
Simple Diffie-Hellman Algebra

John D. Ramsdell
The MITRE Corporation

CPSA Version 2.2.7

February 1, 2012

A natural way to model protocols that use Diffie-Hellman is with an
algebra that includes a sort for exponents, one with members that form an
Abelian group. Implementation experiments have shown that it is difficult
to implement such an algebra within the current cpsa framework without
significant revisions to cpsa.

This paper describes a simple Diffie-Hellman algebra in which the expo-
nent is not an Abelian group. Instead, the algebra only captures the com-
mutative law of exponents. The algebra requires few changes to the basic
formalism used by cpsa [3]. An atom that originates in a trace need not be
carried as long as it is in an exponent of something carried. Similarly, in a
skeleton, an atom assumed to be uniquely originating need not be carried as
long as it is in an exponent of something carried. (See Section 2).

The trade-off for ease of implementation is a loss of coverage. Protocols
that make use of the associativity or the inverses of exponents cannot be
correctly analyzed using this algebra. In particular, group Diffie-Hellman
protocols typically cannot be handled. cpsa with the simple Diffie-Hellman
algebra can analyze restricted Diffie-Hellman protocols, such as the basic
Diffie-Hellman Key Exchange Protocol. This protocol serves as an example
in this paper.

c© 2010 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

(herald "Diffie-Hellman Key Exchange" (algebra diffie-hellman))

(defprotocol dhke diffie-hellman
(defrole init (vars (a b akey) (x y expn))

(trace
(send (enc "i" (exp (gen) x) (invk a)))
(recv (cat (enc (exp (gen) y) (invk b))

(enc a b (exp (exp (gen) y) x))))
(send (enc "i" a b (exp (exp (gen) y) x))))
(uniq-orig x))

(defrole resp (vars (a b akey) (x y expn))
(trace
(recv (enc "i" (exp (gen) x) (invk a)))
(send (cat (enc (exp (gen) y) (invk b))

(enc a b (exp (exp (gen) x) y))))
(recv (enc "i" a b (exp (exp (gen) x) y))))
(uniq-orig y)))

(defskeleton dhke (vars (a b akey))
(defstrand resp 3 (a a) (b b))
(non-orig (invk a) (invk b)))

(defskeleton dhke (vars (a b akey))
(defstrand init 2 (a a) (b b))
(non-orig (invk a) (invk b)))

Figure 1: Diffie-Hellman Key Exchange cpsa Input

A→ B : {|“i”, gx |}a−1

B → A : ({| gy |}b−1 , {|a, b|}gxy)
A→ B : {|“i”, a, b|}gxy

Alice (A) freshly generates an exponent x, signs the exponentiated value with
her private uncompromised asymmetric key a−1, and sends it to Bob (B).
Bob freshly generates an exponent y, signs the exponentiated value with
his private uncompromised asymmetric key b−1, and sends it to Alice along
with the public signing keys encrypted with the newly generated symmetric
key gxy. Alice confirms the symmetric key by signing the public keys too.
Alice ensures her messages cannot be confused with Bob’s by adding the tag
constant “i” within her signed data.

The protocol in cpsa syntax is presented in Figure 1. cpsa concludes

2

Sorts: >, D, A, S, and E
Subsorts: D < >, A < >, S < >, and E < >
Base Sorts: D, A, and E (S and > omitted)
Operations: (·, ·) : >×> → > Pairing

{| · |}(·) : >× S→ > Symmetric encryption
{| · |}(·) : >× A→ > Asymmetric encryption
“. . . ” : > Tag constants
(·)−1 : S→ S Symmetric key inverse
(·)−1 : A→ A Asymmetric key inverse
g : S Generator

(·)(·) : S× E→ S Exponentiation
Equations: (a−1)−1 ≈ a s−1 ≈ s (hx)y ≈ (hy)x

where a : A, s, h : S, and x, y : E

Figure 2: Simple Diffie-Hellman Algebra Signature and Equations

there is key agreement from the perspective of both Alice and Bob using
this input. Notice that gxy is written (exp (exp (gen) x) y). There is no
multiplication is this algebra, and gxy is more accurately written as (gx)y.

1 Order-Sorted Message Algebra

cpsa models a message as an equivalence class of terms over a signature.
In particular, cpsa uses order-sorted quotient term algebras [1] for mes-
sage algebras. This formalism enables the use of well-known algorithms for
unification and matching in the presence of equations [4, Chapter 8] while
providing a sort system for classifying messages.

cpsa provides a Diffie-Hellman algebra that extends the Basic Crypto
Algebra with two new sorts, base and expn, and two new operations, (gen),
a constant of sort base for exponentiation, and (exp G X), the exponenti-
ation operation [2].

This paper presents a very simple message algebra for analyzing protocols
using Diffie-Hellman, called the Simple Diffie-Hellman Algebra (sdha), that
suffices for this document. There are five sdha sorts: >, the sort of all
messages, and sorts for data (D), asymmetric keys (A), symmetric keys (S),
and exponents (E). Every symmetric key is a message (written S < >),

3

and so forth for the other non-> sorts. The operations used to form terms
are given by the signature in Figure 2. Notice that the encryption and key
inverse operations are overloaded.

There are two equations in sdha associated with key inverse. For asym-
metric key a : A, (a−1)−1 ≈ a, and for symmetric key s : S, s−1 ≈ s. The
equation for exponentiation is (hx)y ≈ (hy)x, where h : S and x, y : E. Unifi-
cation and matching in this algebra produce a finite number of most general
unifiers, that is, the unification type is finitary. For example, {x 7→ u, y 7→ v}
and {x 7→ gv, u 7→ gy} unify xy and uv. Unification is finitary because of an
approximation. To unify axy and bwz, we unify axy with guv and gvu with bwz,
where u and v are freshly generated variables. In other words, for the pur-
pose of unification only, the equation for exponentiation is (gx)y ≈ (gy)x.
Expository Haskell code for unification and matching with just the equation
for exponentiation is presented in Appendix A.

Origination assumption in roles and skeletons can only be applied to a
subset of the messages of an algebra—the atoms. In sdha, asymmetric keys
and exponents are atoms, but symmetric keys are not. (Similarly, in the
implemented Diffie-Hellman algebra, messages of sort base are not atoms.)

A message t0 is carried by t1, written t0 v t1 if t0 can be derived from t1
given the right set of keys, that is v is the smallest reflexive, transitive
relation such that t0 v t0, t0 v (t0, t1), t1 v (t0, t1), and t0 v {|t0|}t1 .

The introduction of the Diffie-Hellman algebra requires a new relation on
messages. A message t0 is held by t1, written t0 � t1 iff t1 carries t0 or t1 is in
the exponent of a carried term. That is � is the smallest reflexive, transitive
relation such that t0 � t0, t0 � (t0, t1), t1 � (t0, t1), t0 � {|t0|}t1 , t1 � tt10 .

2 Strand Spaces

A run of a protocol is viewed as an exchange of messages by a finite set of
local sessions of the protocol. Each local session is called a strand [5]. The
behavior of a strand, its trace, is a non-empty sequence of messaging events.
An event is either a message transmission or a reception. In the Basic Crypto
Algebra, a message originates in a trace if it is carried by some event and
the first event in which it is carried is a transmission. For Diffie-Hellman, a
message originates in a trace if it is held by some event and the first event
in which it is held is a transmission.

A similar change was made for skeletons. An atom assumed to be uniquely

4

originating need only be held by some term within a skeleton, it no longer
must be carried.

3 Derivable Messages

Suppose T is a set of messages. Let → be a reduction relation on sets of
messages defined as follows:

{(t0, t1)} ∪ T → {t0, t1} ∪ T
{{|t0|}t1} ∪ T → {t0, {|t0|}t1} ∪ T if t−1

1 ∈ D(T) and t0 /∈ T

The minimum decryption set M(T) is the normal form of relation →, i.e.
T →∗ M(T) and there is no T ′ such that M(T)→ T ′.

A message t is derivable from T , iff t ∈ D(T), where

D0 = M(T)

Dn+1 =

(x, y) | x, y ∈ Dn

{|x|}y | x, y ∈ Dn, y : A ∨ y : S
xy | x, y ∈ Dn, x : S, y : E

D(T) =

⋃
n∈N Dn

4 Conclusion

In this algebra, one cannot analyze group Diffie-Hellman protocols, as they
make use of the associativity of exponents. On the other hand, this algebra
appears to allow the analysis of the basic Diffie-Hellman Key Exchange.
In terms of implementation, allowances have to be made for the fact that
unification may produce more than one most general unifier.

References

[1] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217–273, 1992.

[2] John D. Ramsdell. CPSA User Guide. The MITRE Corporation, 2009. In
http://hackage.haskell.org/package/cpsa source distribution, doc

directory.

5

[3] John D. Ramsdell, Joshua D. Guttman, Moses D. Liskov, and Paul D.
Rowe. The CPSA Specification: A Reduction System for Searching for
Shapes in Cryptographic Protocols. The MITRE Corporation, 2009. In
http://hackage.haskell.org/package/cpsa source distribution, doc

directory.

[4] Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning.
The MIT Press, 2001.

[5] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security,
7(1), 1999.

A Unification and Matching in Haskell

-- Unification and matching in a simple Diffie-Hellman algebra

module SimpleDiffieHellman where

-- Equational unification and matching in an algebra with the
-- following equation is used to analyze protocols that make use of
-- the Diffie-Hellman problem.
--
-- exp(exp(x, y), z) = exp(exp(x, z), y)
--
-- The module shows how to perform the unification and matching.

import Char(isDigit, isAlpha)

-- TERMS

-- Variables are just integers so that it is easy to freshly generate
-- them.

type Var = Int

data Term -- A term is
= V Var -- a variable, or a
| F String [Term] -- function symbol and a list of terms

-- Equality modulo the equation: exp(exp(x, y), z) = exp(exp(x, z), y).
instance Eq Term where

(V x) == (V y) = x == y

6

(F "exp" [F "exp" [x, y], z]) == (F "exp" [F "exp" [x’, y’], z’]) =
x == x’ && y == y’ && z == z’ ||
x == x’ && y == z’ && z == y’

(F sym ts) == (F sym’ ts’) = sym == sym’ && ts == ts’
_ == _ = False

-- SUBSTITUTIONS

-- A substitution is a map from variables to terms
type Subst = [(Var, Term)]

-- Apply a substitution to a term
subst :: Subst -> Term -> Term
subst s (V x) =

case chase s (V x) of
V y -> V y
t -> subst s t

subst s (F sym ts) =
F sym (map (subst s) ts)

-- A substitution may contain an equivalence class of variables. The
-- chase function finds the canonical representitive of the
-- equivalence class.
chase :: Subst -> Term -> Term
chase s (V x) =

case lookup x s of
Nothing -> V x
Just t -> chase s t

chase _ t = t

-- UNIFICATION

-- This is the entry point
unify :: Term -> Term -> [Subst]
unify t t’ =

unify0 t t’ []

-- Chase variables to start unifying two terms
unify0 :: Term -> Term -> Subst -> [Subst]
unify0 t t’ s =

unify1 (chase s t) (chase s t’) s

-- Unification by case analysis
unify1 :: Term -> Term -> Subst -> [Subst]
unify1 (V x) (V y) s -- Unify two variables

7

| x == y = [s] -- Nothing to do
| x < y = [(y, V x) : s] -- Substitute larger variable
| otherwise = [(x, V y) : s] -- in preference to a smaller one

unify1 (V x) t s
| occurs x t = [] -- Fail when x is in t
| otherwise = [(x, t) : s]

unify1 t t’@(V _) s =
unify1 t’ t s

-- Unify using the Diffie-Hellman equation.
-- To make unification tractable, one makes use of the equation
-- exp(exp(gen(), x), y) = exp(exp(gen(), y), x).
unify1 (F "exp" ts@[u, v]) (F "exp" ts’@[u’, v’]) s =

unifyList ts ts’ s ++ -- Ordinary unification
-- Add an instances of the equation, and unify on both sides
do
s’ <- unifyList ts left s
unifyList ts’ right s’

where
-- Generate a fresh variable by looking at the variables in use
var = nextVar ([u, v, u’, v’] ++ terms s) -- Include substitution
var’ = var + 1 -- Generate another variable
left = [F "exp" [F "gen" [], V var], V var’] -- One side of equation
right = [F "exp" [F "gen" [], V var’], V var] -- And the other

unify1 (F sym ts) (F sym’ ts’) s -- Unify ordinary compound terms
| sym /= sym’ = [] -- Fail on symbol clash
| otherwise = unifyList ts ts’ s

unifyList :: [Term] -> [Term] -> Subst -> [Subst]
unifyList [] [] s = [s]
unifyList (t:ts) (t’:ts’) s =

do
s <- unify0 t t’ s
unifyList ts ts’ s

unifyList _ _ _ = []

-- Find next unused variable in a list of terms
nextVar :: [Term] -> Var
nextVar [] = 0
nextVar ts =

maximum (map nextVariable ts)
where
nextVariable (V x) = x + 1
nextVariable (F _ ts) = nextVar ts

-- Returns the terms in a substitution.

8

terms :: Subst -> [Term]
terms s =

[t’ |
(x, t) <- s,
t’ <- [V x, t]]

-- Does variable x occur in term t?
occurs :: Var -> Term -> Bool
occurs x (V y) = x == y
occurs x (F _ ts) = any (occurs x) ts

-- MATCHING

-- This is the entry point
match :: Term -> Term -> [Subst]
match t t’ =

match0 t t’ []

-- Matching by case analysis
match0 :: Term -> Term -> Subst -> [Subst]
match0 (V x) t s =

case lookup x s of
Nothing -> [(x, t) : s]
Just t’ -> if t == t’ then [s] else []

-- Match using the Diffie-Hellman equation
match0 (F "exp" [x, y]) (F "exp" [F "exp" [x’, y’], z’]) s =

matchList [x, y] [F "exp" [x’, y’], z’] s ++
matchList [x, y] [F "exp" [x’, z’], y’] s

match0 (F sym ts) (F sym’ ts’) s
| sym /= sym’ = []
| otherwise = matchList ts ts’ s

match0 _ _ _ = []

matchList :: [Term] -> [Term] -> Subst -> [Subst]
matchList [] [] s = [s]
matchList (t:ts) (t’:ts’) s =

do
s <- match0 t t’ s
matchList ts ts’ s

matchList _ _ _ = []

-- TERM ORDERING

instance Ord Term where
compare (V x) (V y) = compare x y

9

compare (F "exp" [F "exp" [x, y], z])
(F "exp" [F "exp" [x’, y’], z’]) =

case (compare y z, compare y’ z’) of
(GT, GT) -> compare [F "exp" [x, z], y] [F "exp" [x’, z’], y’]
(GT, _) -> compare [F "exp" [x, z], y] [F "exp" [x’, y’], z’]
(_, GT) -> compare [F "exp" [x, y], z] [F "exp" [x’, z’], y’]
_ -> compare [F "exp" [x, y], z] [F "exp" [x’, y’], z’]

compare (F sym ts) (F sym’ ts’) =
case compare sym sym’ of
EQ -> compare ts ts’
c -> c

compare (V _) (F _ _) = LT
compare (F _ _) (V _) = GT

-- TERM INPUT

instance Read Term where
readsPrec _ s =

readTerm s
where
readTerm s =

[(V $ read (c:cs), t) | (c:cs, t) <- lex s,
isDigit c] ++

[(F (c:cs) ts, v) | (c:cs, t) <- lex s,
isAlpha c,
("(", u) <- lex t,
(ts, v) <- readArgs u]

readArgs s =
[([], t) | (")", t) <- lex s] ++
[(x:xs, u) | (x, t) <- reads s,

(xs, u) <- readRest t]
readRest s =

[([], t) | (")", t) <- lex s] ++
[(x:xs, v) | (",", t) <- lex s,

(x, u) <- reads t,
(xs, v) <- readRest u]

-- TERM OUTPUT

instance Show Term where
showsPrec _ (V x) =

shows x
showsPrec _ (F sym ts) =

showString sym . showChar ’(’ . showArgs ts
where

10

showArgs [] = showChar ’)’
showArgs (x:xs) = shows x . showRest xs
showRest [] = showChar ’)’
showRest (x:xs) = showChar ’,’ . shows x . showRest xs

11

