald, a defprotocol, and two
defskeletons. We will describe heralds in Section 10.5.1; ignore them for now.

The defprotocol S-expression describes and names a protocol, while the defskeleton
describes a skeleton, referencing a particular protocol. A portion of the Needham-
Schroeder defprotocol is reproduced in Figure 3.2 for ease of reference.

A defprotocol S-expression starts with a protocol name, ns in this case, followed
by the name of a message algebra. The basic algebra contains enough elements
to describe Needham-Schroeder and most simple examples; the only other algebra
contained in the cpsa distribution is diffie-hellman; see Chapter 4, and specifically
Section 4.2, for details of the Diffie-Hellman algbera.

The rest of the defprotocol S-expression is a sequence of roles, each defined by
a defrole S-expression. In our example, there are two roles, and thus two defroles,
the first defining the initiator role (init) and the latter describing the responder role
(resp).

11

(defprotocol ns basic

(defrole init

(vars (a b name) (n1 n2 text))

(trace (send (enc n1 a (pubk b)))

(recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b))))

(defrole resp . . .))

Figure 3.2: Needham-Schroeder defprotocol

(defskeleton ns

(vars (b name) (n1 text))

(defstrand init 3 (b b) (n1 n1))

(non-orig (privk b))

(uniq-orig n1))

Figure 3.3: Initiator point of view

The first input to a defrole is a role name; the second should be a set of variable
declarations (vars), and the third should be a trace declaration which describes the
event sequence of the role. The variable declarations define and give types to the
variables used in the role’s trace. The trace S-expression defines the list of events:
a recv S-expression describes a reception and send describes a transmission.

Function symbols in the cpsa message algebra have specific S-expressions asso-
ciated with them. enc denotes an encryption, cat denotes a pair, and pubk denotes
the “key of” function. You may notice that cat does not occur in the figure: this
is because its use is hidden by “syntactic sugar”—a convenient shortcut in the syn-
tax. The message (enc n1 a (pubk b)) is more properly the encryption of the
pair (n1, a) under the key Kb, but when an enc S-expression is given more than two
inputs, it is assumed that all but the last are concatenated together using pairs.

(defskeleton ns

(vars (a name) (n2 text))

(defstrand resp 3 (a a) (n2 n2))

(non-orig (privk a))

(uniq-orig n2))

Figure 3.4: Responder point of view

12

In Figures 3.3 and 3.4, we reproduce the skeletons described in our example
input file. A defskeleton S-expression includes first of all a protocol name, then
variable declarations, and then a list of instances, most of which are defined by the
defstrand S-expression. A defstrand includes an input specifying the name of the
role the strand is an instance of, as well as a height, that is, a number of the events
(send / recv) in the role that are to be reflected in the instance, starting from the
first event. In our example input, each defskeleton includes one defstrand, which
defines an instance of height 3 since that refers to a full execution of either role in
the protocol. A defstrand S-expression may optionally include maplets that specify
values to be used to instantiate variables in the role specification. A maplet is a
parentheses-delimited pair where the first element is the name of the role variable to
be instantiated and the second is the value, which can be any term formed over the
variables declared in the vars portion of the defskeleton.

A defskeleton will usually have one or more declarations in it that restrict
the class of executions the tool is to explore. Here, each example includes two
declarations: one non-orig declaration and one uniq-orig declaration. Declara-
tions must be made about expressions that can be parsed given the variables in the
defskeleton; it is because of these declarations that we specify an instantiation of
certain variables in a defstrand.

A non-orig declaration specifies a value (usually a symmetric or private key)
as secret and never sent by honest parties in any potentially decryptable form. A
uniq-orig declaration specifies a value as being randomly and freshly chosen where
it first occurs in a transmission. Here, the initiator point of view specifies two
assumptions: that the initiator picks her own nonce properly (i.e. randomly), and
that the initiator’s intended communication partner has an uncompromised private
key. Similarly, the responder’s point of view assumes that the the responder picks
his own nonce properly and that his intended partner has an uncompromised private
key.

3.3 CPSA output

When we run the cpsa tool on the Needham-Schroeder input file, and then run the
cpsagraph graphing tool on the result, we obtain a .xhtml file that can be viewed in
a web browser. The ns.xhtml file in the examples directory contains these results.

The graphing output contains some top matter that includes the herald from the
input file. Below this is a list of trees, each of which represents the analysis of one
of the input defskeletons; in the case of our example, there are two trees.

The rest of the graph output consists of the search results. The numbers in the list

13

Figure 3.5: Search tree diagram for the initiator point of view in ns.xhtml

of trees link to the start of each tree. Each search result starts with an identification
(“Tree 0” in the example), followed by a graph of the search, then the defprotocol

used in that search, and then the skeletons considered by cpsa during its analysis.
Figure 3.5 illustrates the list of trees, the tree identification, and that tree’s search
graph.

The search tree diagrams the steps in the search. Each skeleton in the entire
graph file has a label, a number starting from 0. The number associated with a tree
is the label number of the input skeleton. The left edge of the search graph is the
root of the tree: in the case of Figure 3.5, the graph does not look very tree-like
because the analysis doesn’t branch. The numbers in the graph are the labels of
the skeletons considered by cpsa during its analysis, and clicking on a number will
direct the browser to display the corresponding skeleton.

The process by which cpsa analyzes a skeleton is the repeated use of an operation
called the cohort, which takes an input skeleton and produces a set of more refined
skeletons that cover all the possible executions the input skeleton covered. The
relationship between a parent skeleton and a child is that a child is included in the
cohort calculated with the parent as an input.

Numbers are normally displayed in black, but may also be displayed in other
colors. Blue numbers represent realized skeletons, that is, skeletons that may repre-
sent an actual execution.1 Red numbers represent dead skeletons, that is, skeletons
that represent partial executions that are not part of any actual execution – in other
words, impossible scenarios.

Numbers may occur in the tree more than once, because it is possible that cpsa

1Note that while realized skeletons already represent complete executions, cpsadoes further
analysis once a realized skeleton is reached in order to generalize that skeleton as much as possible.
A skeleton that is both realized and cannot be further generalized is a shape. See page 35 for more
detail on generalization.

14

will discover a particular skeleton through more than one branch of the analysis.
Green, italicized numbers represent skeletons present in more than one branch that
are not dead skeletons, while orange italicized numbers represent dead skeletons
present in more than one branch.

Each skeleton starts with a line that indicates its label (item) and the labels of its
parent ((parent), if any) and its children ((child), if any) See Fig. 3.6) The parent
and child numbers link to those skeletons, while the “item” number links back to the
tree this skeleton is part of.

Below the diagram is a defskeleton that fully describes the skeleton. This text
is fully compatible with cpsa input and can be used as a skeleton input for analysis
with this protocol, although some of the fields in it are added by cpsa and would
be ignored during input, for instance, the label and parent fields.

The diagram shows the skeleton as a graph. Strands are columns, ordered from
top to bottom. The nodes in the graph are events, normally transmissions or re-
ceptions of messages. Nodes may be blue, red, or black; a black node represents
a transmission, while blue and red nodes represent receptions. A blue node repre-
sents an explainable reception while a red node represents an unexplainable one. The
left-most strands in a skeleton are normally the strands from the input defskeleton.

The user may hover their mouse cursor over any node and will see a display
of the S-expression describing the message at that event (see Figure 3.6). Here,
if we hover over the red node (as shown) we will see that this is an event where
the initiator receives the message {|n1, n2|}Ka . This occurs after two transmissions:
the first event in the init strand and the second in the resp strand. Those two
transmissions are {|n1, a|}Kb

and {|n1, n20|}Ka . Neither transmission is the expected
message, but sometimes a reception can be explained even if no regular node sends
the exact message. Here, it is a question of what the adversary can build given the
messages available. In this skeleton there are non-orig or uniq-orig assumptions
about n1, SKa, and SKb, so since both messages are encrypted under keys for which
we have a secrecy assumption on the decryption key, the adversary is unable to
decrypt them. The adversary is also unable to build the required message: although
the adversary is allowed access to n2 and Ka (since there are no restrictions on those),
the adversary does not have access to n1. Hence, this node is unexplainable.

Arrows in the diagram represent basic orderings in the skeleton; arrows go from
earlier events to later events. An arrow is solid when it goes from an event transmit-
ting a message to one receiving the same message. So the blue node in this example
is obviously explained because the exact message was transmitted by the initiator,
specifically, at the first node in the initiator strand. The arrow ending at the red
node is dashed because the messages do not agree, but it still represents that in this

15

Figure 3.6: A skeleton in the initiator point of view search in ns.xhtml

16

skeleton the second node of the responder strand occurs before the second node of
the initiator strand.

3.4 Interpreting shapes

Next, we turn our attention to Figure 3.7, which is the one shape found by cpsa
during the search on the initiator point of view.

Before we get into detail on what is contained in this skeleton, note the graph.
All the arrows are solid, and there are arrows everywhere we expect them to be.
This describes a message being sent by an initiator and received, unaltered, by a
responder, who then sends a message that is received, again unaltered, by the same
initiator, who then sends a message.

The user can hover their mouse cursor over the name of the role at the top of a
strand in the skeleton diagram to see the variable assignment used in that instance.
Here, hovering over both the instances indicates that they are in agreement about
the values of n1, n2, a, and b: that is, the initiator’s internal value for each variable
is the same as the responder’s internal value for the variable of the same name.

It may seem slightly odd that the initiator sends a message in its third node
that is not received by anyone, but we know that in general it need not be received.
The adversary completely controls the network, so it does not have to deliver that
message.

The responder’s point of view. The shape found during the search on the
responder’s point of view, however, includes something unusual. See Figure 3.8.

The graph of this shape should look less like expected behavior. Two things look
odd, even at first glance. Most noticeable is the dashed arrow from the third initiator
node to the third responder node. Also, there’s the fact that there is a blue node
(the one in the top left) that does not have any arrow coming in.

Inspection of the instances in this shape reveals that the initiator and responder
agree on all the values except for b. This explains the dashed arrow: the initiator
sends {|n2|}Kb0

but the responder receives {|n2|}Kb
; these messages are not the same,

which is why the arrow is not solid. As for how the responder could receive the
proper value, note that we only assumed SKa and SKb are secure, but we did not
assume SKb0 was secure. It would have been hard to do so, since b0 is a value we
know nothing about from the initiator’s point of view. The initiator’s transmission of
{|n2|}Kb0

thus does not protect n2 from decryption, so an attacker could have created
the responder’s received message by encrypting n2 under Kb.

17

Figure 3.7: The only shape in the initiator point of view search in ns.xhtml

18

Figure 3.8: The only shape in the responder point of view search in ns.xhtml

19

The lack of an incoming arrow for the responder’s first node can be explained
because of the lack of any assumption about the value n1. The value n1 is the
initiator’s nonce, but this analysis does not assume that an initiator, if present, will
choose their nonce properly. So n1 could actually be a value already chosen by
the adversary, and the message {|n1, a|}Kb

can be constructed and delivered to the
responder before the initiator even starts.

The fact that the initiator and responder do not agree on b is an interesting
feature of this protocol. We know from the initiator’s point of view that the initiator
a, when they have completed their execution, can infer that b has taken part in the
responder role with a, and that they agree on both nonces.

The responder’s point of view leads to less information. The responder b knows
that a has taken part in the initiator role, but does not know that a intended to
initate communication with b. This lets us conclude that the Needham-Schroeder
protocol provides less than an ideal level of authentication.

Exploration 3.1. The attack described above was first identified by Gavin Lowe [8],
who also proposed a fix, namely, to have the second message in the Needham-
Schroeder protocol include the name b of the responder.

Make a copy of the Needham-Schroeder input file and modify the protocol so
that the second message (in both roles) includes a b. Run the analysis again and
graph it. You should observe that the disagreement on b from the responder’s point
of view is no longer possible, and that the initiator’s point of view is still good.

3.5 Blanchet’s simple example protocol

Next we turn our attention to a second protocol, which will help build the reader’s
experience with cpsa and also introduce some additional features. This protocol
is due to Bruno Blanchet, and has a flaw introduced by design for the purpose of
discussing protocol analysis. In this protocol there are again two participants: an
initiator and a responder. However, in this protocol, we do not use names, just public
keys. Specifically, one party has a public signing key (a), while the other has a public
encryption key (b).

The protocol is as follows, informally:

• The initiator chooses a fresh, random session key s, signs it with their pri-
vate signing key (corresponding to the public key a), and encrypts it with the
responder’s public key b and sends the result to the responder.

20

(defprotocol blanchet basic

(defrole init

(vars (a b akey) (s skey) (d data))

(trace (send (enc (enc s (invk a)) b))

(recv (enc d s)))

(uniq-orig s))

(defrole resp

(vars (a b akey) (s skey) (d data))

(trace (recv (enc (enc s (invk a)) b))

(send (enc d s)))

(uniq-orig d)))

Figure 3.9: The Blanchet simple example protocol

• The responder receives and decrypts such a message, confirms the signature,
and then encrypts a piece of data d under s and sends this back to the initiator.

The file blanchet.scm in the examples directory contains Blanchet’s simple ex-
ample protocol described above. See Figure 3.9 for the protocol declaration.

There are several elements of this protocol input that are new. First of all, the
Needham-Schroeder protocol used only two types: name and text, while this protocol
uses three new types. The data type is for simple values, much like text. In fact,
the two types are interchangeable, but both are available for cases where an analyst
may wish to describe a protocol in which two types of simple values exist that cannot
be confused for each other.

The akey and skey types are for keys, specifically, asymmetric and symmetric
keys, respectively. The invk function symbol maps an asymmetric key to its inverse.

Note that we use (enc s (invk a)) to represent the digital signature. A digital
signature in the cpsa message algebra is represented as an encryption under the
signature key.

A third feature is the presence of a delcaration such as (uniq-orig s) within
a defrole. Like the uniq-orig declaration that can appear in a skeleton, this
declaration indicates that the value contained inside is freshly chosen. When this
declaration appears in the role, however, the assumption is that the value is freshly
chosen by every honest participant in the protocol who plays that role. Declarations
present in a role are inherited by every skeleton with an instance of that role. See
Chapter 6 for more on the declarations supported by cpsa.

Exploration 3.2. Make a variant of the Needham-Schroeder protocol in which the
freshness of each party’s nonce is assumed via a uniq-orig declaration in the protocol

21

(defskeleton blanchet

(vars (a b akey) (s skey) (d data))

(defstrand init 2 (a a) (b b) (s s) (d d))

(deflistener d)

(non-orig (invk b)))

(defskeleton blanchet

(vars (a b akey) (s skey) (d data))

(defstrand resp 2 (a a) (b b) (s s) (d d))

(deflistener d)

(non-orig (invk a) (invk b)))

Figure 3.10: Blanchet points of view

role. Run the analysis from each participant’s point of view. What differs in the
shapes, and why? (There should be one difference that’s noticeable in the graph of
one of the shapes.)

Exploration 3.3. Make a variant of the Needham-Schroeder protocol in which the
secrecy of each party’s partner’s private key is assumed via a non-orig declaration
in the protocol role. Run the analysis from each participant’s point of view.

You should observe that the authentication failure is no longer present in the
shape from the analysis of the responder’s viewpoint. What conclusion can you
draw about this declaration? Did we fix the protocol? If not, why does the analysis
seem to contain no flaws?

The blanchet.scm file contains four inputs to the analysis. The first and second
are just the points of view of each participant, under typical assumptions. But the
third and fourth contain another new element. See Figure 3.10 for these two inputs.

These two inputs are prepared to ask a confidentiality question: specifically, is
the value d exposed to the adversary? A listener is a pseudo-role that is considered
part of all protocols by cpsa. That role consists of receiving some arbitrary message
and then sending that same message. Listeners can show up in cpsa analyses, in
order to handle a case where a certain value is learnable, so that the rest of the case
breakdown can assume that value is not learnable.

In this protocol, the secret data d remains private in the initiator’s point of view.
Figure 3.11 shows the search tree for the point of view in which the initiator completes
the protocol and in which there is a listener for the same d value the initiator hears.

22

Figure 3.11: The search tree for the privacy of d in the initiator’s point of view in
blanchet.xhtml

The fact that all the numbers are red here indicates that all the skeletons in the
search are “dead”, meaning that they are inconsistent with any actual executions.
In other words, there are no executions in which d is revealed given our assumption
that the private decryption key of b is not compromised.

However, d does not remain private in the responder’s point of view. Figure 3.12
shows the graph of a shape for the point of view in which the responder completes the
protocol and in which there is a listener for the d value the responder sends. Note
that although d is encrypted under s, and s is freshly chosen by an initiator, the
shape shows that s can leak. We are not guaranteed that the initiator and responder
agree on b. Therefore, the initiator may have sent s encrypted with b0, and since the
private key corresponding to b0 is not necessarily secret, s may leak.

The blanchet.scm file also contains a second protocol with the name blanchet-corrected
in which the flaw that allows d to be learned in the responder’s point of view is elim-
inated.

Exploration 3.4. Modify the Blanchet protocol to add a role that is identical to
the initiator role, except that s is not declared uniq-orig. What impact does this
have on the analyses?

Exploration 3.5. If you modify the Blanchet protocol to instead add a role that
is identical to the responder role, except that d is not declared uniq-orig, what
impact do you believe this will have on the analyses? Make a prediction, then check

23

Figure 3.12: The only shape in the analysis for the responder’s point of view with
a listener for d in blanchet.xhtml. The second strand, with no role name, is the
listener.

24

your prediction.

Exploration 3.6. Try modifying the Blanchet protocol, removing the uniq-orig

declarations from the two roles. Replace the defskeletons in the input file with the
point of view skeletons for the un-corrected version of the Blanchet protocol from
blanchet.xhtml; these skeletons will explicitly include declarations that would be
inherited but were lost due to the removal of the role declaration.

Exploration 3.7. Starting from your modified version of the Blanchet protocol from
Exercise 3.6, add a uniq-orig declaration on s to the point of view with a responder
instance and a listener for d.

This should produce an error message, because cpsa expects that for every value
declared to be uniquely originating, that value originates at some point in the skele-
ton. When only the responder’s strand and the listener are present, s does not
originate; it is received by the responder before being used in an outgoing message,
and it does not occur on the listener strand at all.

Now add a defstrand adding an instance of an initiator (height 1), using the
same s, and declare s to be uniquely originating. Check that the resulting shape is
the same attack shape as in the unmodified blanchet.xhtml.

See Section 6.5 for more about how role declarations work.

25

Chapter 4

Algebra Features of CPSA

The cpsa distribution comes equipped with two cryptographic alegbras, the basic

cryptoalgebra and the diffie-hellman cryptoalgebra. The Diffie-Hellman algebra
is a pure extension of the basic algebra, so a user may always use the Diffie-Hellman
algebra to access all algebraic features. However, the performance of the tool is
superior when using the basic algebra, so users are advised to choose the basic algebra
whenever they are not making use of Diffie-Hellman features.

In Chapter 3, we introduced the basic cryptoalgebra, along with the data, text,

name, skey, and akey sorts, and the pubk, privk, invk, enc, and cat function
symbols. In addition to these, the basic cryptoalgebra contains the sorts tag and
mesg, and the ltk and hash function symbols, and string constants.

The Diffie-Hellman cryptoalgebra introduces three further sorts, base, rndx,

and expt, and six new function symbols, bltk, exp, inv, mul, gen, and one. For
performance reasons, one should always avoid using variables of sort base. Instead,
replace the variable with (exp (gen) x), where x is a variable of sort expt.

In this chapter we will explain these additional features with examples. In Sec-
tion 4.1, we will discuss the ltk function symbol and the use of the mesg sort, worked
with an example based on the Kerberos protocol. In Section 4.2, we will discuss the
tool’s Diffie-Hellman features. In Section 4.3, we will discuss the remaining features,
and note examples that demonstrate their use. For a more complete reference about
the two algebras, see Section 10.3.

4.1 Generic messages and long-term keys

Securing communications purely with symmetric keys faces an inherent scaling prob-
lem: when there are n parties that may wish to communicate, there must be O(n2)

26

keys shared between parties, which gets to be too many in any system with a large
number of users.

The Kerberos protocol is a well-known protocol for the distribution of symmetric
keys. Instead of having the n parties share keys with each other party, the users
share a key only with a central key server (also known as a key distribution center).
The key server controls key distribution within a realm that can be thought of as
the set of users that share keys with the key server.

Suppose a user wishes to communicate securely with another user in the same
realm. The first user would contact the key server and request a session key for
communication with the other user. The key server could then encrypt the session
key twice, once under each user’s shared key with the server. One encrypted key is
sent back to the user that requested the channel, and the other (called the “ticket”) is
also sent to the requesting user, to be forwarded on to their communication partner.

We will focus on a flawed protocol similar to the initialization protocol used by
Kerberos. The protocol is described informally as follows. There are three parties,
the initiator a, the responder b, and the key server s.

• a sends a message (a, b, n) to the key server, where n is a freshly chosen nonce.

• The key server, on a message (a, b, n), picks a fresh, random session key k, and
sends two encryptions to a: {|k, n|}SK(a,s) and {|k, a, b|}SK(b,s). Here, SK(x, s)
refers to the shared secret between the key server and x.

• a receives these two messages, decrypts the first to learn k and to check that
the proper nonce n was included, then sends a message m on to the responder,
encrypted under k, along with the second message (the ticket).

• b receives two encrypted messages, decrypts the second to learn k, and decrypts
the first with k to learn the message.

The ltk function symbol is used in cpsa to represent long-term shared keys
between two specific parties, when communication of that key is assumed out of
scope of the analysis. See Figure 4.1 for a defprotocol that attempts to describe
this flawed version of the Kerberos initialization protocol. See kerb.scm in the
examples directory for the input file discussed here.

The actual Kerberos protocol contains several additional elements that we omit
for simplicity, but the key difference is that the message encrypted under SK(a, s)
should include b. The message from the initiator that requests a session key is
transmitted in the clear and can be tampered with, so the initiator needs assurance
that the session key k is being exposed only to the initiator and b. Otherwise, even

27

(defprotocol kerb-flawed basic

(defrole init

(vars (a b s name) (m n text) (k skey))

(trace (send (cat a b n))

(recv (cat (enc k n (ltk a s)) (enc k a b (ltk b s))))

(send (cat (enc m k) (enc k a b (ltk b s)))))

(uniq-orig n))

(defrole keyserv

(vars (a b s name) (n text) (k skey))

(trace (recv (cat a b n))

(send (cat (enc k n (ltk a s)) (enc k a b (ltk b s)))))

(uniq-orig k))

(defrole resp

(vars (a b s name) (m n text) (k skey))

(trace (recv (cat (enc m k) (enc k a b (ltk b s)))))))

Figure 4.1: A flawed version of Kerberos

(defskeleton kerb-flawed

(vars (a b s name) (m text))

(defstrand init 3 (a a) (b b) (s s) (m m))

(deflistener m)

(non-orig (ltk a s) (ltk b s))

(uniq-orig m))

Figure 4.2: Flawed Kerberos point of view

assuming the long-term keys of both a and b with the key server are secure, a third
party may observe the message m: all the adversary has to do is block the initial
message and substitute b with another name c.

Will cpsa find this attack? See kerb.xhtml for the results of the analysis for the
point-of-view skeleton described in Figure 4.2.

Interestingly, the result of the analysis does not indicate any attack is possible!
The analysis gets stuck at a skeleton (see Figure 4.3) where the key server does in
fact generate a session key for a and b, and where that session key is exposed, but
it cannot be exposed if it was generated for a and b and if we are assuming both of
their long-term keys are private.

The reason cpsa gets the wrong result here is that we have inadvertently modeled
our protocol question incorrectly. Specifically, we have described a version of the

28

Figure 4.3: Flawed Kerberos dead skeleton. The use of the mesg sort provides a fix
to this badly modeled version of the protocol.

29

(defprotocol kerb-flawed2 basic

(defrole init

(vars (a b s name) (m n text) (ticket mesg) (k skey))

(trace (send (cat a b n))

(recv (cat (enc k n (ltk a s)) ticket))

(send (cat (enc m k) ticket)))

(uniq-orig n))

(defrole keyserv

(vars (a b s name) (n text) (k skey))

(trace (recv (cat a b n))

(send (cat (enc k n (ltk a s)) (enc k a b (ltk b s)))))

(uniq-orig k))

(defrole resp

(vars (a b s name) (m n text) (k skey))

(trace (recv (cat (enc m k) (enc k a b (ltk b s)))))))

Figure 4.4: Using a variable of sort mesg in a flawed version of Kerberos

protocol where the initiator is able to check the validity of the ticket. The attack
we have in mind is one where the two encrypted keys received by the initiator are
prepared by a key server instance, but one which does not agree with the initiator on
b. However, the ticket would not match what the initiator expects in our expression
of the initiator role.1

We described an initiator that will only proceed onto the third step (sending m)
if the ticket is of the form we specified. In fact, the initiator cannot do this. The
initiator cannot even verify that the ticket is encrypted under the correct key! The
solution is to use a generic variable, one that can stand for any message, even one
that a particular participant cannot parse or understand. The mesg sort is the sort of
all possible messages, so a variable of the mesg sort can stand for any potential value
at all. See Figure 4.4 for a version that models the initiator’s reception properly.
Note the ticket variable in the initiator role, which stands for the ticket value the
initiator cannot inspect.

This version of the flawed Kerberos protocol may also be found in the file kerb.scm,
and its analysis may be found in kerb.xhtml. This time, there is a shape found. See

1An alert reader may wonder how they could detect such an error of their own when using the
tool. We will return to this example in Chapter 5, when we discuss how the cpsa search process
works.

30

Figure 4.5.

Notes on generic variables. Variables of the mesg sort are constrained in cpsa,
and may only be used when they are received before they are transmitted. So for
instance the m variable in the initiator role of the flawed Kerberos protocol cannot
be of the mesg sort, because it appears first in a transmission. However, if the
responder is willing to accept an encryption of any message m, then m may declared
as a variable of the mesg sort within that role.

Also, variables of the mesg sort should never be used as a key in any encryption.
This is because cpsa uses a single function symbol to represent both symmetric and
asymmetric encryption, and when the key is a variable of sort mesg, it is ambiguous
which is meant.

Notes on long-term keys. Long-term keys are uni-directional: (ltk a b) and
(ltk b a) are distinct values. In fact, cpsa believes that they cannot be the same
unless a = b. This is fine for modeling protocols like Kerberos where there is a clear
distinction between client and server behavior. Note that in our protocol example,
all long-term keys were described in all roles with a client name in the first position
and a server name in the second position. See Section 4.3.3 for discussion of the bltk
function symbol, which models bi-directional long-term symmetric keys.

For another example of the use of long-term symmetric keys in a protocol, see
yahalom.scm in the examples directory.

Exploration 4.1. Fix the flawed version of Kerberos so that the initiator can believe
their transmission is private to them and b. Continue to use the ticket variable of
sort mesg.

Construct a defskeleton for the responder’s point of view for your fixed protocol,
analyze it, and explain in English what authentication property this analysis implies.

Exploration 4.2. Construct a defskeleton for the initiator’s point of view, without
the listener for m, in the fixed version you created in Exercise 4.1. Run the tool on
your defskeleton. Why are there dashed arrows in the result? Does this represent
an insecurity in the protocol?

Whether or not you think this is an insecurity, think about how you would alter
the protocol to avoid the dashed arrows, and try out your ideas.

The Otway-Rees protocol is another example of very similar modeling; see or.scm
and or.xhtml if you wish to explore these issues further on your own.

31

Figure 4.5: Flawed Kerberos shape. The use of the mesg variable allows us to find
the attack illustrated here.

32

4.2 Modeling Diffie-Hellman

In their seminal 1976 paper, “New Directions in Cryptography”, Diffie and Hellman
proposed the notion of public-key cryptography [2]. They did not have a method
for public-key direct encryption, but they did have a key exchange protocol that has
become a crucial building block in cryptographic protocols.

The Diffie-Hellman protocol works as follows. A large prime number p is chosen
and agreed upon as a parameter, and g is chosen to be some integer modulo p. In
order to enable secure communication between arbitrary parties, Diffie and Hellman
imagined a directory of public values, like a phone book. Each person who wishes to
be able to communicate securely with others will generate for themselves a private
value x, and publicize gx mod p as their public value. If Alice’s private value is a,
and Bob’s private value is b, then the shared secret between Alice and Bob would
be gab mod p, which each party can calcuate from their own private value and their
partner’s public value. For instance, Alice can calculate gab ≡ (gb)a mod p.

Version 3 of cpsa introduces the Diffie-Hellman algebra, which allows for analysis
of protocols that incorporate Diffie-Hellman techniques. The Diffie-Hellman algebra
includes all the function symbols and sorts available in the basic algebra, plus three
additional sorts: two sorts (rndx and expt) for exponents such as x, and base, for
exponentiated values such as gx. The Diffie-Hellman specific functions symbols are
as follows:

• exp represents exponentation. For example, hx is encoded as
(exp h x).

• mul represents multiplication of exponents. So if x is an exponent,
(mul x x) would represent the square of x.

• gen represents the standard generator g. It is probably best to think of gen as
a constant, i.e. a function symbol with arity 0.

• one represents the multiplicative identity for the group of exponents. Like gen,
one is a 0-ary function.

Important: gen and one are functions, so they must be enclosed in paren-
theses. So (exp (gen) x) represents gx, while (exp gen x) would represent
genx where gen is expected to be a variable. Similarly, (mul (one) x) repre-
sents 1 · x while (mul one x) would represent one · x where the tool expects
one to be an exponent variable.

33

(defprotocol plaindh diffie-hellman

(defrole init

(vars (x rndx) (y expt) (n text))

(trace (send (exp (gen) x))

(recv (exp (gen) y))

(send (enc n (exp (gen) (mul y x))))

(recv n))

(uniq-orig n)

(uniq-gen x))

...)

Figure 4.6: Diffie-Hellman defprotocol

• inv represents the multiplicative inverse in the group of exponents. So for
instance (exp (exp (gen) x) (inv x)) = (exp (gen) (one)) = (gen).

At this time, cpsa does not model addition of exponents, although there are
many examples of protocols that add or subtract exponents. There is no way to take
a product of exponentiated values either (e.g. gx · gy) since this would be equivalent
to including addition of exponents.

Several examples of Diffie-Hellman protocols are available in the examples direc-
tory of the distribution. The plaindh.scm example models a simple, unauthenticated
Diffie-Hellman exchange between two parties.

The initiator and responder perform a Diffie-Hellman exchange, followed by the
initiator choosing a random nonce n and sending it, encrypted with the Diffie-
Hellman key, to the responder, who decrypts n and sends it back.

The analysis result can be found in plaindh.xhtml. You can see there that a
shape is found where an initiator exists but no responder; the n can be decrypted
because gxx0 can be calculated by the adversary when x0 is not assumed secret.

Two features of the cpsa model of Diffie-Hellman in this protocol are worth
drawing attention to. See Figure 4.6

Note that the initiator uses a variable x of the rndx sort to represent its own
random variable, and a variable y of the expt sort to represent the exponent present
in the base value it receives from the initiator. Distinct values of the rndx sort
model distinct independent random choices of exponents, while expt values merely
represent arbitrary exponents which may or may not be calculated as some product
of other known values. Here, since the initiator chooses their own exponent, we

34

model x as an rndx value. But since the initiator cannot know how the base value
gy was calculated, we model y as an expt value.

Note that unlike the example in Section 4.1, where receiving a specifically for-
matted encryption in a protocol role implied the ability to decrypt and check that
structure is present, the use of a value like gy in a reception does not imply that y is
known, only that y is defined to be the value such that gy is the base value received.

Second, you may notice that n is declared uniq-orig while x is declared uniq-gen.
The difference between these declarations is rather technical: see Section 6.2 for de-
tails. For the moment, it is sufficient to say that one should use uniq-gen for
exponents that first occur within an exponentiation, rather than uniq-orig.

It is also instructive to examine the two final skeletons in the analysis that leads
to the shape; see Figure 4.7. The first realized skeleton reached in the branch is
skeleton 4, on the left, which includes an instance of the initiator role and a listener.
But this realized skeleton has a child: skeleton 5. The difference is that skeleton 5
does not include the listener. This is an example of a step that cpsa takes called
generalization: when cpsa recognizes a realized skeleton (that is, one that has no
unexplainable receptions), it attempts to identify ways to make that skeleton more
general without losing coverage. Here, cpsa has deleted the listener, because that
actual explicit reception and re-transmission of gxx0 is not strictly necessary. When
a realized skeleton cannot be further generalized, cpsa declares it a “shape” and
stops working in that branch of the analysis.

You may notice there is another shape in plaindh.xhtml, in which a responder is
present. As it happens, the other shape is strictly less general than the shape shown
as skeleton 5. cpsa does not promise that the set of shapes it outputs is strictly
minimal, and this is one example where the output of cpsa is not minimal.

4.2.1 Other examples

The examples directory also contains the station.scm and station.xhtml examples
that model the station-to-station protocol. This protocol uses digital signatures in
order to authenticate a Diffie-Hellman exchange so that the key established represents
a secure and authenticated channel. Two versions of the protocol are provided; in
one, the Diffie-Hellman exponents are assumed fresh in the roles, while in the other,
they are not. The two analyses produce different results.

Another example provided can be found in iadh-um.scm and iadh-um.xhtml.
These inputs concern a method of determining Diffie-Hellman session keys using
both long-term and “ephemeral” exponents called the unified method. The “ia”
in the example name stands for implicitly authenticated, because this method of

35

Figure 4.7: Deletion of strand

36

session key creation allows the parties to be sure that no other party knows the key.
One interesting feature of this input is that it contains an example of an exponent
being transmitted outside of an exponentiation. Specifically, there is a role in which
a party generates and signs their long-term Diffie-Hellman public value, and then
compromises it by releasing the key. The explicit compromise allows us to test the
“forward secrecy” property of the unified method.

4.3 Other Algebra Features

4.3.1 Hashing

The cpsa basic cryptoalgebra includes a hash function symbol that can be used to
represent the use of a hash function. The function takes a single input, but (hash

t1 t2 ... tn) is interpreted as shorthand for (hash (cat t1 (cat t2 (...tn)

...))).

Exploration 4.3. The Needham-Schroeder protocol discussed in Chapter 3 was
described as for key agreement, but no session key is apparent in the protocol. The
intention is to use the hash of the two nonces as the key. Make a copy of the ns.scm

example in which this key is explicitly used to encrypt and transmit a separate fresh
value, and make a point of view testing the confidentiality of the plaintext.

4.3.2 Constants

Numerous cryptographic protocols make use of magic numbers or string constants to
disambiguate the purpose of various messages that occur during the protocol. cpsa
includes constant strings in the basic cryptoalgebra. Such constants always appear
as quoted strings, e.g. "foo". These strings do not need to be declared in a vars

statement because they are not variables. The sort of string constants is always tag,
which is a basic sort much like text or data, however, it is strongly recommended
that the tag sort be used only for variables that are intended to represent as-yet
undetermined string constants. See Section 6.3 for strategies to avoid such non-
recommended uses.

Exploration 4.4. Note that in the Needham-Schroeder protocol, there seems to
be no way for an initiator to accidentally talk to another initiator, even though the
initiator both sends and receives an encrypted message with two components in it.
Make a copy of the Needham-Schroeder protocol in which the nonces are declared

37

to be of sort name instead of text, so that {|n1, a|}Kb
and {|n1, n2|}Ka are modeled as

similar enough in format that confusing the two is possible. What changes?
Then try adding distinct tag constants to each encrypted message, to avoid the

ambiguity we just created. Run the analysis to see the effect.

Constants may also be used to modify the pubk and privk function symbols, to
describe distinct keys associated with a particular name. For instance, one might use
(pubk "encrypt" a) to describe the public encryption key of a, so as to distinguish
it from the public signature verification key of a. Or, one might wish to describe
a certifying authority’s certificate-signing key but also a key used to sign certificate
revocation statements that might be different.

4.3.3 Bidirectional Long-Term Keys

The ltk function symbol is used to describe the long-term secret key shared between
two parties. However, the names of the two parties are, in the function symbol,
presented in a distinguished order.

In other words, cpsa regards (ltk a b) and (ltk b a) as distinct from each
other; in fact, they are only considered equal when a = b.

The bltk function symbol is available in cpsa in the Diffie-Hellman algebra only,2

and regards the two names as equivalent in order. In the Kerberos example discussed
in Section 4.1, we noted that the server’s name s always appears second in our ltk

expressions. This is fine if participants never can act as both client and server, but if
a participant can act as both, the use of ltk implies that the participant maintains
a strict separation between the keys they share with other servers when acting as a
client (in which their own name appears first), and keys they share with clients when
acting as a server (in which their own name appears second).

The use of bltk implies that participants can act as both servers and clients, and
that they only share one key with other entities, and use that key both when acting
as a server and when acting as a client.

See bltk or.scm and bltk or.xhtml for modeling of the Otway-Rees protocol
with bi-directional long-term keys rather than uni-directional ones.

Exploration 4.5. Make a version of the flawed Kerberos input file kerb.scm that
uses bi-directional long-term keys instead. Remember to switch the algebra to Diffie-
Hellman! What differences do you observe?

2This choice may seem odd; it was made for performance reasons. The presence of bltk or of
Diffie-Hellman elements complicates some basic algebraic operations. The basic cryptoalgebra is
provided for optimized performance when analyzing protocols that do not include these features.

38

Exploration 4.6. Repeat the Exercise 4.5 but with the Yahalom protocol (yahalom.scm)
instead.

39

Part II

Understanding and Guiding CPSA

40

Chapter 5

The CPSA Search Algorithm

The result of running the cpsashape tool is a file that contains only “shapes”, which
include all essential structures possible in executions of the protocol under the con-
ditions input to the analysis. Although this output contains the most important
elements of the results of an analysis, it can be useful to an analyst to examine the
full result.

Consider analyzing a protocol that has a secrecy property you wish to guarantee.
After modeling the protocol, you model a set of conditions under which you expect
the secrecy property to hold, but you include a listener that would invalidate it. See
Section 3.5 for an instance of the use of this technique.

Suppose the analysis confirms the secrecy property. This would mean that there
are no shapes at all, because any shape would represent a possible way in which the
conditions were present but the secret is revealed. If you look only at the shapes file,
you will see nothing other than the fact that no shapes are present. The full analysis,
however, can be used to understand the space of attacks that were explored, which
gives a much clearer sense of why the analysis resulted in no shapes.

It is a complicated and somewhat unnatural process modeling a protocol and
setting up the conditions for an analysis. Human error is possible, and when a
human error occurs, it is difficult for the analyst—most likely, the human that made
the error in the first place—to distinguish a human error from a correct analysis
result.

By examining the full analysis carefully, the analyst may discover errors of two
types: segments of the analysis that seem inconsistent with the intended scenario,
or the lack of analysis that the user expected to be present. The first circumstance
indicates an analysis that was under-constrained, while the latter indicates one that
was over-constrained. In order to detect errors of the second type, however, the

41

analyst needs to understand the search algorithm.
Another reason to understand the search algorithm is when the user has obtained

an analysis that describes a genuine attack against a protocol. By stepping through
the path in the analysis that led to the shape in question, a user may gain an
understanding of what features of the protocol allowed this attack to take place.
This often leads to insights about how to repair the protocol and eliminate the
attack.

5.1 Solving tests

A realized skeleton is one in which every reception is explainable given the assumed
restrictions on the attacker. The attacker is capable of producing every basic value
(that is, every possible value of the base sorts data,text,name,akey, skey, and
rndx), except for those specifically withheld from the adversary. The values withheld
are the ones for which there is one of the following declarations present: uniq-orig,
uniq-gen, non-orig, or pen-non-orig (see Section 6.2 for detail).

In addition, the attacker observes all of the transmissions made in a skeleton. The
attacker is also capable of manipulating messages in certain specific ways – these are
the derivations present in Table 10.2.

When a reception message can be constructed by the attacker from the basic val-
ues accessible to the attacker and the transmissions that occur prior to that reception,
we say it is realized, meaning that this reception can be explained.

When a skeleton to be analyzed contains at least one unrealized node, one of
these nodes is selected as the “test node”, and the subsequent skeletons are deter-
mined based on four distinct strategies for resolving (or at least making progress
at resolving) the problem at the test node. The strategies focus on a critical term,
a sub-value of the reception value that is a specific problem for derivability. Only
certain kinds of sub-values may be of interest, specifically, those which are carried .
The notion of a carried sub-term can be defined recursively: a term carries itself, a
pair carries either of its components, and an encryption carries its plaintext.

The four strategies are:

• A regular augmentation, which assumes the presence of an additional transmis-
sion carrying the critical term, in an entirely new strand,

• A displacement, which assumes the presence of an additional transmission car-
rying the critical term, but in an already existing strand,

42

• A contraction, which assumes that the critical issue can be resolved with some
more refined version of the current transmissions that carry the critical value,
and

• A listener augmentation, which assumes that some key not known to be deriv-
able is in fact derivable.

When examining a skeleton and one of its children in full cpsa analysis it is
often simple to determine which sort of strategy was used. If a child has one more
strand than its parent then it was produced by either augmentation (if the extra
strand is a role instance) or listener augmentation (if the extra strand is a listener).
If a child has the same number of strands but additional nodes, it is the result of a
displacement. When a child has the same number of nodes and strands, it may be
the result of a displacement or a contraction, but either way the only thing that has
changed is a map of terms.

5.2 Flawed Kerberos, revisited

In Section 4.1, we worked through an example – a flawed version of the Kerberos
protocol. The first attempt at modeling the protocol was flawed in a way that would
prevent the tool from discovering the attack against the protocol.

See Figure 4.1 for the flawed model of the protocol. Recall that the initiator is
a, the server is s, and the responder is b. See Figure 4.4 for the corrected model; the
difference is that in the corrected version, the initiator uses a variable of sort mesg
to represent the ticket the initiator receives, since the initiator is not able to check
the internal format of the ticket.

5.2.1 The operation field

Examining the full cpsa analysis is essential to detecting the mistake. Each skeleton
has an operation field describing how it was derived from its parent, with one
exception: when the input skeleton does not meet all the requirements for a skeleton,
the first child will be the minimal skeleton incorporating the input.

In kerb.xhtml, tree 0 is the flawed model. Item 0 is the input point of view and
Item 1 is the completion of that input into a skeleton; notice that the skeleton below
Item 1 has no S-expression of the form (operation ...) in it.

Item 2 is a child of Item 1 that adds a key server instance. This was a regular aug-
mentation, because a new protocol role instance was added. The operation field will

43

include added-strand whenever the skeleton was produced by regular augmentation.
The full operation field in Item 2 is:

(operation encryption-test (added-strand keyserv 2)

(enc k n (ltk a s)) (0 1))

The first argument to the operation field is the general type of operation per-
formed. Typically this will be one of the following three possibilities:

• encryption-test indicates that the critical term at the test node was an
encryption.

• nonce-test indicates that the critical term at the test node was an atom, not
an encryption.

• generalization indicates that the skeleton was realized and the tool is trying
to make it more general without making it unrealized.

The second argument describes the operation; here, the operation is added-strand
(regular augmentation), where the new instance is an instance of keyserv and is of
length 2. The third argument is the criticial term; here it was (enc k n (ltk a

s)), the portion of the server’s message intended for the initiator. The last argu-
ment is a node, normally the test node, so in this case, the (0 1) refers to strand 0,
node 1 – the second node of the initiator strand in Item 1.

Returning to our example, Item 2’s critical term is the encryption {|k, n|}SK(a,s).
The regular augmentation creates a new transmission of that encryption in some
carried form; in this case, it is a transmission by the key server. Note that the key
server instance in Item 2 agrees with the initiator on a but not on b.

See Figure 5.1 for Item 3 in the analysis. It is this step at which the analyst should
notice there was a mistake of some sort. If the analyst is trying to understand why
it should be impossible for the secret m to leak, thus far the reasoning is that if
the initiator proceeds to its third event, there is a key server that agreed with the
initiator on a, s, and n. But since the second initiator node is red, this indicates
there is still something unexplained in the execution.

The operation field of Item 3 is telling:

(operation encryption-test (displaced 3 2 keyserv 2)

(enc k a b-0 (ltk b-0 s)) (0 1))

44

Figure 5.1: Flawed Kerberos key moment in analysis

45

The critical term here is the encryption {|k, a, b0|}K(b0,s). Thus, the ticket portion
of the initiator’s reception is driving this step in the analysis.1 After the displacement
(which, you may notice, adds no new nodes), the key server agrees with the initiator
on b.

In other words, the tool reasons first that the presence of the “authenticator”
portion of the reception guarantees there is a key server instance that believes it
is responding to a request initiated by a, but may or may not believe the request
initiated by a was for communicating with b. The ticket portion makes the guarantee,
but that’s strange because the ticket is for b and not a to examine. To believe this
reasoning implies that the initiator really is checking the format of the ticket, which
the analyst should realize is not the way the protocol is intended to work.

If you next examine the properly modeled protocol, you will find that Items 5, 6,
and 7 follow a very similar path. Item 6 makes Item 5 into a skeleton, while Item 7
adds a key server instance in which the key server agrees with the initiator on a but
not on b. But Item 7 is a realized skeleton, while Item 2 is not realized.

1Note that the specific encryption {|k, a, b0|}K(b0,s) is not actually present in Item 2 or in Item
3, it is a side effect of the internal way cpsa represents variables and determines how to display
them. Still, only the ticket portion of the node (0 1) is of this kind of format, so the conclusion in
the text is correct.

46

Chapter 6

Constraining CPSA’s search

If you have read Chapters 3 and 4, you have seen the uniq-orig and non-orig

features, which are the first representatives of a large class of features called dec-
larations. These “declare” certain assumed properties about an execution in order
to constrain the tool’s search. In this chapter, we will describe more precisely the
notion of execution that motivates the cpsa analysis, and precisely define these and
other declarations available for use in the tool.

6.1 Bundles: A Strand-Based Execution Model

The cpsa tool is based on strand space theory [3]. A strand is simply a sequence of
events, which are transmissions or receptions of messages.

A bundle is a set of strands, along with a satisfaction relation → from trans-
missions to receptions, where for every reception event e1 of a message m, there is
a unique transmission event e0 of m such that e0 → e1, and such that the graph
formed on the events of the strands with edges defined by → and strand succession
is acyclic.

Bundles express an explanatory framework in which a set of sequential viewpoints
of transmissions and receptions is self-contained. Although bundles do not totally
order the events, they express the orderings that are essential due to causality.

The most basic notion of a protocol is simply a set of roles which are each them-
selves strands representing a template of behavior. A bundle is a bundle of a protocol
P if every strand in the bundle is either an instance of a role in P or an instance
of a penetrator role. There are two types of penetrator roles: derivation roles and
the “create” role. The derivation roles are determined by the message model; one
matches each derivability rule in the algebra used. The create role consists of a one-

47

event strand in which certain basic values may be transmitted. This always includes
all constants (such as tag constants or the generator g in the Diffie-Hellman algebra),
and also includes all values of basic sorts: the sorts other than mesg in the basic
algebra, and those sorts plus the rndx sort in the Diffie-Hellman algebra.

6.2 Secrecy assumptions

A priori, the analysis of (say) the initiator’s point of view in Needham-Schroeder is
tasked with exploring all bundles of the Needham-Schroeder protocol in which an
initiator instance of sufficient length is included. As it turns out, there is a most
general shape, namely, the full-length initiator instance, alone. However, the bundle
this shape describes is not of great interest, because the nonce chosen by the initiator
appears in a “create” instance.

An assumption of secrecy is, in essence, a statement that the analyst is interested
only in certain bundles. In the case of this nonce, for instance, we assume the nonce is
secret and are thus uninterested in bundles in which that nonce appears in a “create”
instance.

There are four declarations that may be used in cpsa to represent a secrecy
assumption, but these assumptions are distinct from each other and each have a
particular semantic and syntactic meaning.

To describe these assumptions, we first need some terminology. We use “carried”
to refer to subterms of a term that can potentially be obtained from that term via
decomposition. A pair carries each of its elements, and an encryption carries its
plaintext. We extend this notion transitively, so for instance {|n1, n2|}K(a) carries n1
since it carries the plaintext (n1, n2) which in turn carries n1.

We say that a value originates on a strand when its first carried occurrence is in
a transmission.

• A value uniquely originates in a bundle if it originates on exactly one strand.
Note that if the unique origination point of a value is on a regular strand, then
it cannot be produced in a “create” instance because that would constitute a
second point of origination.

• A value is non-originating in a bundle if it does not originate on any strands. A
simple lemma can show that a value is non-originating only if it is not carried
in any message in the bundle.

• A value is penetrator non-originating in a bundle of a protocol if it does not
originate on any penetrator strands. Clearly, such a value cannot be produced

48

in a “create” instance.

The presence of a uniq-orig, non-orig, or pen-non-orig declaration of a value
is a statement by the user that they are only interested in bundles in which the de-
clared value uniquely originates, is non-originating, or is penetrator non-originating,
respectively.

The fourth declaration that imposes a secrecy assumption is the uniq-gen decla-
ration. We say that a value generates on a strand when its first occurrence (carried
or not) in that strand is in a transmission. The presence of a uniq-gen declaration
of a value equates to a restriction to bundles in which the declared value generates on
only one strand. Note that if a value that generates uniquely generates on a regular
strand, it cannot be produced in a “create” instance.

The uniq-orig (resp. uniq-gen) declaration can only be used in cpsa input
for values that do originate (resp. generate) on the role or in the skeleton in which
the declaration appears. This forces the use of such declarations to create a secrecy
assumption.

Exploration 6.1. Experiment with variants of your favorite simple protocol in which
you try replacing uniq-orig with uniq-gen and/or non-orig with pen-non-orig.
What do you find?

Exploration 6.2. Suppose a protocol you wish to model involves key management,
and includes keys being encrypted and transmitted and received in encrypted form.
What declaration should you use to model a long-term (not recently chosen) key as
secret, if you are concerned about the actual possibility of that key leaking?

Note: these four declarations (uniq-orig, non-orig, pen-non-orig, and uniq-gen)
may only be applied to basic values. One of the main purposes of such declarations
is to restrict the use of the “create” role in bundles, so such declarations on values
that cannot be produced in the “create” role is undesirable.

6.3 Distinctness assumptions

One inconvenient consequence of representing protocol roles as strands is that certain
kinds of checks are not easy to represent. The structure of received terms implies
that the participant executing the protocol is capable of parsing and checking such
formats. However, there is no way, with format, to represent a check that two values
are unequal.

The tool includes four special declarations that may be used to describe distinct-
ness of values.

49

• A pair of values may be declared unequal with the neq declaration. For in-
stance, (neq (a b)) restricts the analysis to consider bundles in which a 6= b.
See neq test.scm in the examples directory for examples of use.

• A larger list of values may be declared distinct with the neqlist declaration.
For instance, (neqlist (a b c d)) adds a requirement that a, b, c, and d all
be distinct from one another. This may be useful as shorthand, rather than
the more cumbersome (neq (a b) (a c) (a d) (b c) (b d) (c d)).

• The data and text sorts are identical to one another, but they are distinct and
thus allow a user to separate the purpose of certain parameters from others, and
exclude analyses in which parameters are confused across types. The subsort

declaration may be used to sub-categorize values into disjoint classes, which
may never be confused for each other. For instance, an e-commerce protocol
may involve prices, quantities, item numbers, et cetera. Each subsort is named
with a string. For instance, (subsort ("A" a1 a2 a3) ("B" b1 b2)) defines
two classes of values, “A” and “B”, and requires that no “A” value be equal
to any other value with a subsort other than “A”. So in particular, all the a
variables are distinct from the b variables and vice versa, but the a variables
are not required to be distinct from each other. See subsort test.scm in the
examples directory for examples of use.

• Finally, one particular reason two values may be unequal is if they are compared
and put in an order. For instance, in an auction, a bid may be rejected only
if another bid is strictly higher. Or, a value in a protocol model may be
intended to represent time, and some of these may be strictly orderable with
respect to each other. The lt declaration (short for “less than”) asserts a strict
comparability between two values in a partial order. For instance, (lt (a b))

declares that b is less than a. The presence of lt declarations on pairs of values
restricts the tool to bundles in which the implied orderings form no cycles. See
lt test.scm in the examples directory for examples of use.

For each of these declarations, cpsa checks the conditions required at every
skeleton it considers. Those skeletons for which any required condition is violated
are discarded. You will never see a skeleton with (for instance) (neq (a a)) in it.

6.4 Functional dependence assumptions

Another disadvantage of the lightweight way cpsa represents protocols is that it does
not understand the relationships between values involved in messages. For instance,

50

an e-commerce protocol may involve both identifiers for merchandise and prices. An
honest merchant would assign a consistent price to any particular item, but protocol
roles and secrecy or distinctness assumptions cannot describe this particular scenario.

For this purpose, cpsa allows the declaration of a functional dependence using
the fn-of declaration (short for “function of”). Like the subsort declaration, a
subtag is required to identify the function, so that multiple independent functions
could be described if necessary. An example:

(fn-of ("f" (y x) (z w)))

This declaration says that there is a function f such that y = f(x) and z = f(w).
In the e-commerce example, if f was the “price of” function, then x and w would be
items and y and z would be their respective prices. The presence of a set of fn-of

declarations restricts the tool’s search so that in this case, if x = w then y = z.
The fn-of declaration is a powerful tool that can emulate function symbols in

the algebra. See yahalom.scm in the examples repository for an example protocol
involving the ltk function symbol. We can totally emulate the use of this function
symbol via the fn-of declaration: see fnof yahalom.scm for how this is done.

It is important to note that one limitation of the fn-of declaration is that it
cannot introduce variables not used in a skeleton or role. The emulation of the ltk

symbol in fnof yahalom.scm, for instance, requires three variables (the long-term
key variable and the two names) where there were formerly only two. cpsa will
ignore declarations involving variables not present anywhere, so in order to make
sure these declarations are not ignored, we need to use the variables in the trace. We
use the init event (see Chapter 7) to introduce these variables, since we know that
without state events this will have no effect on the penetrator’s abilities.

6.4.1 Equality constraints

The fn-of declaration allows a user to express functional dependence relationships
between values. In simpler inputs, it may be desirable to simply declare that two
values are equal; this is particularly useful for Diffie-Hellman protocols, for instance,
to declare that two separate parties agree on a session key. The eq declaration simply
declares that two values must be equal. An example:

(eq ((exp (gen) (mul x y)) (exp (gen) (mul z w))))

This declaration guarantees that gxy = gzw.

51

6.5 Role declarations and conditional role decla-

rations

When a declaration is present in a defskeleton in an input file, the constraint is
applied to all analyses that descends from that skeleton. In Section 3.5 we discussed
the notion of a role declaration and how such a declaration differs in meaning from
a skeleton declaration.

Here we discuss more precisely when a role declaration affects a skeleton. Skele-
tons are made up of instances, which follow the structure of a role, but instances do
not have to be full-length. The declarations inherited in an instance of a role from
the role may vary based on the length of the instance.

Declarations are, most importantly, declarations on a term or list of terms. A
declaration is not inherited in an instance of height h (that is, an instance of the first
h events in the role) unless all the variables present in terms in the declaration are
present in the first h events in the role’s trace.

The tool also regards declarations as about a node or list of nodes, although
in most cases that list is empty. There are two exceptions. The uniq-gen and
uniq-orig declarations refer to the node at which the declared value generates or
originates, but in an automatic and hidden way.

Role declarations refer to a node which is a particular event in the role’s trace.
In addition to the rule about variables in a declaration’s terms, a declaration is only
inherited if all its nodes are present in the instance.

All the declarations natively included in the tool may include a node when used in
a role. This allows the user to describe declarations that are conditional on sufficient
progress being made through the role’s trace. This may be appropriate when, for
instance, a participant receives a certificate and comes to trust a party it has already
started communicating with.

A declaration is made conditional by replacing a term (or list of terms) with
a list whose first element is the term (or list of terms) and whose second element
is the node. Most cpsa declarations allow many declarations to be made in one S-
expression; for instance (non-orig k1 k2 k3) is actually three distinct declarations
rather than one. To make the k1 declaration conditional on reaching node 3, we
would write (non-orig (k1 2) k2 k3). See Table 10.6 for full detail on the syntax
for conditional declarations.

52

6.6 Diffie-Hellman declarations

There are two declarations that arise as a part of the algorithm cpsa uses for Diffie-
Hellman protocols. Like other declarations, these may also be provided as part of a
protocol or skeleton input.

• The absent declaration specifies that a particular rndx variable does not oc-
cur in a base or exponent expression. This declaration is automatically added
to specify x is absent within y whenever y is a base or exponent expression
that occurs in a strand in which x is declared uniq-gen before the point where
x is generated. This declaration is also added by the algorithm in rare circum-
stances.

• The precur declaration specifies that a particular node is present in the skele-
ton to be the “precursor” for some other value. This is used to prevent cpsa
from failing to terminate in certain cases.

6.7 Other declarations

The tool makes use of declaration-like syntax for several other purposes.

Precedes. In cpsa text output, you may notice an S-expression that starts with
precedes. This is how cpsa records the orderings present in a skeleton, before it is
graphed. You may also use precedes declarations within a defskeleton, to set up
orderings between strands.

Leadsto. Similarly, the leadsto field of a defskeleton specifies state causality
orderings. See Chapter 7 for more detail on what this means.

Priority. The tool contains an ability to declare a priority for certain receptions
that differs from the default. Priority takes precedence over all other search order-
ings. See Section 10.4 for the format requirements for declaring priorities, and the
priority test.scm example in the examples directory.

Note that the default priority is 5, and priority 0 indicates that the tool should
never bother solving tests at those nodes. This may be of use, for instance, if solving
one particular node leads to infinite analysis, but other nodes would result in a quick
determination that a skeleton is dead.

53

User-defined declarations. The final type of declaration supported by cpsa is
totally general, but does not affect the search. Instead, this type of declaration is
merely kept around as a note about the skeleton in question, but a note that is aware
of its use of algebra variables and nodes and evolves as the skeleton evolves.

This feature is meant for advanced users only, who may wish to write their own
custom post-processing tools. For this reason we do not give an example involving
user-defined declarations; for the proper syntax, consult Table 10.6. The keyword to
identify a user-defined declaration is decl.

Associations. Declarations are typically found within objects called “association
lists” which include declarations and may also include other fields. The cpsa tool
creates associations in its defskeleton outputs specifying things like the algorithmic
method used to produce this skeleton, or the label of the parent, et cetera. Be careful
when using declarations that you do not mis-spell the keywords! If you do, they will
typically be taken as an association and ignored, so they will not have the effect you
intended.

54

Part III

Advanced features of CPSA

55

Chapter 7

Modeling Stateful Protocols

The cpsa tool has the ability to also model stateful protocols: that is, protocols
in which participants interact through messages but also with stateful devices the
attacker is not assumed to have direct control of.

7.1 The Envelope Protocol

We use Mark Ryan’s Envelope Protocol [1] as a concrete example throughout the
chapter. The protocol leverages cryptographic mechanisms supported by a Trusted
Platform Modeul (TPM) to allow one party to package a secret such that another
party can either reveal the secret or prove the secret never was and never will be
revealed, but not both.

The plight of a teenager motivates the protocol. The teenager is going out for
the night, and her parents want to know her destination in case of emergency. Chaf-
ing at the loss of privacy, she agrees to the following protocol. Before leaving for
the night, she writes her destination on a piece of paper and seals the note in an
envelope. Upon her return, the parents can prove the secret was never revealed by
returning the envelope unopened. Alternatively, they can open the envelope to learn
her destination.

The parents would like to learn their daughter’s destination while still pretending
that they have respected her privacy. The parents are thus the adversary. The goal
of the protocol is to prevent this deception.

One implementation of this protocol uses a TPM to achieve the security goal.
Here we restrict our attention to a subset of the TPM’s functionality. In particular
we model the TPM as having a state consisting of a single “Platform Configuration
Register” (PCR) and only responding to five commands.

56

A boot command (re)sets the PCR to a known value. The extend command takes
a piece of data, d, and replaces the current value s of the PCR state with the hash
of d and s, denoted #(d, s). In fact, the form of extend that we model, which is an
extend within an encrypted session, also protects against replay. These are the only
commands that alter the value in a PCR.

The TPM provides other services that do not alter the PCR. The quote command
reports the value contained in the PCR and is signed in a way as to ensure its
authenticity. The create key command causes the TPM to create an asymmetric key
pair where the private part remains shielded within the TPM. However, it can only
be used for decryption when the PCR has a specific value. The decrypt command
causes the TPM to decrypt a message using this shielded private key, but only if the
value in the PCR matches the constraint of the decryption key.

In what follows, Alice plays the role of the teenaged daughter packaging the
secret. Alice calls the extend command with a fresh nonce n in an encrypted session.
She uses the create key command constraining a new key k′ to be used only when
a specific value is present in the PCR. In particular, the constraining value cv she
chooses is the following:

cv = #(obt,#(n, s))

where obt is a string constant and s represents an arbitrary PCR value prior the
extend command. She then encrypts her secret v with k′, denoted {|v|}k′ .

Using typical message passing notation, Alice’s part of the protocol might be
represented as follows (where we temporarily ignore the replay protection for the
extend command):

A → TPM : {|ext, n|}k
A → TPM : create,#(obt,#(n, s))

TPM→ A : k′

A → Parent : {|v|}k′
The parent acts as the adversary in this protocol. We assume he can perform all the
normal Dolev-Yao operations such as encrypting and decrypting messages when he
has the relevant key, and interacting with honest protocol participants. Most impor-
tantly, the parent can use the TPM commands available in any order with any inputs
he likes. Thus he can extend the PCR with the string obtain and use the key to de-
crypt the secret. Alternatively, he can refuse to learn the secret and extend the PCR
with the string ref and then generate a TPM quote as evidence the secret will never be
exposed. The goal of the Envelope Protocol is to ensure that once Alice has prepared
the TPM and encrypted her secret, the parent should not be able to both decrypt
the secret and also generate a refusal quote, {| quote,#(ref,#(n, s)), {|v|}k′|}aik .

57

A crucial fact about the PCR role in this protocol is the collision-free nature of
hashing, ensuring that for every x

#(obt,#(n, s)) 6= #(ref, x) (7.1)

We represent each TPM command with a separate role that receives a request,
consults and/or changes the state and optionally provides a response. To model the
state of the TPM, we make use of three additional types of events in cpsathat can
be specified to occur in traces:

• init events begin a sequence of states,

• tran events mark the moment when the state of a machine changes from one
state to another, and

• obsv events mark a moment at which the machine’s state is checked without
changing it.

We use m→• and •→m to represent the reception and transmission of message
m respectively. Similarly, we use s ◦ and ◦ s to represent the actions of reading
and writing the value s to the state. A tran event reads and then writes a state,
while init writes only and obsv reads only.

The “boot” role receives the command and creates a current state s of the known
value s0. An alternate version of boot (“reboot”) is needed to allow the power-cycling
of the TPM; this version transitions the TPM state from any arbitrary state back to
s0.

The “extend” role first creates an encrypted channel by receiving an encrypted
session key esk which is itself encrypted by some other secured TPM asymmetric
key tpmk. The TPM replies with a random session id sid to protect against replay.
It then receives the encrypted command to extend the value n into the PCR and
updates the arbitrary state s to become #(n, s).

The “create key” role does not interact directly with the state. It receives the
command with the argument s specifying a state. It then replies with a signed
certificate for a freshly created public key k′ that binds it to the state value s. The
certificate asserts that the corresponding private key k′−1 will only be used in the
TPM and only when the current value of the state is s. This constraint is leveraged
in the “decrypt” role which receives a message m encrypted by k′ and a certificate
for k′ that binds it to a state s. The TPM then consults the state (without changing
it) to ensure it is in the correct state before performing the decryption and returning
the message m.

58

[re-]boot

boot // •
��

[s //]◦ s0 //

create key

create,s // •
��
• {| created,k

′,s|}aik //

quote

quote,n // •
��s // ◦
��
• {| quote,s,n|}aik //

extend

sess,tpmk ,{| esk |}tpmk // •
��
•
��

sess,sid //

{| ext,n,sid |}esk // •
��s // ◦ #(n,s) //

decrypt

dec,{|m|}k′ // •
��{| created,k′,s|}aik // •
��s // ◦
��
• m //

Figure 7.1: TPM roles

Finally, the “quote” role receives the command together with a nonce n. It
consults the state and reports the result s in a signed structure that binds the state
to the nonce to protect against replay. To ensure that our sequences of state are
well-founded we also include another TPM role that creates the initial state.

We similarly formalize Alice’s actions. Her access to the TPM state is entirely
mediated via the message-based interface to the TPM, so her role has no state events.
It is displayed in Fig. 7.2

Alice begins by establishing an encrypted session with the TPM in order to extend
a fresh value n into the PCR. She then has the TPM create a fresh key that can only
be used when the PCR contains the value #(obt,#(n, s)), where s is whatever value
was in the PCR immediately before Alice performed her extend command. Upon
receiving the certificate for the freshly chosen key, she uses it to encrypt her secret v
that gives her destination for the night.

The parents may then either choose to further extend the PCR with the value
obt in order to enable the decryption of Alice’s secret, or they can choose to extend
the PCR with the value ref and get a quote of that new value to prove to Alice that
they did not take the other option.

59

Alice

•
��

sess,tpmk,{| esk |}tpmk //

sess,sid // •
��
•
��

{| ext,n,sid|}esk //

•
��

create,#(obt,#(n,s)) //

{| created,k′,#(obt,#(n,s))|}aik // •
��
•

{|v|}k′ //

Figure 7.2: Alice’s role

Modeling stateful protocols in CPSA

The file envelope.scm in the examples directory contains the TPM-based imple-
mentation of the Envelope Protocol. Roles with state events in cpsa are represented
by including one of the three types of state events in the trace: init, tran, or obsv.
No special command or setting is needed to use state events in cpsa; the tool simply
regards non-stateful protocols as a special case of stateful ones.

The syntax for a state event is one of: (init s), (obsv s), or (tran s1, s2), where
state values are messages. A state event can occur within a trace (in a defprotocol)
along with traditional send and receive events.

Graphing stateful protocols. Stateful protocols result in some additional fea-
tures when graphed. See Figure 7.3 for an example skeleton in envelope.xhtml.
Here, you will notice three elements that may be unfamiliar: a grey node, an orange
node, and a blue arrow. State events are graphed as either gray (when explained)
or orange (when unexplained). Initialization events cannot be unexplained, and ob-
servation or transition events are explained by another state event producing the
required current state. However, the existence of a state event producing state s
does not explain the existence of a state event requiring state s, there must be a
connection noted between the two that the state required is produced at this specific
earlier event.

This relationship is noted in a leadsto field in a defskeleton, and is displayed
when graphed as a blue arrow. Note that the graphing program will only display

60

Figure 7.3: Graph of a stateful skeleton from the Envelope Protocol analysis. Note
the orange node, the gray node, and the blue arrow.

61

◦

����
tran = tran

◦

����
obsv ← tran

(1) (2)

Figure 7.4: State-respecting semantics. (1) State produced (either from a tran or
init event) cannot be consumed by two distinct transitions. (2) Observation occurs
after the state observed is produced but before that state is consumed by a subsequent
transition.

a blue arrow when the two related state events are in distinct strands. If such a
relation is determined between two state events in the same strand, the tool will
note it in the defskeleton output, but the arrow will not show up in the graph.

Two important semantic rules are enforced by the tool regarding state. First,
state produced can only be consumed by a unique transition. In other words, state
evolves in a linear fashion, and old states are not available for modification. Sec-
ond, when a state is observed, and that state is also consumed by a transition, the
observation must occur before the transition. See Figure 7.4.

7.1.1 Macros for Simplifying Complex Protocols

Users will often find, as they try to model more and more complicated protocols, that
models of protocols created by hand are cumbersome to maintain. For instance, one
might have a particular encrypted message component referenced in several roles in
a model, and the user may decide they should modify their model of that message.
The user would normally have to find each instance of the model and update them
all: a repetitive task that would best be handled by computers.

The envelope protocol includes such a feature in a couple of places. For example,
we chose to model TPM register extension using the hash function symbol, and this
modeling choice affects many protocol roles.

The cpsa tool includes a macro functionality that helps with this kind of chal-
lenge, and the envelope.scm example also serves as an example of macro use.

To define a macro in a cpsa input file, use the defmacro keyword in an S-
expression. The envelope.scm file in the examples directory uses the following two
macros:

;;; Encoding of a PCR extend operation

62

(defmacro (extend val old)

(hash val old))

;; This is the refusal token

(defmacro (refuse n pcr v k aik)

(enc "quote" (extend "refuse" (extend n pcr)) (enc v k) aik))

The first input to the defmacro defines the format that will trigger the macro.
In this case, the first macro is defined for an S-expression with keyword extend and
two additional inputs, while the second macro is defined for an S-expression with the
keyword refuse and five additional inputs.

The second input to each defmacro describes what the macro should be replaced
with. Symbols that exactly match the subsequent symbols in the first input are
interpreted as standing for the inputs when the macro is used. So for instance
(refuse a b c d e) would be replaced by

(enc "quote" (extend "refuse" (extend a b)) (env c d) e)

which in turn would be replaced by

(enc "quote" (hash "refuse" (extend a b)) (env c d) e)

Macros can call on other macros, (as in the refuse macro example here) but there
is a depth limit to the amount of recursion that this can entail.

Normally a defmacro will replace a symbol with a single S-expression, but the ^

(splice) keyword can be used to indicate that a macro should be replaced with more
than one S-expression.

A user might use this feature to replicate a sequence of events or even the entire
variables and trace of a defrole. For instance:

(defmacro (handshake n a b)

(^ (send (enc "hello" a b n (pubk b)))

(recv (enc "hello-received" a n (pubk a))))

Note that the pre-processor actually handles the splice keyword as a separate pre-
processing step after macro expansion. For this reason, use of ^ outside of macros
can produce unanticipated behavior.

63

Chapter 8

Logical Security Goals

How easy is it to read off authentication and secrecy properties? What precisely is
it that an expert sees? This chapter describes cpsa’s support for reasoning about
security goals using first-order logic. With security goals expressed in first-order
logic, intuition is replaced by determining if a formula is true in all executions of the
protocol.

This treatment of security goals relies heavily on a branch of first-order logic
called model theory. It deals with the relationship between descriptions in first-
order languages and the structures that satisfy these descriptions. In our case, the
structures are skeletons that denote a collection of executions of a protocol. This
chapter describes the language of security goals and its structures without requiring
the reader to have studied model theory.

The model theoretical foundation of this approach to security goals appears in [6].
A practical use of security goals in protocol standardization is described in [7, 10].
The precise semantics of the goal language is in [9]. The syntax of security goals
appears in Table 8.1.

The cpsa distribution contains, in its examples directory, the input file goals.scm.
The reader is encouraged to run the examples and examine the output while reading
this chapter.

In this chapter we return to the Needham-Schroeder protocol discussed in Chap-
ter 3. The roles are displayed in Figure 8.1.

The protocol is analyzed from the point of view of a complete run of one instance
of the initiator role. The input security goal, followed by the point of view skeleton
it generates and the shape produced by cpsa, are shown in Figure 8.2. The syntax
and semantics of the goal will be explained later. Roughly speaking, it asserts that
if a realized skeleton contains a full length initiator strand, its private key is uncom-

64

•

•

init {|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB
•

•

resp{|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB

(defprotocol ns basic

(defrole init

(vars (a b name) (n1 n2 text))

(trace

(send (enc n1 a (pubk b)))

(recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b)))))

(defrole resp

(vars (b a name) (n2 n1 text))

(trace

(recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

(recv (enc n2 (pubk b))))))

Figure 8.1: Needham-Schroeder Initiator and Responder Roles

65

(defgoal ns ; Goal

(forall ((b name) (n1 text) (z0 node))

(implies

(and (p "init" z0 3)

(p "init" "n1" z0 n1) (p "init" "b" z0 b)

(non (privk b)) (uniq n1))

(exists ((z1 node))

(and (p "resp" z1 2) (p "resp" "b" z1 b))))))

(defskeleton ns ; Point of view skeleton

(vars (a b name) (n1 n2 text))

(defstrand init 3 (a a) (b b) (n1 n1) (n2 n2))

(non-orig (privk b))

(uniq-orig n1))

•

•

init

•

resp≺

�

{|N1, A|}KB
{|N1, A|}KB

{|N1, N2|}KA
{|N1, N

′
2|}KA

{|N2|}KB

(defskeleton ns ; Shape

(vars (n1 n2 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(defstrand resp 2 (n2 n2-0) (n1 n1) (b b) (a a))

(precedes ((0 0) (1 0)) ((1 1) (0 1)))

(non-orig (privk b))

(uniq-orig n1)

(satisfies yes))

Figure 8.2: Needham-Schroeder Initiator Point of View

66

promised, and it uniquely generates n1, then the skeleton will contain a responder
strand that agrees with the initiator on the name b. The shape produced by cpsa
contains the annotation (satisfies yes). This indicates that its structure satisfies
the description given by the security goal. It will be explained later why the prop-
erties of cpsa allows us to conclude that this goal is true in all executions of the
protocol, and therefore conclude that the Needham-Schroeder protocol achieves this
authentication goal.

8.1 Overview

In addition to defskeleton S-expressions, a cpsa input file may contain defgoal

S-expressions. Like a defskeleton, a defgoal takes as its first parameter the name
of a protocol which the tool expects has been previously defined in the input file.
The second parameter to a defgoal is a geometric sentence in first-order logic. A
geometric sentence contains one implication. The antecedent is a conjunction of
atomic formulas. The free variables that occur in the antecedent are universally
quantified. The conclusion is a disjunction of existentially quantified conjunctions of
atomic formulas.

Alternately, a defskeleton can be augmentend with a goal, which may specify
one or more geometric formulas to check.

When the tool is run, a defgoal is converted to a defskeleton that represents
as narrowly as possible the left-hand side of the implication and has a goal recorded
for the right-hand side. The tool then analyzes defskeletons as usual, but realized
skeletons found during the course of analysis of a defskeleton with a goal are
augmented with a satisfies S-expression indicating whether the goal is met or not.

The remainder of this chapter is devoted to explaining the syntax and semantics
of this feature in greater detail.

8.2 Syntax

To be precise, a security goal is an order-sorted first-order logic sentence in a re-
stricted form. The sentence in Figure 8.2 has the form shared by all security goals.
It is a universally quantified implication. The antecedent is a conjunction of atomic
formulas. For this sentence, the conclusion is an existentially quantified conjunction
of atomic formulas, but in general, the conclusion is a disjunction of existentially
quantified conjunctions of atomic formulas. In what follows, (false) is a synonym
for the empty disjunction, (or).

67

goal ← (defgoal id sentence+ alist)
sentence ← (forall (gvdecl∗) implication)
gvdecl ← (id+ sort) | (id+ strd)

implication ← (implies conjunction conclusion)
conjunction ← atomic | (and atomic+)
conclusion ← (false) | existential

| (or existential+)
existential ← conjunction | (exists (gvdecl∗) conjunction)

atomic ← (p string strdvar integer)
| (p string string strdvar term)
| (prec strdvar integer strdvar integer)
| (non term) | (pnon term)
| (uniq term) | (uniq-at term strdvar integer)
| (ugen term) | (ugen-at term strdvar integer)
| (= strdvar strdvar) | (= term term)

strdvar ← symbol

Table 8.1: Goal syntax. See Tables 10.3 and 10.5 for the algebra syntax, which
defines the term and sort symbols.

68

Variables are declared as they are for roles and skeletons with one exception,
there is a new sort symbol strd. Notice that in the sentence, variables z0 and z1

have sort strd. Every universally quantified variable must occur in the antecedent
of the implication.

The signature as been expanded to include the natural numbers. A natural
number has sort nat.

The predicates used to construct an atomic formula (atomic) are listed in Ta-
ble 8.2. There are two classes of predicates, protocol specific and protocol indepen-
dent predicates, and two kinds of protocol specific predicates, role position and role
parameter predicates. Protocol specific predicates are distinguished from protocol
independent predicates by being composed of three tokens, the first of which is p.

The first line of the table gives the syntax of a role strand length predicate. It
contains two tokens, p and a string that names a role. That is, for role r, there is
a role strand length predicate, p r. Thus (p "init" z0 3) is an atomic formula
using the role strand length predicate for length 3 in the init role of the protocol in
Figure 3.1.

The second line gives the syntax of a role parameter predicate. It contains three
tokens, p, a string that names a role, and a string that names a role variable. For
role r, there is role parameter predicate for each variable declared by r. Thus
(p "init" "n1" z0 n1) is an atomic formula using the role parameter predicate
for parameter n1 in the init role of the protocol.

The empty string names the listener role of a protocol. The role has the variable
x of sort mesg as its only role variable. There are two positions in the listener role.
Its trace is (trace (recv x) (send x)).

When a variable of sort strd occurs in a formula, its length must be specified
using a role strand length formula. When an algebra variable occurs in a formula, its
association with the parameter of some role must be specified using a role parameter
formula.

8.3 Semantics

In a defgoal sentence, the antecedent specifies the point of view skeleton. We focus
on the antecedent. In the example,

(defstrand init 3 (a a) (b b) (n1 n1) (n2 n2))

is extracted from

69

Symbol Sort Description
p role strd×nat Role strand length
p role param strd×mesg Role parameter
prec strd×nat× strd×nat Precedes
non atom Non-origination
pnon atom Penetrator non-origination
uniq atom Unique origination
uniq-at atom× strd×nat Unique origination on strand
= all× all Equality

Table 8.2: Predicates

(and (p "init" z0 3)

(p "init" "n1" z0 n1) (p "init" "b" z0 b)).

Notice that cpsa adds a binding for a and n2 just as it does had

(defstrand init 3 (b b) (n1 n1))

been given as input.
Our aim now is to specify how to decide if a security goal is true in all possible

executions of a protocol. A skeleton defines a set of executions that contain the
skeleton’s structure. We say a skeleton satisfies a formula if the skeleton contains all
of the structure specified by the formula. To decide if a skeleton satisfies a formula,
we decide if it satisfies each of its atomic formulas, and combine the results using the
rules of first-order logic.

Atomic formula (p "init" z0 3) is called a role strand length formula. A skele-
ton k satisfies the formula if z0 maps to a strand s in k such that

1. the trace of strand s in k has a length greater than 2, and

2. the trace when truncated to length 3 is an instance of the init role.

Consider the shape in Figure 8.2. It satisfies (p "init" z0 3) when z0 maps to 0.
Atomic formula (p "init" "n1" z0 n1) is called a role parameter formula. A

skeleton k satisfies the formula if z0 maps to strand s in k, n1 first occurs in at
position i in the trace of the init role, and n1 maps to a message algebra term t in k
such that

1. the trace of strand s in k has a length greater than i,

70

2. the trace truncated to length i + 1 is an instance of the init role, and

3. the truncated trace is compatible with mapping the init role’s "n1" role variable
to t.

The shape in Figure 8.2 satisfies (p "init" "n1" z0 n1) when z0 maps to 0 and
n1 maps to the message algebra term n1.

Collectively, a skeleton satisfies the formula

(and (p "init" z0 3)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(p "init" "n1" z0 n1) (p "init" "n2" z0 n2))

if the skeleton contains the structure specified by

(defstrand init 3 (a a) (b b) (n1 n1) (n2 n2)).

The antecedent in Figure 8.2 contains two origination assertions. The formula
(non (privk b)) is extracted as (privk b). A skeleton k satisfies the formula if b
maps to a message algebra term t in k such that k assumes that t is non-originating.
The unique origination formula for n1 is similarly extracted.

Putting it all together, the mapping

{n1 7→ n1, n2 7→ n2, a 7→ a, b 7→ b, z0 7→ 0}

shows that the shape in Figure 8.2 satisfies the antecedent of the security goal.
The prec predicate is used to assert a node precedes another node. The conclu-

sion in Figure 8.2 with (prec z1 1 z0 2) added is satisfied by the shape using the
mapping z0 7→ 0 and z1 7→ 1.

The uniq-at predicate is used to assert not only that an atom uniquely originates,
but also the node at which it originates. In the Figure 8.2 goal, the (uniq n1)

formula could have been replaced by (uniq-at n1 z0 0). The extracted point of
view skeleton is the same.

Recall that our aim in analyzing a protocol is to find out what security goals are
true in all of its possible executions. We are interested in runs of cpsa that show
that when every shape satisfies a goal, it is true in every execution.

When cpsa performs a shape analysis, every shape it generates refines the input
skeleton. Skeleton refinement is defined in Chapter 5. The definition makes precise
the notion of structure containment, as skeleton A refines skeleton B if and only if A
contains the structure of skeleton B.

71

The skeleton k0 extracted from the antecedent of a security goal has the property
that a skeleton refines k0 if and only if it satisfies the antecedent. A skeleton with
this property is called the characteristic skeleton of the antecedent.

Given a goal Φ, consider a shape analysis starting from the characteristic skele-
ton k0 of its antecedent. Assume cpsa finds shapes k1, . . . , kn and that cpsa deter-
mines that each ki satisfies Φ. Consider the executions that contain the structure
in k0. cpsa tells us that each execution is in the executions that contain the structure
of some ki. Furthermore, because k0 is a characteristic skeleton, each ki satisfies the
antecedent of Φ. Executions that do not contain the structure in k0 do not satisfy
the antecedent. Therefore, Φ is true in all executions of the protocol and maximally
informative.

8.4 Examples

This section contains examples of both authentication and secrecy goals. The first
example shows the feedback the user receives when a shape does not satisfy a security
goal. The second example shows how to use a listener to state a secrecy goal.

8.4.1 Needham-Schroeder Responder

Figure 8.3 contains an analysis of Needham-Schroeder from the point of view of a
complete run of the responder under the assumption that the responder’s private key
is uncompromised and the nonce it generates uniquely originates.

The conclusion of the goal asserts that in an execution compatible with the point
of view, there must be an initiator strand that agrees with the responder strand on
the name b. The shape produced by cpsa is a counterexample to this assertion.
Because of this, cpsa annotates the shape with

(satisfies (no (a a) (b b) (n2 n2) (z0 0))).

The annotation includes a variable mapping for the shape that satisfies the an-
tecedent of the goal but does not satisfy its conclusion. The reason the shape does
not satisfy the goal is because the mapping (b b) maps the initiator’s b parameter
to b, not b-0 as is required to model the shape.

Galvin Lowe identified this authentication failure in Needham-Schroeder and pro-
vided a fix. In the Needham-Schroeder-Lowe Protocol, the name b is included within
the encryption in second message of both roles. With this modification, the shape
found by cpsa satisfies the security goal in Figure 8.3, so Needham-Schroeder-Lowe
achieves this authentication goal.

72

(defgoal ns ; Goal

(forall ((a b name) (n2 text) (z0 strd))

(implies

(and (p "resp" z0 3) (p "resp" "n2" z0 n2)

(p "resp" "a" z0 a) (p "resp" "b" z0 b)

(non (privk a)) (uniq n2))

(exists ((z1 strd))

(and (p "init" z1 2) (p "init" "b" z1 b))))))

(defskeleton ns ; Point of view skeleton

(vars (a b name) (n1 n2 text))

(defstrand resp 3 (a a) (b b) (n1 n1) (n2 n2))

(non-orig (privk a))

(uniq-orig n2))

•

•

resp

•

•

init

≺

�

{|N1, A|}KB
{|N1, A|}KB′

{|N1, N2|}KA
{|N1, N2|}KA

{|N2|}KB
{|N2|}KB′

(defskeleton ns ; Shape

(vars (n1 n2 text) (a b b-0 name))

(defstrand resp 3 (n2 n2) (n1 n1) (b b) (a a))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b-0))

(precedes ((0 1) (1 1)) ((1 2) (0 2)))

(non-orig (privk a))

(uniq-orig n2)

(satisfies (no (a a) (b b) (n2 n2) (z0 0))))

Figure 8.3: Needham-Schroeder Responder Point of View

73

(defgoal ns

(forall ((a b name) (n1 text) (z0 z1 strd))

(implies

(and (p "init" z0 3) (p "init" "n1" z0 n1)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(p "" z1 1) (p "" "x" z1 n1) ; Listener

(non (privk a)) (non (privk b))

(uniq n1))

(false))))

Figure 8.4: Needham-Schroeder Secrecy Goal

8.4.2 A Needham-Schroeder Secrecy Goal

Figure 8.4 contains an analysis of Needham-Schroeder from the point of view of a
complete run of the initiator under the assumption that the responder’s and its peer’s
private keys are uncompromised and the nonce n1 it generates uniquely originates.
Futhermore, the point of view asserts that the nonce is leaked using a listener.

(p "" z1 1) (p "" "x" z1 n1) ; Listener

cpsa finds no shapes, so Needham-Schroeder achieves this secrecy goal and does
not leak n1.

8.5 The Rest of the Story

The examples in the previous section demonstrate the typical way security goals are
analyzed with cpsa. However, there are more features that may be useful.

A defgoal form may contain more than one sentence. See Figure 8.5 for an
example. When presented with more than one sentence, cpsa extracts the point of
view skeleton from the first sentence.

It is wise to ensure that the antecedent in every sentence is identical. When
cpsa performs satisfaction-checking on sentence Φ, it only determines if each shape
it finds is satisfied. If the point of view skeleton is not the characteristic skeleton of
the antecedent of Φ, the fact that all skeletons satisfy Φ cannot be used to conclude
that Φ is true in all executions of the protocol.

cpsa performs satisfaction-checking when an input skeleton in annotated with
one or more security goals. The annotation uses the goals key.

74

(defgoal ns

(forall ((a b name) (n text) (z0 strd))

(implies

(and (p "init" z0 2) (p "init" "n1" z0 n)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(non (privk a)) (non (privk b)) (uniq n))

(exists ((z1 strd))

(and (p "resp" z1 2) (p "resp" "b" z1 b)))))

(forall ((a b name) (n text) (z0 strd))

(implies

(and (p "init" z0 2) (p "init" "n1" z0 n)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(non (privk a)) (non (privk b)) (uniq n))

(exists ((z1 strd))

(and (p "resp" z1 2) (p "resp" "a" z1 a))))))

Figure 8.5: Two Initiator Authentication Goals

(defskeleton

...

(goals sent+))

The program cpsasas, discussed in the next section, can be used to generate a
formula with an antecedent such that the input skeleton is the characteristic skeleton
of the antecedent.

8.5.1 Shape Analysis Sentences

A shape analysis sentence expresses all that can be learned from a run of cpsa as a
security goal. If a security goal can be derived from a shape analysis sentence, then
the protocol achieves the security goal, that is, the goal is true in all executions of
the protocol.

The program cpsasas extracts shape analysis sentences from the output of cpsa.
Consider the first example in this paper (Figure 8.2), which is in the sample file
goals.scm. To generate a maximally informative security goal from the initiator
point of view with ghci and Make.hs, type

75

(defgoal ns

(forall ((n1 n2 text) (b a name) (z strd))

(implies

(and (p "init" z 3) (p "init" "n1" z n1)

(p "init" "n2" z n2) (p "init" "a" z a)

(p "init" "b" z b) (non (privk b)) (uniq-at n1 z 0))

(exists ((n2-0 text) (z-0 strd))

(and (p "resp" z-0 2) (p "resp" "n2" z-0 n2-0)

(p "resp" "n1" z-0 n1) (p "resp" "b" z-0 b)

(p "resp" "a" z-0 a) (prec z 0 z-0 0)

(prec z-0 1 z 1))))))

Figure 8.6: Initiator Shape Analysis Sentence

$ ghci Make.hs

*Make> sas "goals"

When using GNU make, type “make goals sas.text”. The resulting shape analysis
sentence is displayed in Figure 8.6.

A shape analysis sentences asserts that either a realized skeleton does not satisfy
its antecedent or it satisfies one or more of the disjuncts in its conclusion. cpsa has
been designed so that this assertion is true. Therefore, every shape analysis sentence
is true in all executions.

A security goal is true in all executions if it can be derived from a shape analysis
sentence [9]. In practice, theorem-proving using shape analysis sentences is rarely
employed. It’s clumsy and it requires too much expertise. The main use of cpsasas
is for generating a formula that is edited to become a desired security goal.

8.6 Rules

Support for rules was introduced in version 4.1 of cpsa.
Each protocol includes a small collection of rules. A rule is a sentence in the goal

language presented in Section 8.2. Rules are defined after the roles of a protocol are
defined. The syntax of a rule follows.

rule ← (defrule name sent comments)

76

A rule is an axiom added to a protocol. cpsa uses the axiom as a rewrite rule
to derive zero or more new skeletons from a skeleton produced during a step. An
example of a protocol with a rule is in Figure 8.9 on Page 80.

The trust rule states that when CPSA finds a person strand of length at least
one, and the inverse of it’s p parameter is non-originating, CPSA should assume the
inverse of it’s d parameter is non-originating.

8.6.1 Facts

Each skeleton includes a small database of facts. A fact is a named relation among
fact terms. A fact term is either a strand of the skeleton or an algebra term. A set of
facts is defined anywhere after strands are defined using the facts form. The syntax
of facts follows.

facts ← (facts fact∗)
fact ← (symbol fterm∗)

fterm ← mesg | nat

For example, in a skeleton, a user may want to note that strand 0 owns the
private key for a by assuming.

(facts (owns 0 (privk a)))

Facts are most useful when combined with rules. Here is an example of their
combination. Suppose a point of view skeleton has two names, a and b, and the
problem is modeling a situation in which the two names are known to differ. To
enforce this constraint, add

(facts (neq a b))

to the point of view skeleton and the neq rule below to the protocol.

(defrule neq

(forall ((a mesg))

(implies

(fact neq a a)

(false))))

77

person door

Fresh: K
•
��

{|{|K|}P−1 |}D //

•
��

{|T |}Koo

• T //

{|{|K|}P−1 |}D // •
��
•
��

{|T |}Koo

T // •
Fresh: T

Figure 8.7: DoorSEP Protocol

8.6.2 DoorSEP

As a motivating scenario consider the Door Simple Example Protocol (DoorSEP),
derived from an expository protocol that was designed to have a weakness. Despite
this, the protocol achieves the needs of an application, given a trust assumption.

Imagine a door D which is equipped with a badge reader, and a person P equipped
with a badge. When the person swipes the badge, the protocol executes. Principals
such as doors or persons are identified by the public parts of their key pairs, with D−1

and P−1 being the corresponding private keys. We write {|M |}K for the encryption
of message M with key K. We represent digital signatures {|M |}P−1 as if they were
the result of encrypting with P ’s private key.

P initiates the exchange by creating a fresh symmetric key K, signing it, and
sending it to the door D encrypted with the door’s public key. D extracts the
symmetric key after checking the signature, freshly generates a token T , and sends
it—encrypted with the symmetric key—back to P . P demonstrates they are autho-
rized to enter by decrypting the token and sending it as plaintext to the door. The
two roles of DoorSEP are shown in Fig. 8.7, where each vertical column displays the
behavior of one of the roles. The cpsa encoding of the roles is in Figure 8.9.

cpsa finds an undesirable execution of DoorSEP. Assume the person’s private
key P−1 is uncompromised and the door has received the token it sent out. Then
cpsa finds that P freshly created the symmetric key K. However, nothing ensures
that the person meant to open door D. If P ever initiates a run with a compromised
door C, the adversary can perform a man-in-the-middle attack, decrypting using
the compromised key C−1 and re-encrypting with D’s public key, as elided in the
· · · in Fig. 8.8. To verify this result with cpsa, remove the trust axiom in the
doorsep protocol in examples/rules.scm and run cpsa. Thus, without additional
assumptions, the door cannot authenticate the person requesting entry.

But possibly we can trust the person to swipe her badge only in front of doors our
organization controls. And we can we ensure that our doors have uncompromised

78

person door

•
{|{|K|}P−1 |}C // · · ·

{|{|K|}P−1 |}D // •
��
•
��

{|T |}Koo

T // •

Uncompromised: P Fresh: K,T

Figure 8.8: DoorSEP Weakness

private keys. If so, then the adversary cannot exercise the flaw.
We regard this as a trust assumption, and we can express it as an axiom:

Trust Assumption 1. If an uncompromised signing key P−1 is used to prepare an
instance of the first DoorSEP message, then its owning principal has ensured that
the selected door D has an uncompromised private key.

The responsibility for ensuring the truth of this axiom may be split between P and
the organization controlling D. P makes sure to swipe her badge only at legitimate
doors of the organization’s buildings. The organization maintains a security posture
that protects the corresponding private keys.

Is DoorSEP good enough, assuming the trust axiom? Add the trust axiom back
to the doorsep protocol in doc/rules.scm and see. You should find that the protocol
does its job; namely, ensuring that the door opens only when an authorized person
requests it to open.

79

(defprotocol doorsep basic

(defrole person

(vars (d p akey) (k skey) (t text))

(trace

(send (enc (enc k (invk p)) d))

(recv (enc t k))

(send t)))

(defrole door

(vars (d p akey) (k skey) (t text))

(trace

(recv (enc (enc k (invk p)) d))

(send (enc t k))

(recv t)))

(defrule trust

(forall ((z strd) (p d akey))

(implies

(and (p "person" z 1)

(p "person" "p" z p)

(p "person" "d" z d)

(non (invk p)))

(non (invk d))))

(comment "The trust rule"))

(comment "Doorsep protocol using unnamed asymmetric keys"))

(defskeleton doorsep

(vars (p akey))

(defstrand door 3 (p p))

(non-orig (invk p))

(comment "Analyze from the doors’s perspective"))

Figure 8.9: Door Simple Example Protocol

80

Part IV

Reference material

81

Chapter 9

Troubleshooting

The cpsa tool is a complicated one and many errors are possible in its use. In this
chapter we discuss these errors, from the simplest to the most complex, and offer
suggestions as to how to resolve them.

9.1 Non-termination

The cpsa tool is not guaranteed to complete its search on all well-formed inputs.
The problem space cpsa attempts to perform includes some Turing-undecidable
problems.

Because of this, the tool has two bail-out conditions that users should be aware
of:

• The strand bound causes the tool to abort its analysis if any skeleton it
analyzes has more strands than the bound. By default, the strand bound is 12.

• The step limit causes the tool to abort its analysis if during the analysis of
a single input defskeleton or defgoal, the number of skeletons it processes
exceeds the limit. By default, the step limit is 2000.

• The depth limit causes the tool to not analyze skeletons more steps away
from the initial point of view than the bound. There is no depth limit by
default. Skeletons that are unrealized and not analyzed due to the depth limit
are marked with “(fringe)”.

If you execute an analysis and the tool says “Strand bound exceeded” or “Step
limit reached,” then that bail-out condition has come into play. This may indicate

82

an analysis that would never terminate, but it may also be the case that the strand
bound or step limit is too small, and a larger one will enable the analysis to complete.

Unlike the strand bound and the step limit, the depth limit never triggers an
error condition, and can thus be useful for multi-skeleton analyses in which one of
the earlier skeletons would otherwise have a non-terminating analysis.

The step limit, depth limit, and strand bound can be adjusted through the limit,
depth, and bound options, respectively. See Section 10.5.

Note that sometimes, a user may become impatient waiting for an analysis to
either complete or bail out. When this happens, the user should not hesitate to
interrupt the tool; the tool will output a partial result that can be graphed so the
user can examing the analysis done so far.

An analysis that doesn’t terminate does not necessarily represent an insecure
protocol, it may just indicate a protocol where a more clever analysis is required
than cpsa’s automated one.

9.1.1 Tweaking the search

There are cases in which the default cpsa analysis does not terminate, but a non-
default analysis would terminate. The tool has several settings that influence the
search but can be tweaked:

• Node precedence. In a skeleton with multiple unrealized receptions, the tool
will, by default, focus on the topmost unrealized node of the rightmost strand
that contains an unrealized node. If you find that an analysis gets into a
large search space due to exploring those unrealized receptions first, you could
alter this order with the reverse-nodes or try-old-strands options. The
latter will prioritize the leftmost strands over the rightmost, while the former
will prioritize the bottom-most unrealized node in the strand rather than the
topmost.

• Critical term precedence. Occasionally, a reception will arise that is unre-
alized and multiple critical terms are available. In particular, there are cases
where a term contains both a hard-to-explain encryption and a restricted nonce.
For instance, in the Kerberos protocol, the ticket {|k, a, b|}SK(b,s) can serve as
both a critical encryption (because SK(b, s) may be declared non-originating)
and a critical term (because k is uniquely originating). By default, cpsa will
treat the encryption as the critical term because this tends to lead to learning
more in fewer steps, but this choice can be reversed by using the check-nonces
option.

83

• Priority. The tool contains an ability to declare a priority for certain recep-
tions that differs from the default. Priority takes precedence over all other
search orderings. See Section 10.4 for the format requirements for declaring
priorities, and the priority test.scm example in the examples directory.

Note that the default priority is 5, and priority 0 indicates that the tool should
never bother solving tests at those nodes. This may be of use, for instance,
if solving one particular node leads to infinite analysis, but other nodes would
result in a quick determination that a skeleton is dead.

9.2 Error messages

In this section, we provide an alphabetical listing of error messages / failures that
may arise during cpsa execution. If you get an error message not included here, it
likely represents a bug and should be reported to the tool maintainers.

• “[ASSERT FAILED] [...]”. This kind of error should not occur. If you see
this happen, please contact the tool maintainers and make a bug report!

• “Aborting after applying 500 rules and more are applicable”. This
most likely indicates a circular use of rules.

• “Algebra.absenceSubst: bad absence assertion” or “Algebra.nullifyOne:
unexpected pattern” The absent declaration must be declared on a pair
where the first element is an rndx variable and the second element is either
an exponent or a base term. These errors should not occur if you did not give
cpsa an input with an absent declaration.

• “Algebra.inv: Cannot invert a variable of sort mesg”. Variables of the
mesg sort should never be used as the key in an encryption. cpsa uses a single
function symbol to represent both symmetric and asymmetric encryption, and
when the key is a variable of sort mesg, it is ambiguous which is meant. As
a result, it is unclear what the decryption key would be for such a message.
When cpsa tries to calculate the decryption key when the encryption key is a
variable of sort mesg, this error is produced.

• “Atom not unique at node”. This occurs when a formula has been specified
including a uniq-at predicate in the antecedent that is untrue.

84

• “Bad char [...]”. This error message comes from a low-level parser trying to
understand S-expressions. When parsing an S-expression, any non-whitespace
that isn’t a parenthesis is an “atom” but we expect atoms to be symbols,
numbers, or quoted strings, and only certain characters are allowed in these.
An atom that starts with a digit is expected to be a number, for instance, so
subsequent non-digits will cause an error of this kind. The characters allowed
in symbols include all alphanumeric characters and the following punctuation
marks: +, -, *, /, <, =, >, !, ?, :, $, %, _, &, ~, ^.

• “Bad height” / “Bad position in role” / “Negative position in role”.
A defstrand includes a specification of a height (the length of the instance)
but that height must be positive and must not exceed the length of the role.

• “Bad str-prec”. Your goal included a str-prec predicate among node vari-
ables associated with different roles. In other words, your formula has at-
tempted to make a single strand that includes events from distinct roles.

• “Close of unopened list”. Your input has an erroneous close-paren.

• “Disallowed bare exponent”. See Section 4.2. The tool requires that within
roles and skeletons, exponents occur only inside an exponentiation function.

• “Domain does not match range”. This error message occurs when cpsa is
trying to understand the variable assignment you have specified in a defstrand.
You may have defined the value of a parameter more than once, or your defini-
tion may have a type mismatch. For instance if a is a parameter role expected
to be of the name type, and you declare t to be a text variable, then including
(a t) in a defstrand will produce this error.

• “Duplicate role [...] in protocol [...]”. Fairly self-explanatory: the roles
in a protocol must have distinct names. This error occurs if you have two
protocols with the same name.

• “Duplicate variable declaration for [...]”. Fairly self-explanatory: within
any vars statement, any symbol may be used for a variable name, but each
variable name can be declared only once.

• “End of input in string”. You included a quote-delimited string but didn’t
close it before the end of the input file.

• “Equals not allowed in antecedent”. The equals predicate may only be
used on the conclusion side of a defgoal.

85

• “Expansion limit exceeded”. This most likely indicates a circular use of
macros. The limit of expansion of a macro within a macro is hard-coded in the
tool as depth 1000.

• “Expecting [...] to be [a/an ...]”. You have a type error in your use of a
function symbol. For instance if (pubk a) is to be loaded within a particular
variable declaration scope, the a variable should be of the name sort.

• “Expecting a node variable” / “Expecting an algebra term”. Certain
predicates within a defgoal expect one of their inputs to be a declared node
variable (or to be a non-node variable). If a variable used in such an input is
declared otherwise, this error message is produced.

• “Expecting an atom”. Certain declarations, in particular the uniq-orig,
uniq-gen, and non-orig ones, are expected to be used on atomic terms rather
than compound ones.

• “Expecting terms in algebra [...]”. The tool actually expects to know the
message algebra to use up front, before it begins parsing. The algebra is the
basic one by default, or you may specify through a command-line argument
or a herald to use the Diffie-Hellman algebra. Each defprotocol in the input
specifies an algebra to use, and this error occurs when that algebra doesn’t
match the one cpsa is prepared to parse. To resolve: check that you aren’t
requesting the wrong algebra, and check that you have properly spelled the
name of the algebra in your defprotocol.

• “Identifier [...] unknown”. This is a relatively common user-caused error
that occurs when you try to use a variable not declared in your vars declaration.

• “Include depth exceeded with file [...]”. Most likely, this indicates a
circular use of the include command. The limit of inclusion within an included
file is depth 16.

• “Keyword [...] unknown”. The tool was expecting the symbol to specify
an algebra function symbol, but it didn’t match any of the available ones. This
most commonly indicates that the user forgot to include a function symbol
name at the beginning of a list when describing a term. One of the most
common forms of this mistake is to include (send (a b)) in a trace of a role,
when the user intended to model the sending of the pair (a, b). The proper
input would be (send (cat a b)).

86

Because of this type of mistake, it is recommended to avoid using variables
in your model that are the same as function symbol names such as “ltk” or
“pubk”.

• “In a rule equality check, cannot find a binding for some variable”.
An equality in a rule is receiving a variable that has not been bound by a length
or parameter predicate. Try moving the equality to the end of the conjunction
in which it occurs.

• “In rule [...], parameter predicate for [...] did not get a strand”. This
message occurs when a strand variable is not bound by a length predicate.

• “In rule [...], [...] did not get a strand”. This message occurs when a
strand variable is not bound by a length predicate.

• “In rule [...], [...] did not get a term. This message occurs when an algebra
variable is not bound by a parameter predicate.

• “Malformed [...]”. Generally speaking, this indicates a syntax error. Consult
the grammar in Chapter 10 for the syntax requirements for the type of object
the tool claims was malformed. Double-check that you have spelled required
keywords correctly, and that your parentheses are matched.

• “Malformed association list”. This refers to one of the “-alist” symbols in
the grammar; these may occur in skeletons, goals, protocols, or roles.

Association lists are lists of S-expressions, each of which is a list that starts
with a symbol. This error would occur if you had, for instance, a symbol or a
number, or an S-expression starting with a number as an input to a defrole

or defskeleton.

• “Malformed input”. Top level S-expressions in your input file must be one of
the following: defprotocol, defskeleton, defgoal, comment, or herald.
The tool also recognizes defpreskeleton as a synonym for defskeleton. If
you have an S-expression at the top level that is other than one of these, this
is the error message you will see.

• “Malformed pair – nodes in same strand”. In a defskeleton you are
prohibited from specifying orderings between nodes in the same strand.

This is not the case for leadsto relationships.

87

• “No strands”. Your defskeleton did not include any strands at all; it must
include at least one.

• “Node occurs in more than one role predicate”. Node variables in a
goal must occur within a role position predicate, but should not occur within
more than one within their defined scope.

• “Priority declaration disallowed on [...]”. Prioritization has no effect
except on events that need an explanation. If you try to change the default
priority of a send or state initialization event, this is assumed to be a mistake
and the tool produces this error.

• “Protocol [...] unknown”. This error occurs when you have a defskeleton

or defgoal with a protocol name not matching any defprotocol so far present
in the file.

• “Role [...] not found in [...]”. You included a defstrand referencing a role
that does not exist in the protocol definition.

• “Role in parameter pred differs from role position pred”. A node
variable in a formula should occur in a role position predicate but may also
occur in node parameter predicates. However, node parameter predicates for
a given node variable should match the role of the role position predicate the
variable occurs in.

• “Role not well formed: role trace is a prefix of a listener”. cpsa
disallows the use of roles that begin with the reception of some message followed
by the transmission of that same message, because there is an ambiguity as to
whether an instance is a listener or an instance of a protocol role. This should
not be a problem because beginning a role in this manner is quite unusual, but
if it is necessary to you to do so we recommend the reception be paired with a
tag constant such as (cat "regular role" [...]).

• “Role not well formed: non-orig [...] carried”. The non-orig declaration
specifies that a certain atomic value not be carried (see Section 6.2). You have
made such a declaration but a plain (full-height) instance of your role violates
the rule.

• “Role not well formed: uniq-orig [...] doesn’t originate”. The uniq-orig
declaration states not only that the declared value originates (see Section 6.2
on a regular strand uniquely, but also states that the apparent origination point

88

is the unique origination point of that value. As such, you may only use the
uniq-orig declaration on a value that does originate somewhere. If you de-
clare a value uniq-orig on a role but it does not originate on that role, you
get this error.

• “Role not well formed: variable [...] not acquired”. Variables of the
mesg sort must be “acquired” when used in roles. This means that the first
occurrence of the variable must be a carried occurrence in a reception event.
See Section 6.2 fr an explanation of “carried.”

• “Role not well formed: variable [...] not obtained”. Variables of the
base or expr sort must be “obtained” when used in roles, meaning that the
first occurrence must be in a reception.

• “[Role / Skeleton] not well formed: inequality conditions violated”. A
neq declaration is false where it is first declared: in a role or skeleton definition.

• “[Role / Skeleton] not well formed: lt declarations form a cycle”.
The lt declarations present in a role or in a skeleton are already violated in
the role or skeleton definition.

• “[Role / Skeleton] not well formed: subsort requirements violated”.
The subsort declarations present in the role or skeleton being defined are
already violated.

• “Skeleton not well formed: a variable in [...] is not in some trace”. A
defskeleton causes this error when a variable used in a declaration does not
appear in any of the traces.

• “Skeleton not well formed: cycle found in ordered pairs”. The ordering
edges (strand succession plus ordered pairs) of a skeleton should form an acyclic
graph. A cycle represents circular causality which should not be possible in
any real execution.

• “Skeleton not well formed: non-orig [...] carried”. The non-orig dec-
laration specifies that a certain atomic value not be carried (see Section 6.2).
You have made such a declaration but your defskeleton violates the rule.

• “Skeleton not well formed: ordered pairs not well formed”. This error
occurs when an ordering is specified between the wrong types of events. In
cpsa, an ordering must be such that the earlier node has an outgoing type, so
for instance an ordering directly between two reception events is disallowed.

89

• “Skeleton not well formed: uniq-orig [...] doesn’t originate”. The
uniq-orig declaration states not only that the declared value originates (see
Section 6.2 on a regular strand uniquely, but also states that the apparent
origination point is the unique origination point of that value. As such, you may
only use the uniq-orig declaration on a value that does originate somewhere.
If you declare a value uniq-orig on a skeleton but it does not originate in the
skeleton, you get this error.

Similarly, “...: uniq-gen [...] doesn’t generate” represents a detected er-
ror in that uniq-gen states that not only does the given value generate (see
Section 6.2) uniquely, but that its apparent generation point is that generation
point. As such, a generation point is expected.

• “Sort [...] not recognized”. You attempted to declare a variable to be
of a sort not present in the algebra. Check to ensure that if you are using
Diffie-Hellman-related sorts that you are using the diffie-hellman algebra.

• “Terms in [role/skeleton] not well formed”. This error occurs when
you have constructed a term using a function symbol that expects inputs of
a certain sort, but your inputs are not of that sort. For instance, in (ltk a

b), a and b must be variables of the name sort, or they are not well-formed.
To resolve: double-check your variable declarations and your use of function
symbols.

This may also occur if you use the node sort in a role or skeleton; that sort
should only be used in a goal declaration.

• “Too many locations in declaration”. You have a native declaration that
appears to include two or more locations in it. All native declarations allow at
most one location.

• “Type mismatch in equals”. The equals predicate in a defgoal can be
used to compare node variables or to compare algebra variables, but cannot be
used to compare node variables to algebra variables.

• “Unbound variable in [...]”. In a defgoal, variables must meet specific
binding requirements. See Chapter 8 for details. This error indicates that you
have provided a formula that the tool rejects for this reason.

• “Unexpected end of input in list”. One of the most frequent user errors -
you didn’t include close parens for all your S-expressions.

90

Chapter 10

CPSA input syntax

10.1 CPSA pre-processing

The cpsa tool performs a pre-processing step before it interprets its input. There
are two important features that take place during pre-processing: macros and file
inclusion.

File inclusion. cpsa input files that become large enough become unweildy, and
the user may wish to break them down into logical components and include one
file in another. For instance, one might wish to separate protocol definitions out so
they can be reused, or a user might wish to put together a file of macros they find
useful. To include one file in another, add (include "filename") as a top-level S-
expression where you wish that file to be included. Inclusion recognizes only relative
paths.

Macros. The cpsa pre-processor interprets macros.
To define a macro in a cpsa input file, use the defmacro keyword in an S-

expression. The envelope.scm file in the examples directory uses the following
macro:

;; This is the refusal token

(defmacro (refuse n pcr v k aik)

(enc "quote" (extend "refuse" (extend n pcr)) (enc v k) aik))

The first input to the defmacro defines the format that will trigger the macro. In
this case, the first macros are defined for an S-expression with keyword refuse and

91

five additional inputs. The second input to the defmacro describes what the macro
should be replaced with. Symbols that exactly match the subsequent symbols in the
first input are interpreted as standing for the inputs when the macro is used. So for
instance (refuse a b c d e) would be replaced by

(enc "quote" (extend "refuse" (extend a b)) (env c d) e)

wherever it appears in what follows. Macros can call on other macros, but there is a
depth limit to the amount of recursion that this can entail. In the example, extend
is actually another macro.

Normally a defmacro will replace a symbol with a single S-expression, but the
^ (splice) keyword can be used to indicate that a macro should be replaced with
more than one S-expression. This may be of use, for instance, to describe a portion
of a role’s trace, when defining multiple roles with some behavior in common. For
instance:

(defmacro (handshake n a b)

(^ (send (enc "hello" a b n (pubk b)))

(recv (enc "hello-received" a n (pubk a))))

Note that the pre-processor actually handles the splice keyword as a separate pre-
processing step after macro expansion. For this reason, use of ^ outside of macros
can produce unanticipated behavior.

10.2 CPSA input syntax

The complete syntax for the analyzer using the Basic Crypto Algebra is shown in
Table 10.1. The start grammar symbol is file, and the terminal grammar symbols
are: (,), symbol, string, integer, and the constants set in typewriter font.

The alist, prot-alist, role-alist, and skel-alist productions are Lisp style
association lists, that is, lists of key-value pairs, where every key is a symbol. Key-
value pairs with unrecognized keys are ignored, and are available for use by other
tools. On output, unrecognized key-value pairs are preserved when printing proto-
cols, but elided when printing skeletons.

The contents of a file can be interpreted as a sequence of S-expressions. The
S-expressions used are restricted so that most dialects of Lisp can read them, and
characters within symbols and strings never need quoting. Every list is proper. An
S-expression atom is either a symbol, an integer, or a string. The characters

92

file ← herald? form+
herald ← (herald [symbol | string] alist)

form ← (comment . . .) | protocol | skeleton | goal
protocol ← (defprotocol id alg role+ rule∗ prot-alist)

id ← symbol
alg ← basic | diffie-hellman

role ← (defrole id vars trace role-alist)
vars ← (vars vdecl∗)

vdecl ← (id+ sort)
trace ← (trace event+)
event ← (dir term) | (tran term term)

dir ← send | recv | init | obsv
rule ← (defrule id sentence alist)

role-alist ← role-decl role-alist | alist role-alist
alist ← (symbol . . .)? alist?

skeleton ← (defskeleton id vars strand+ skel-alist)
strand ← (defstrand id integer maplet∗)

| (deflistener term)
maplet ← (term term)

skel-alist ← skel-decl skel-alist | alist skel-alist
| (precedes node-pair∗) skel-alist
| (leadsto node-pair∗) skel-alist
| (goal sentence+)

node-pair ← (node node)
node ← (integer integer)
goal ← (defgoal id sentence+ alist)

Table 10.1: cpsa Input Syntax. See Tables 10.3 and 10.5 for algebra syntax (for the
term and sort symbols), Table 10.6 for declaration syntax (for the role-decl and
skel-decl symbols), and Table 8.1 for goal syntax (for the sentence symbol).

93

Sorts
Sorts: name, text, data, tag, skey, akey < mesg

Operations
{| · |}(·) mesg×mesg→ mesg Encryption
(·, ·) mesg×mesg→ mesg Pairing
#(·) mesg→ mesg Hashing
K(·) name→ akey Public key of name
Ks

(·) name→ akey s-Public key of name

(·)−1 akey→ akey Inverse of key
ltk(·, ·) name×name→ skey Long-term key

Constants
Tags tag Tag constants

Equations
(a−1)−1 = a a : akey

Derivations
m0,m1 � {|m0|}m1 m0,m1 : mesg Encryption
m0,m1 � (m0,m1) m0,m1 : mesg Pairing
(m0,m1) � {m0,m1} m0,m1 : mesg Destructuring
{|m|}k, inv(k) � m m, k : mesg Decryption
m � #(m) m : mesg Hashing

Table 10.2: The Basic Cryptoalgebra

that make up a symbol are the letters, the digits, and the special characters in
“-*/<=>!?:$%_&~^+”. A symbol may not begin with a digit or a sign followed by
a digit. The characters that make up a string are the printing characters omitting
double quote and backslash. Double quotes delimit a string. A comment begins
with a semicolon, or is an S-expression list at top-level that starts with the comment

symbol.

10.3 Algebra reference

10.3.1 Basic crypto algebra

The basic crypto algebra is an order-sorted algebra with signature described in Ta-
ble 10.2. The algebra is the free order-sorted algebra generated by the function
symbols, sorts, and constants given, modulo the one equation.

Additionally, cpsa reasons about derivability of values from other values, and

94

alg ← basic

sort ← text | data | name | tag | skey | akey | mesg
id ← symbol

term ← id | (pubk id) | (privk id) | (invk id)
| (pubk id string) | (privk id string)
| (ltk id id) | string | (cat term+)
| (enc term+ term) | (hash term+)

Table 10.3: cpsa Basic Algebra Syntax

the basic derivation rules are given in the table, where inv is defined as follows (with
⊥ indicating “undefined”):

inv(a) =

a−1 if a : akey
a if a is not a variable of sort mesg
⊥ otherwise.

(10.1)

Because inv is undefined on variables of sort mesg, cpsa cannot handle protocols
or skeletons in which a value is encrypted with such a variable. This is a consequence
of the choice we made in the design of cpsa to use only one encryption function
symbol, despite there being two forms of encryption (symmetric and asymmetric).
When encrypting with a variable of sort mesg, the type of encryption is ambiguous.

Table 10.3 describes the grammar for basic crypto algbera messages in the input
syntax.

Each of these function symbols has a specific interpretation in the algebra signa-
ture; for instance, enc refers to the {| · |}· function symbol, and pubk refers to the K(·)
function symbol when it has one input, but to Ks

(·) when it has two inputs, where

the second is s. privk refers to the composition of either K(·) or Ks
(·) with (·)−1.

10.3.2 The Diffie-Hellman crypto algebra

The Diffie-Hellman crypto algebra is an order-sorted algebra with signature described
in Table 10.4. The algebra is the free order-sorted algebra generated by the function
symbols, sorts, and constants given, modulo the equations.

In Section 4.2 we discussed modeling Diffie-Hellman in cpsa, but we said almost
nothing about the expt sort that features prominently in the algebra signature. Our
message model for Diffie-Hellman has two sorts of exponents. The rndx sort is for
exponents that are to be thought of as atomic values. Randomly chosen exponents

95

Sorts
Sorts: name, text, data, tag, skey, akey, base < mesg

rndx < expt < mesg
Operations

{| · |}(·) mesg×mesg→ mesg Encryption
(·, ·) mesg×mesg→ mesg Pairing
#(·) mesg→ mesg Hashing
K(·) name→ akey Public key of name
Ks

(·) name→ akey s-Public key of name

(·)−1 akey→ akey Inverse of key
ltk(·, ·) name×name→ skey Long-term key
bltk(·, ·) name×name→ skey Bi-directional LTK
(·)(·) base×expt→ base Exponentiation
(··) expt×expt→ expt Multiplication
i(·) expt→ expt Mult. Inverse

Constants
Tags mesg Tag constants
g base Generator
1 expt Mult. Identity

Equations
(a−1)−1 = a a : akey
bltk(a, b) = bltk(b, a) a, b : name
xy = yx x(yz) = (xy)z x, y : expt
x1 = x x(i(x)) = 1 x : expt
h1 = h (hx)y = h(xy) h : base, x, y : expt

Derivations
m0,m1 � {|m0|}m1 m0,m1 : mesg Encryption
m0,m1 � (m0,m1) m0,m1 : mesg Pairing
(m0,m1) � {m0,m1} m0,m1 : mesg Destructuring
{|m|}k, inv(k) � m m, k : mesg Decryption
m � #(m) m : mesg Hashing
x, y � xy x, y : expt Multiplication
x � i(x) x : expt Inversion
h, x � hx h : base, x : expt Exponentiation

Table 10.4: The Diffie-Hellman Cryptoalgebra

96

alg ← diffie-hellman

sort ← text | data | name | tag | skey | akey | rndx | expt | base | mesg
id ← symbol

term ← id | (pubk id) | (privk id) | (invk id)
| (pubk id string) | (privk id string)
| (ltk id id) | string | (cat term+)
| (enc term+ term) | (hash term+)
| (exp term term | (gen) | (mul term term)
| (inv term)

Table 10.5: cpsa Diffie-Hellman Algebra Syntax

should always be of this sort, which is why rndx appears exclusively in our examples,
while expt does not. The expt sort is for compound expressions involving exponents.
There may also be variables of this sort, but they should not appear in protocol roles,
and even using them in a defskeleton is unusual. However, they do appear in the
output with some frequency, due to one of two kinds of bits of reasoning: first, a base
variable (say, h) may be rewritten as an explicit power of g. When this happens, since
h could stand for any power of g including a power with a complex variable, if we
rewrite h as gz, z will need to be of the generic expt sort so that those possibilities
are covered. Second, cpsa will sometimes assume the presence of a value in some
instance related to another one, and a generic expt variable is used to capture the
somewhat arbitrary relationship between the two.

Table 10.5 describes the grammar for Diffie-Hellman crypto algbera messages
in the input syntax. Symbols in the grammar appearing in the grammar for the
basic crypto algebra retain their same interpretation. Additionally, the gen and one

symbols, used as 0-ary function symbols, specify the g and 1 constants, respectively.

10.4 Declaration syntax

Table 10.6 gives a grammar for the syntax of native and user-defined declarations.
For the purposes of this table, there are two top-level symbols: role-decl and
skel-decl.

97

role-decl ← (one-term-decl ht-term+)
| (two-term-decl ht-termpair+)
| (neqlist ht-termlist+)
| (subsort ht-subsort+)
| (fn-of ht-function+)
| (decl symbol ht-general+)
| (priority (height integer)+)

one-term-decl ← non-orig | pen-non-orig | uniq-orig | uniq-gen
two-term-decl ← neq | lt

height ← integer
ht-term ← term | (term height)

ht-termpair ← (term term) | (term term height)
ht-termlist ← (term+) | (term+ height)
ht-subsort ← (aux ht-term+)

ht-function ← (aux ht-termpair+)
ht-general ← ((term∗) (height∗))

aux ← string | symbol | integer
skel-decl ← (one-term-decl term+)

| (two-term-decl (term term)+)
| (neqlist (term+)+)
| (subsort subsort+)
| (fn-of function+)
| (decl symbol general+)
| (priority (node integer)+)

subsort ← (aux term+)
function ← (aux (term term)+)
general ← ((term∗) (node∗))

node ← (integer integer)

Table 10.6: Declaration syntax. See Tables 10.3 and 10.5 for the algebra syntax,
which defines the term symbols.

98

10.5 Command-line options

The following command-line options are defined for the cpsa program:

• ‘o’ (“output”) – specifies a file to which the output will be written. Usage: -o
FILE or --output=FILE.

• ‘l’ (“limit”) – specifies a step limit (see Section 9.1). By default, the step limit
is 2000. Usage: -l INT or --limit=INT.

• ‘d’ (“depth”) – specifies a depth limit (see Section 9.1). The depth limit is
infinite by default. Usage: -d INT or --depth=INT.

• ‘b’ (“bound”) – specifies a strand bound (see Section 9.1). By default, the
strand bound is 12. Usage: -b INT or --bound=INT.

• ‘m’ (“margin”) – specifies the number of characters allowed per line in the
output. By default, the margin is 72. Usage: -m INT or --margin=INT.

• ‘e’ (“expand”) – expands macros only. For use in debugging macros; when run
with this option, the tool does not analyze its input.

• ‘z’ (“noanalyze”) – loads the input but does not analyze. This could be used
for checking whether any errors are present in the input.

• ‘n’ (“noisochk”) – disable isomorphism checks. Not recommended except
in rare circumstances. When the tool produces a new skeleton, it only gets
a number in the output if no isomorphic skeleton has already been found. With
isomorphism checking disabled, many analyses that otherwise terminate will
not terminate. However, there is one advantage. Normally, when a skeleton
is found more than once in an analysis, its operation field (see Section 5.2) is
displayed only for the first time that skeleton is found. Other instances are not
annotated with an operation field but instead simply link to the isomorphic
skeleton.

• ‘c’ (“check-nonces”) – check nonces first. Normally, the tool will consider the
largest possible critical term when attempting to solve an unrealized node.
This option flips the default behavior. Some analyses terminate only with this
option, while others perform better with this option.

99

• ‘t’ (“try-old-strands”) – try old strands first. Normally, when there are unre-
alized nodes on multiple strands, the tool will focus on the highest-numbered
(rightmost in the diagram) strand with unrealized nodes. This option flips the
default behavior. Some analyses terminate only with this option, while others
perform better with this option.

• ‘r’ (“reverse-nodes”) – try younger nodes first. Normally, when a strand con-
taining unrealized nodes is chosen for analysis, if there are multiple unrealized
nodes, the earliest (oldest) node is analyzed. This option flips the default be-
havior. Some analyses terminate only with this option, while others perform
better with this option.

• ‘g’ (“goals-sat”) – stop when goals are satisfied. Normally, a defgoal is con-
verted to a skeleton and analyzed, and only shapes are compared to the goals.
With this option enabled, the goals are checked against every intermediate
skeleton, and branches of the analysis in which the goals are satisfied are not
further pursued. The output analysis will show the skeletons in which the goals
were first satisfied, and any shapes in which the goals were not satisfied. In a
sense, running cpsa with this option asks the question: what are all the ways
in which this goal may not be satisfied?

• ‘a’ (“algebra”) – sets the algebra to use for the input. The analysis tool expects
to run with a single algebra for an entire session. By default the tool uses the
basic algebra; an input file using the Diffie-Hellman algebra will cause an
error unless you specify the diffie-hellman algebra via this option. Usage:
-a STRING or --algebra=STRING.

• ‘s’ (“show-algebras”) – causes the tool to print a list of the allowed algebras,
instead of performing any analysis.

• ‘h’ (“help”) – causes the tool to print a list of command-line options, and also
to print the directory in which the package’s documentation exists. When run
with this option, the tool will not perform any analysis.

• ‘v’ (“version”) – causes the tool to simply print its version number rather than
performing any analysis.

Additionally,

• To protect cpsa against memory exhaustion, run cpsa with the command-line
options +RTS -M512m -RTS.

100

• To make use use of parallelism on an n-processor machine, start cpsa with the
command-line options +RTS -Nn -RTS.

See the GHC User’s Guide [11] for documentation on these and other options.

10.5.1 Heralds

At the top of each cpsa input file is, optionally, a herald that is an alternate way to
specify command-line options. All of the examples in the examples directory contain
heralds. The herald, in addition to setting certain options for the analyzer, is also
included in the output file, which may be useful to the analyst in distinguishing one
analysis from a similar, related one.

Options are included in the herald by constructing an S-expression with first
element equal to the long name of an option, and the second element (if any) set
to be the parameter for that option. For instance, (algebra diffie-hellman) is
included for all the examples that use the diffie-hellman algebra.

Command-line options override the herald. Also, certain command-line options
are not allowed in the herald, specifically, “output”, “help”, “version”, and “show-
algebras”.

101

Bibliography

[1] Myrto Arapinis, Mark Ryan, and Eike Ritter. StatVerif: Verification of stateful
processes. In IEEE Symposium on Computer Security Foundations. IEEE CS
Press, June 2011.

[2] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, November 1976.

[3] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Searching for
shapes in cryptographic protocols. In Tools and Algorithms for Construction and
Analysis of Systems (TACAS), number 4424 in LNCS, pages 523–538, 2007.

[4] Daniel Dolev and Andrew Yao. On the security of public-key protocols. IEEE
Transactions on Information Theory, 29:198–208, 1983.

[5] Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equational de-
duction for multiple inheritance, overloading, exceptions and partial operations.
Theoretical Computer Science, 105(2):217–273, 1992.

[6] Joshua D. Guttman. Establishing and preserving protocol security goals. Jour-
nal of Computer Security, 22(2):201–267, 2014.

[7] Joshua D Guttman, Moses D Liskov, and Paul D Rowe. Security goals and evolv-
ing standards. In Security Standardisation Research, pages 93–110. Springer,
2014.

[8] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. In Proceeedings of tacas, volume 1055 of LNCS, pages 147–166,
1996.

[9] John D. Ramsdell. Deducing security goals from shape analysis sentences. The
MITRE Corporation, April 2012. http://arxiv.org/abs/1204.0480.

102

http://arxiv.org/abs/1204.0480

[10] Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measuring protocol
strength with security goals. International Journal of Information Security,
15(6):575–596, November 2016. DOI 10.1007/s10207-016-0319-z, http://web.
cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf.

[11] The GHC Team. GHC user’s guide documentation, release 8.2.1, July 2017.
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf.

103

http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

Index

= (goal predicate symbol), 69
^(macro splicing), 63, 92

absent, 53
added strand, 43
akey, 21
Algebra, 11
algebra, 100
and, 67
augmentation

listener, 43
regular, 42

Blanchet protocol, 20
bltk, 38

carried subterm, 42, 48
cat, 12
check-nonces option, 83, 99
cohort, 14
comments, 94
constants, 37
contraction, 42

data, 21
decl, 54
defgoal, 67
deflistener, 22
defmacro, 62, 91
defprotocol, 11
defrole, 11
defskeleton, 11

deletion, 35
depth limit, 82, 99
Diffie-Hellman, 33

algebra, 26, 100
plain, 34
unauthenticated, 34

displacement, 42
distinctness declarations, 49

enc, 12
encryption

function symbol, 10
envelope protocol, 56
eq, 51
equality, 51
event, 47
examples

Blanchet, 20
Diffie-Hellman, 34
Envelope protocol

macros in, 91
Kerberos, 26, 43

with bi-directional keys, 38
Needham-Schroeder, 9

logical goals in, 64
Otway-Rees, 31

with bi-directional keys, 38
Station to Station, 35
Unified Method, 35
Yahalom, 31, 51

with bi-directional keys, 39

104

exists, 67
expt, 34, 95

fact term, 77
false, 67
file extensions

.scm, 11
fn-of, 51
forall, 67
forward secrecy, 35
functional dependence, 51

generalization, 35
generation, 49
generics, 28
goals

predicate symbols, 69
goals-sat option, 100
graphing, 13

hash, 37
hash functions, 37
herald, 101

implies, 67
include, 91
inequality declarations, 49
init, 58, 60

use for introducing variables, 51
instance, 11
interrupting, 83

Kerberos protocol, 26, 43
key-of function symbol, 10

label, 14
leadsto, 53, 60
listener, 22
listener augmentation, 43
long-term key

bidirectional, 38
Lowe attack, 20
lt, 50
ltk, 27, 31

macros, 62, 91
nesting, 63, 92
splicing, 63, 92

maplet, 13
mesg, 28
message algebra, 10
minimality of cpsa output, 35
model, 10

Needham-Schroeder, 9
logical goals in, 64

Needham-Schroeder-Lowe protocol, 20
neq, 49
neqlist, 50
non (goal predicate symbol), 69
non-orig, 13
non-orig, 49

obsv, 58, 60
operation field, 43
options

algebra, 100
bound, 99
check-nonces, 83, 99
depth, 99
expand, 99
goals-sat, 100
help, 100
limit, 99
margin, 99
noanalyze, 99
noisochk, 99
output, 99
reverse-nodes, 83, 100

105

show-algebras, 100
try-old-strands, 83, 99
version, 100

or, 67
origination, 48

non-origination, 48
penetrator non-origination, 48
unique, 48

Otway-Rees protocol, 31
with bi-directional keys, 38

p (goal predicate symbol), 69
pairing function symbol, 10
pen-non-orig, 49
pnon (goal predicate symbol), 69
prec, 69
precedes, 53
precur, 53
priority, 83
priority, 53
protocol, 10
pubk, 12

recv, 11
regular augmentation, 42
reverse-nodes option, 83, 100
rndx, 34
role, 10
role declarations, 21, 52

conditional, 52

search tree, 14
colors, 14

seen child, 99
send, 11
shape, 14
signatures, 21
skeleton, 11

dead, 14, 22

realized, 14, 42
skey, 21
stateful protocols, 56
Station to Station protocol, 35
step limit, 82, 99
strand bound, 82, 99
strand spaces, 47
subsort, 50

tag, 26, 37
tags, 37
tooltip

instance, 17
skeleton node, 15

trace, 11, 60
tran, 58, 60
try-old-strands option, 83, 99

Unified Method, 35
uniq (goal predicate symbol), 69
uniq-at (goal predicate symbol), 69
uniq-gen, 35, 49, 52
uniq-orig, 13
uniq-orig, 49, 52
user-defined declarations, 54

vars, 11

Yahalom protocol, 31, 51

106

	Introduction
	Recommended reading
	Tool components

	I Basic use of CPSA
	Setup and Installation
	Basic Installation
	Getting the Source

	Finding Documentation
	Running cpsa
	Using the cpsa Makefile
	Using the Haskell Makefile
	Memory usage
	Parallelism

	Basic Protocol Modeling and Analysis with CPSA
	Basic CPSA modeling
	CPSA input
	CPSA output
	Interpreting shapes
	Blanchet's simple example protocol

	Algebra Features of CPSA
	Generic messages and long-term keys
	Modeling Diffie-Hellman
	Other examples

	Other Algebra Features
	Hashing
	Constants
	Bidirectional Long-Term Keys

	II Understanding and Guiding CPSA
	The CPSA Search Algorithm
	Solving tests
	Flawed Kerberos, revisited
	The operation field

	Constraining CPSA's search
	Bundles: A Strand-Based Execution Model
	Secrecy assumptions
	Distinctness assumptions
	Functional dependence assumptions
	Equality constraints

	Role declarations and conditional role declarations
	Diffie-Hellman declarations
	Other declarations

	III Advanced features of CPSA
	Modeling Stateful Protocols
	The Envelope Protocol
	Macros for Simplifying Complex Protocols

	Logical Security Goals
	Overview
	Syntax
	Semantics
	Examples
	Needham-Schroeder Responder
	A Needham-Schroeder Secrecy Goal

	The Rest of the Story
	Shape Analysis Sentences

	Rules
	Facts
	DoorSEP

	IV Reference material
	Troubleshooting
	Non-termination
	Tweaking the search

	Error messages

	CPSA input syntax
	CPSA pre-processing
	CPSA input syntax
	Algebra reference
	Basic crypto algebra
	The Diffie-Hellman crypto algebra

	Declaration syntax
	Command-line options
	Heralds

