
The CPSA Specification:
A Reduction System for Searching for Shapes

in Cryptographic Protocols

John D. Ramsdell Joshua D. Guttman Paul D. Rowe
The MITRE Corporation

December 20, 2010

This is a draft and many of the theorems lack proofs. The focus of our
theoretical efforts has shifted to the cpsa Theory document. As a result,
some of the content is out-of-date. The draft has an index and a table of
contents at its end. Hopefully, the final paper will support an abstract of the
following form.

Abstract

We describe a term reduction system that enumerates all essen-
tially different executions possible for a cryptographic protocol. We
call them the shapes of the protocol. Naturally occurring protocols
have only finitely many, indeed very few shapes. Authentication and
secrecy properties are easy to determine from them, as are attacks
and anomalies. Our Cryptographic Protocols Shapes Analyzer (cpsa)
program is a direct implementation of the reduction system described
within, and the form of the reduction system is partially determined
by the implementation.

The reduction system is a purely syntactic description of an ab-
stract version of the algorithm published previously. Order-sorted
term algebras are used for message algebras, and allow us to extend

c© 2010 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

the algorithm to algebras with an associative-commutative operation.
During the process of refining the description of the algorithm, we
found a significant simplification of the algorithm and that elaborat-
ing some abstractions required great care.

This paper describes the reduction system and shows it possesses
desired correctness properties. In particular, its search is complete
meaning when analyzing a protocol starting with some initial behav-
ior, every shape can be found in a finite number of steps.

Background material should be here.
Initial attempts at implementing the Cryptographic Protocols Shapes An-

alyzer (cpsa) algorithm in [2] revealed that the strand space framework re-
quired extensions and modifications to specify the design and implementation
of a cpsa program. The first step was to capture the essence of a strand
space algebra in the order-sorted algebra framework. The second step was to
choose data structures, and the third step was to specify operations on the
data structures that produce the desired results.

When using strand space theory, one normally hypothesizes the existence
of a single global strand space. This is a very reasonable assumption for
theoretical analysis, but from the point view of an implementer, it turns out
that it is better to assume there are many local strand spaces and the de-
sign specification task is to describe the relations between these local spaces.
Our reformulation of strand space notation provides an implementation ori-
ented way of describing the concept of a local strand space, and a direct
link between from algorithm specification to the data structures used in the
implementation.

In this specification, each reduction step in the search algorithm relates
a term to a set of terms. The correctness properties of the algorithm justify
a reduction step by placing restrictions on the relations relative to their
respective local strand spaces. The fact that an efficient implementation is
available is due in part to the fact the reduction system is confluent, thus
greatly reducing the search space.
The sections that follow should described here.

In what follows, a finite sequence is a function from an initial segment
of the natural numbers. The length of a sequence f is |f |, f0

a f1 is the
concatenation of sequences f0 and f1, and sequence f = 〈f(0), . . . , f(n− 1)〉
for n = |f |. If S is a set, then S∗ is the set of finite sequences of S, and S+

is the non-empty finite sequences of S.

2

Section 7 will define the terms “skeleton” and “pruned skeleton”. Starting
in Section 11, all skeletons are pruned, so “skeleton” is used for pruned
skeletons.

1 Overview

An implementation-oriented view of strand spaces and bundles [6] follows.
In this paper, a run of a protocol is viewed as an exchange of messages by a
finite set of local sessions of the protocol. Consider the class of Σ,Γ-algebras,
algebras over signature Σ that satisfy equations Γ [1, Chapter 3]. A message
is an element of MΣ,Γ(X), a free Σ,Γ-algebra generated by set X.

Each local session is called a strand, and is an element of the strand set Θ.
The behavior of a participant, its trace, is a sequence of messaging events.
An event is either a message transmission or a reception. Outbound message
t ∈ MΣ,Γ(X) is written as +t, and inbound message t is written as −t.
A strand space over algebra MΣ,Γ(X) is the strand set Θ together with a
trace mapping tr : Θ → (±MΣ,Γ(X))+. In a strand space, the elements of
the generator set X denote atomic message elements, such as keys and text
data, and not composite messages, such as encryptions and pairs. Later in
this paper, strand sets Θ will be initial segments of the natural numbers, so
a trace mapping will be a sequence.

Message events occur at nodes in a strand space. For each strand s, there
is a node for every message in tr(s). The nodes of strand space (Θ, tr) are
{(s, p) | s ∈ Θ, 0 ≤ p < | tr(s)|}, and the event at a node is evt(s, p) =
tr(s)(p). The relation ⇒ defined by {(s, p − 1) ⇒ (s, p) | s ∈ Θ, 0 < p <
| tr(s)|} is called the strand succession relation.

A bundle in strand space (Θ, tr) is a finite directed acyclic graph B(Θ, tr ,→
), where the vertices are the nodes of (Θ, tr), and an edge represents com-
munication (→) or strand succession (⇒). For communication, if n0 → n1,
then there is a message t such that evt(n0) = +t and evt(n1) = −t. For each
reception node n1, there is a unique transmission node n0 with n0 → n1.

In a run of a protocol, the behavior of each strand is constrained by a
role in a protocol. Adversarial strands are constrained by roles as are non-
adversarial strands. A role is a sequence of message transmission and recep-
tion terms that serves as a template for its strands. Let AΣ,Γ(Y) be a Σ,Γ-
term algebra generated by variable set Y . A role is a trace in (±AΣ,Γ(Y))+.
A protocol is a set of roles.

3

A strand space (Θ, tr) respects protocol P if there is a role mapping
rl : Θ → P with the following properties. For each strand s, | tr(s)| ≤
| rl(s)|, and there is a Σ-homomorphism σ : AΣ,Γ(Y) → MΣ,Γ(X) such that
σ(rl(s)(p)) = tr(s)(p) for all 0 ≤ p < | tr(s)|. A bundle B(Θ, tr ,→) is a run
of protocol P if (Θ, tr) respects protocol P .

In what follows, MΣ,Γ(X) is replaced by term algebra AΣ,Γ(Z), where
|Z| = |X|, so that the two algebras are isomorphic.

Now, on to the refinement of the definitions in this section. The next
section adds structure to message algebras using a sort system. Later on,
Definition 5.6 adds information to a role and Definition 6.7 refines the notion
of a run of a protocol using the additional information.

2 Messages

The cpsa program implements a message algebra as an order-sorted term
algebra [3]. The signature of one of the implemented algebras is given in
Figure 1. Sort mesg is the sort of all messages, the elements of the algebras
in the previous section.

The use of order-sorted algebras is a partial solution to the following
problem. When a strand receives the pair pair(t0, t1), it can extract both t0,
and t1. When a strand receives the encryption enc(t0, t1), it can extract t0
if it has the decryption key associated with t1. And if a strand receives the
asymmetric key invk(t), it can never extract t. How does the cpsa program
distinguish these cases? It classifies a term by its sort and the position at
which it occurs within another term. The sort system used to classify terms
is presented first.

Following [3], the set of messages used by cpsa is specified by an order-
sorted signature (S,≤,Σ), where (S,≤) is a partially ordered set of sort
symbols, and Σ is an S∗×S-sorted family {Σw,s | w ∈ S∗, s ∈ S} of operation
(or function) symbols. The operations satisfy the following monotonicity
condition, f ∈ Σw,s ∩ Σw′,s′ and w ≤ w′ imply s ≤ s′, where w ≤ w′ iff
|w| = |w′| and w(i) ≤ w′(i) for i < |w|. A variable set X, is an S-sorted
family X = {Xs | s ∈ S} of disjoint sets of symbols. No symbol is both a
variable and an operation. When S and ≤ are clear, we write Σ for (S,≤,Σ).

Definition 2.1 (Regular Signature). An order-sorted signature Σ is regular
iff given f ∈ Σw′,s′ and given w′′ ≤ w′ in S∗, there is a least (w, s) ∈ S∗ × S
such that w′′ ≤ w and f ∈ Σw,s.

4

Definition 2.2 (Order-Sorted Algebra). Let (S,≤,Σ) be an order-sorted
signature. Then an (S,≤,Σ)-algebra A is a family {As | s ∈ S} of sets called
the carriers of A, together with a function Af : Aw → As for each f ∈ Σw,s

where Aw = Aw(0) × · · · × Aw(n−1), where n = |w|. Moreover,

1. s ≤ s′ in S implies As ⊆ As′ and

2. f ∈ Σw,s∩Σw′,s′ and w ≤ w′ imply Af : Aw → As equals Af : Aw′ → As′

on Aw.

Definition 2.3 (Order-Sorted Terms). The order-sorted Σ-terms TΣ(X) gen-
erated by variable set X is the least family {TΣ,s(X) | s ∈ S} such that

1. Σ〈〉,s ⊆ TΣ,s(X) and Xs ⊆ TΣ,s(X) for s ∈ S;

2. TΣ,s′(X) ⊆ TΣ,s(X) if s′ ≤ s;

3. if f ∈ Σw,s and ti ∈ TΣ,w(i)(X) for i < |w|, then f(t0, . . . , t|w|−1) ∈
TΣ,s(X).

In [3], it is proved that TΣ(X) is an order-sorted algebra and when Σ is
regular, each term has a least sort.

An equation is a triple (X, t, t′), written t ≈ t′, where X is a variable set
and t, t′ are in TΣ(X) and have the same least sort. See [3] on how to relax
the sort restriction. The review of order-sorted algebras ends here.

Definition 2.4 (Encryption Signature). A regular order-sorted signature is
an encryption signature if it contains a distinguished sort symbol >, the sort
of all messages, and a binary encryption operation enc defined so that the
least sort of every term of the form enc(t0, t1) is >.

Definition 2.5 (Strand Space Signature). A strand space signature (Σ, B)
is an encryption signature Σ, and a non-empty subset B of sort symbols
in Σ such that s ∈ B implies s < >. Each member of B is called a base
sort. Every operation in Σ with a base sorted result must have base sorted
arguments.

Definition 2.6 (Strand Space Equations). Equations in Γ for strand space
signature (Σ, B) are strand space equations if the least sort of the terms that
define each equation in Γ is a base sort in B.

5

Base sort symbols: name, text, data, skey, akey
Non-base sort symbol: mesg (implementation of >)

Subsorts: name, text, data, akey, skey < mesg

enc : mesg×mesg→ mesg Encryption
pair : mesg×mesg→ mesg Pairing
Ci : mesg Tag constants (i ∈ N)
pubk : name→ akey Public key of name
invk : akey→ akey Inverse of asymmetric key
ltk : name× name→ skey Long term shared key

Equation: invk(invk(x)) ≈ x for x : akey

Figure 1: Basic Crypto Signature and Equation

The unification type of Γ w.r.t. signature Σ is unitary if every problem has
a minimal complete set of unifiers that has at most one element [5, Chapter 8,
Section 3.1].

Definition 2.7 (Strand Space Algebra). Given strand space signature (Σ, B)
and strand space equations Γ, a strand space algebra AΣ,B,Γ(X) is the quotient
of TΣ(X) by the equivalence relation on TΣ(X) derived from the equations
in Γ, where the unification type of Γ w.r.t. signature Σ is unitary.

In the remainder, the strand space signature and equations are fixed,
and its algebras are written as A(X) and as A when the variable set X is
available from the context, and the term algebras as T (X) and T respectively.
Relation ≡ is the equivalence relation on T> derived from the equations in Γ,
and the equivalence class [t] is {t′ | t ≡ t′}. We assume each equivalence
class has a canonical representative. At times we conflate a term with the
equivalence class of which it is a member to simplify the presentation. Given
a sort s, t : s asserts that [t] ∈ As, and t : S asserts that for some s ∈ S, t : s.
Term t is a message if [t] ∈ A>. Message t is an atom iff t : B. The message
enc(t0, t1) is written {|t0|}t1 .

In the Basic Crypto algebra, sort mesg implements sort >, and all of its
other sorts are base sorts. A term of the form invk(t) is an atom. Figure 2
shows the classification of terms in the Basic Crypto algebra. In text, we
use comma as a right associative binary operation for pairing and Ka for
pubk(a), as in the caption of Figure 3.

6

na
m

e

ak
ey

sk
ey

da
ta

te
xtX> ta
gs

pairings

encryptions

Carrier set of sort mesg
X>: variables of sort mesg

Figure 2: Basic Crypto Carrier Sets

Theorem 2.1 (Encryption Freely Generated). Suppose t, t0, t1 ∈ T> and
{|t0|}t1 ≡ t. Then there exists t′0, t

′
1 such that t = {|t′0|}t′1 , t0 ≡ t′0, and t1 ≡ t′1.

Proof. Consider T 0
>(X) ⊆ T>(X), where T 0

>(X) = Σ〈〉,> ∪X> ∪
⋃
s∈B Ts(X).

Observe that the encryption operation does not occur in T 0
>(X) and that

T 0
>(X) freely generates T>(X). Thus A0

>(X) = {[t] | t ∈ T 0
>(X)} freely

generates A>(X). No equation applies to messages in A>(X) \ A0
>(X) and

so induction on term formation gives the result.

Figure 2 shows the carrier sets for the Basic Crypto Algebra.

Definition 2.8 (Position). A position p is a finite sequence of natural num-
bers. The term in t that occurs at p, written t@ p, is:

t@ 〈〉 = t;
f(t0, . . . , t|w|−1) @ 〈i〉 a p = ti @ p if f ∈ Σw,s and i < |w|.

A term t occurs in t′ ∈ T>(X) if t = t′ @ p for some p. A message t occurs
in t′ ∈ A>(X) if the canonical representative of t occurs in the canonical
representative of t′.

Some positions within a message are distinguished. A position p traverses
a key edge in t if t@ p0 = {|t0|}t1 and p = p0

a 〈1〉 a p1. A position p traverses
an atom edge in t if t@ p0 = f(t0, . . . , t|w|−1) is an atom and p = p0

a 〈i〉a p1,
where f ∈ Σw,s and i < |w|. A position is a carried position in t if it

7

pair

enc

x pubk

a

enc

enc

x pubk

a

pubk

b

Figure 3: Tree for {|x|}Ka , {|{|x|}Ka|}Kb

traverses no key or atom edge in t. In Figure 3, variable x occurs at two
carried positions, but a occurs at no carried positions.

The concept of an accessible term is used in Definition 7.9.

Definition 2.9 (Accessible). Message t0 is accessible in t1, written t0 � t1,
if t0 occurs at a position in t1 that traverses no atom edge.

A carried term is one that can be extracted from a message reception
given the right set of decryption keys.

Definition 2.10 (Carries). Message t0 carries t1, written t1 v t0, if t1 occurs
at a carried position in t0.

Carried positions respect equality modulo the equations.

Definition 2.11 (Carried Positions). Given a term t, the set of positions at
which t′ carries t is carpos(t, t′), where

carpos(t, t′) =



{〈〉} if t′ ≡ t, else
{〈0〉 a p | p ∈ carpos(t, t0)}

if t′ = {|t0|}t1 , else
{〈i〉 a p | p ∈ carpos(t, ti), i < n}

if t′ = f(t0, . . . , tn−1) and
t′ is not an atom, else

{} otherwise.

Note that carpos(x, invk(invk(x))) = {〈〉}, not {〈〉, 〈0, 0〉}, and t′ carries t
iff carpos(t, t′) is non-empty.

8

Theorem 2.2. For all t0, t1, t
′
0, t

′
1 ∈ T>(X), t0 ≡ t1 and t′0 ≡ t′1 implies

carpos(t0, t
′
0) = carpos(t1, t

′
1).

Proof. When t′0 and t′1 are atoms, the result is obvious. Otherwise, Theo-
rem 2.1 applies.

The key insight discovered while implementing strand space algebras is
that ordinary order-sorted algebras with restricted signatures, coupled with
the carpos function, captures the essence of strand space algebras required
to implement the cpsa algorithm. Section 10 will explain why the details of
the carpos function are important, and why an implementation of the carries
relation does not suffice.

Definition 2.12 (Strand Space with Asymmetric Encryption). A strand
space algebra AΣ,B,Γ(X) with asymmetric encryption has a signature with a
distinguished base sort symbol akey, an operation invk : akey → akey, and Γ
contains the equation invk(invk(x)) ≈ x for x : akey.

Definition 2.13 (Inverse Key). For a strand space with asymmetric encryp-
tion, the decryption key of encryption {|t0|}t1 is inv(t1), where

inv(t) =


invk(t) if t : akey;
undefined if t is a variable of sort >;
t otherwise.

Both unification and matching are used to solve equations. First, a few
more definitions from [3] and [5]. Given two S-sorted variable sets X and Y ,
an order-sorted substitution is an S-sorted map σ : X → A(Y) such that
σ(x) 6= x for only finite many elements of X. For a substitution σ, the
domain is the set of variables Dom(σ) = {x | σ(x) 6= x} and the range is
the set of terms Ran(σ) = {σ(x) | x ∈ Dom(σ)}. Substitution σ0 is more
general than σ1, written σ0 E σ1, if there exists a substitution σ2 such that
σ1(x) ≡ σ2(σ0(x)) for x ∈ X, the variable set that generates the term algebra.
It is possible to have σ0 E σ1 and σ1 E σ0. In this case, σ1 = σ2 ◦ σ0 and
σ0 = σ′2 ◦ σ0 where σ2 and σ′2 are renamings. That is, Dom(σ2) = Ran(σ2)
and likewise for σ′2. In this case we say that σ0 and σ1 are renamings of
each other. Given an S-sorted map ϕ : X → A(Y), the unique order-sorted
Σ-homomorphism ϕ∗ : A(X)→ A(Y) induced by ϕ is also denoted ϕ.

The algorithms used to solve unification and matching problems typically
solve many equations at once. To facilitate this requirement, algebras provide

9

functions with the following signatures.

unify : T>(X)× T>(X)× (X → T>(X))→ (X → T>(X))∗

match : T>(X)× T>(Y)× (X → T>(Y))→ (X → T>(Y))∗

Suppose σ0 has the property that σ0(ti) ≡ σ0(t
′
i) for i < n. Then σ1(ti) ≡

σ1(t
′
i) for i ≤ n if σ1 ∈ unify(tn, t

′
n, σ0). The unify function has this property:

unify(t0, t1, σ0) = {σ1 ◦ σ0 | σ1 ∈ unify(σ0(t0), σ0(t1), σid)},

where σid is the identity substitution. Furthermore, it must produce a mini-
mal complete set of unifiers.

Lemma 2.3 (Order of Unification). Suppose that the underlying message
algebra has single most general unifiers for any two unifiable terms. Suppose
also that unify(t0, t1, σid) = {σ0} and that unify(s0, s1, σid) = {σ1}. Then
unify(s0, s1, σ0) ∼= unify(t0, t1, σ1). That is, when one side exists so does the
other, and the two substitutions will be renamings of each other.

A proof of this result can be found for example in [1]. By a simple

induction, given any system of equations, E = {t1
?
= t′1, . . . , tn

?
= t′n}, we

may solve them in any order and we will end up with the same substitution
(up to renaming).

This justifies more general definitions that will be used later. Let A0 be
a set of terms which you would like to jointly unify. That is, A0 represents

the equations {ti
?
= tj | ti, tj ∈ A0}. Then we may define Unif (A0, σ) =

unify(tn−1, tn, unify(. . . , unify(t0, t1, σ) . . .)). By Lemma 2.3 this definition
does not depend on the order of the terms t0, . . . , tn. The result will be
the same up to renaming for any ordering of the terms. It then follows by
further induction that Unif (A1,Unif (A0, σ)) ∼= Unif (A0,Unif (A1, σ)). This
justifies the more general definition

U(A0, . . . , An;σ) = Unif (An,Unif (. . . ,Unif (A0, σ) . . .)).

Again we could have defined it in terms of any order of the sets A0, . . . , An.
The result might be a different substitution but it would be a renaming of
the one defined.

10

Discussion

The message algebra that appears in strand space papers [6, 4] was not imple-
mented because there is no syntactic method that can be used to determine
if an encryption denotes symmetric or asymmetric encryption. The signature
in Figure 1 resolves this problem.

The OSA conjecture of this paper is that the results in every strand space
paper would remain unchanged if it used algebras from Definition 2.7 as
long as unification in the algebra produces at most one most general unifier.
Notice there is no prohibition on constants being atoms in the definition of
a strand space algebra in this paper, in contrast with the algebras defined in
other papers.

Some strand space papers defined the word occurs to mean carried by.
This document uses it to assert a message is within another message.

3 Data Structures

The data structures used in the implementation are modeled as elements in
an order-sorted term algebra. The signature for the algebra is the extension
of a strand space signature shown in Table 1. In this specification, it is
assumed the strand space signature uses the sort symbol mesg to implement
sort >.

Every element of the sort atom is intended to be an element of some base
sort. Furthermore, elements of the other sorts added by a cpsa signature
correctly model an implementation when there are no variables of those sorts.
As a result, the algebras that model an implementation are cpsa algebras.

Definition 3.1 (cpsa Algebra). Consider the class of Σ,Γ-algebras, algebras
over cpsa signature Σ that satisfy equations Γ. Algebra C(X) is a cpsa
algebra if it is a free Σ,Γ-algebra generated by variable setX, and the variable
set X has the following property. For sort s, Xs is empty when s is atom,
evt, role, maplet, instance, node, ordering, and preskel.

Section 5 on protocols defines events (evt), traces (env list), and roles
(role). Section 6 on executions defines instances (instance) and role sub-
stitutions (maplet set). Section 7 on skeletons defines, nodes (node), node
orderings (ordering set), and preskeletons (preskel).

11

Additional sort symbols: atom, evt, role, maplet,
instance, node, ordering, and preskel

Subsorts: for each s ∈ B, s ≤ atom < mesg

+: mesg→ evt − : mesg→ evt r : evt list× atom set× atom set→ role
m : mesg×mesg→ maplet i : role× nat×maplet set→ instance

n : nat× nat→ node o : node× node→ ordering
k : role set× instance list× ordering set× atom set× atom set→ preskel

mesg the sort of all messages (implementation of >)
atom the sort of all base sorted messages

evt a transmission or reception event
trace a sequence of events used in a role
role a trace, a non-originating set, and a uniquely-originating set

protocol a set of roles
nat a natural number

maplet a map from a role variable to a preskeleton term
instance a strand’s trace and inheritance as instantiated from a role

node a pair of numbers, a strand identifier and a strand position
ordering a causal ordering between a pair of nodes
preskel a preskeleton

Table 1: cpsa Signature

12

4 Algorithms as Term Reduction Systems

Algorithms in this paper are specified as abstract reduction systems [1, Chap-
ter 2]. A reduction system is a pair (A,→), where reduction → is a binary
relation → ⊆ A × A. Element x ∈ A is a normal form if there is no y such
that x → y. The transitive closure of → is →+. The reflexive transitive
closure of → is →∗. A reduction is confluent if x→∗ y0 and x→∗ y1 implies
there is a z such that y0 →∗ z and y1 →∗ z. A reduction is terminating
if there are no infinite descending chains. A reduction is convergent if it is
confluent and terminating.

Let K be Apreskel(X). Algorithms are specified as reduction systems of
the form (K,→), which are then used to specify a related setwise reduction
system of the form (2K,�). Setwise reduction systems are the ones with the
interesting normal forms and confluence properties. In a setwise reduction
system, reduction rewrites one element of a set to a set of elements.

Definition 4.1 (Setwise Reduction System). The setwise reduction system
of binary relation ⊆ K× 2K is a reduction system (2K,�), where for each
K0 ∈ 2K, K0 � K1 if for some k0 ∈ K0, k0 K2, K1 = K2 ∪ (K0 \ {k0}),
and K1 6= K0.

The cpsa algorithm will be specified as a setwise term reduction system,
where the initial problem is given a singleton in 2K, and the answers computed
by an implementation of the algorithm are a normal form of the setwise
reduction relation �k defined in Section 15.

In what follows the relation k K is defined in terms of →⊆ K× K by
specifying {k}� K using →, so the relation is not explicitly defined.

We regard sets of preskeletons as factored by isomorphism, where each set
has at most one representative of the equivalence class of isomorphic preskele-
tons. The definition of isomorphic preskeletons is given in Definition 7.4.

5 Protocols

A protocol defines the patterns of allowed behavior for each participant in an
execution of the protocol. Protocol participants send and receive messages.

Definition 5.1 (Event). An event is either a message transmission or a
reception. Formally, an event is a pair (d, t) with t ∈ A> and d one of

13

the symbols + or −. A positive message +t is outbound, and a negative
message −t is inbound.

In a cpsa algebra, an event is a term of sort evt.

Definition 5.2 (Trace). A trace is a non-empty sequence of events, an ele-
ment of (±A>)+

In a cpsa algebra, a trace is a term of sort evt list.

Definition 5.3 (Originates). A message originates in a trace if it is carried
by some event and the first event in which it is carried is outbound.

Definition 5.4 (Gained). A message is gained in a trace if it is carried by
some event and the first event in which it is carried is outbound.

Definition 5.5 (Acquired). A message is acquired by a trace if it first occurs
in an inbound message and is also carried by that message.

The next definition describes syntactic constraints on “uniquely-originating”
and “non-originating” atoms. The meaning of these adjectives is not revealed
until Definition 6.7.

Definition 5.6 (Role). A role r consists of a trace rtrace(r), a set of non-
originating atoms rnon(r), and a set of uniquely originating atoms runique(r).
The variable set rvar(r) of the role is the set of variables that occur in rtrace(r).
The following properties hold.

1. Each uniquely originating atom originates in the trace.

2. Each non-originating atom is not carried by any event in the trace, and
each variable that occurs in the atom occurs in the trace.

3. Every non-base sorted variable is acquired by the trace.

In a cpsa algebra, a role is a term of the form r(C,N,U), where

rtrace(r(C,N,U)) = C,
rnon(r(C,N,U)) = N,

runique(r(C,N,U)) = U.

Definition 5.7 (Protocol). A protocol is a set of roles with pairwise disjoint
variable sets.

14

Discussion

The refinement of strand space protocols is mostly just a change in rep-
resentation for the same information. The change is motivated by the way
protocols are used. In this refinement, a protocol is defined without reference
to the concept of a strand, a node, or a strand space.

In [2], a protocol is a triple (Π, strand non, strand unique), where Π is a
finite set of strands, strand non and strand unique map a strand to a set of
atoms, and the mappings have properties analogous to the ones in the Defi-
nition 5.6, the definition of a role. The set of roles is {r | s ∈ Π, rtrace(r) =
tr(s), runique(r) = strand unique(s), rnon(r) = strand non(s)}.

In [2], non-originating messages were assumed to be keys of the form K
or K−1, thereby excluding long term shared symmetric keys of the form
ltk(A,B). The definition of role allows symmetric keys to be assumed to be
non-originating.

6 Executions

Executions of a protocol are formalized by a bundle, which is described in
this section. A key difference in this approach to formalizing strand spaces
is that the parameters used to instantiate a strand’s trace from a role are
preserved, so as to support role origination assumptions.

Definition 6.1 (Instance). An instance i consists of a role role(i), a positive
number height(i), and an order-sorted substitution subst(i). Let r, h, and σ
be the role, height, and substitution for a given instance i. Let C|h be the
prefix of sequence C of length h. The following properties hold.

1. The height of an instance cannot exceed the length of it’s role’s trace.

2. Dom(σ) is the set of variables that occur in rtrace(r)|h.

3. No variable in an instance’s role may occur in Ran(σ).

In a cpsa algebra, an instance is a term of the form i(r, h,M) where

role(i(r, h,M)) = r,
height(i(r, h,M)) = h,
subst(i(r, h,M)) = σ

and σ(x) = y for each m(x, y) ∈M .

15

Definition 6.2 (Trace of Instance). The trace of an instance i, trace(i), is a
sequence of length height(i) such that for σ = subst(i) and all j < height(i),
trace(i)(j) = σ(rtrace(role(i))(j)).

For every instance i, the definitions imply that the set of variables that
occur in trace(i) is a subset of the set of variables that occur in Ran(subst(i)).
A Diffie-Hellman algebra provides an example in which the subset relation is
proper.

Definition 6.3 (Instance Origination Assumptions). Let σ = subst(i) for
an instance i, r = role(i), and h = height(i). Instance i inherits the non-
origination assumption σ(t) if t ∈ rnon(r), and the variables in t are in
Dom(σ). Instance i inherits the unique origination assumption σ(t) if t ∈
runique(r), and t originates in rtrace(r)|h.

Definition 6.4 (Strand Space [6, Definition 2.2]). A strand space over alge-
bra A> is a set Θ together with a trace mapping tr : Θ→ (±A>)+.

In this document, a strand set Θ is an initial segment of the natural
numbers, so a trace mapping is a sequence. Thus a strand space is the trace
sequence tr : ((±A>)+)+, and its strand set is the domain of tr .

A finite sequence of instances I is a protocol respecting strand space. The
strand space of I is tr = trace ◦I. By construction, the trace of each strand
is an instance of a role.

The variable set var(I) is the set of variables that occur in the range of
the substitution of its instances. In what follows, definitions are simplified
by assuming the variable set associated with an instance sequence is disjoint
from the set of variables that occur in its roles.

Definition 6.5 (Strand Space Nodes). The set of nodes of I is nodes(I) =
{(s, p) | s < |I|, p < height(I(s))}. The event at a given node is evt(I, (s, p)) =
trace(I(s))(p). A node is transmitting if its event is outbound, otherwise it
is receiving. The message at a node is written msg(I, n).

Definition 6.6 (Strand Succession). The strand succession relation ⇒ is
{(s, p)⇒ (s, p+ 1) | s < |I|, p < height(I(s))− 1}.

Definition 6.7 (Bundle). A protocol respecting bundle B(I,→) is a directed
acyclic graph, where the vertices are the nodes of I, and an edge represents
communication (→) or strand succession (⇒). For communication, n0 → n1

16

only if there is a message t such that evt(I, n0) = +t and evt(I, n1) = −t. For
each reception node n1, there is a unique transmission node n0 with n0 → n1.
Finally, each inherited uniquely originating atom originates on its trace and
on no other, and no event in a trace carries an inherited non-originating
atom.

Notice that no non-base sorted variables may occur in the trace of an
instance in a bundle.

Definition 6.8 (Causal Order). Each acyclic graph has a transitive asym-
metric relation ≺ on its vertices. The relation specifies the causal ordering
of nodes in a bundle. Relation R on set S is asymmetric iff xRy implies not
y R x for all distinct x, y ∈ S.

Definition 6.9 (Unique Origination). An atom uniquely originates in a ex-
ecution if it originates on exactly one trace.

Definition 6.10 (Non-Originating). An atom is non-originating in an exe-
cution if the atom originates in no trace, but each of its variables occurs in
some trace.

Discussion

Strand space papers use the word positive to describe an outbound message or
a transmitting node, and the word negative to describe an inbound message
or a receiving node. The adjectives used in this paper were selected because
they are mnemonic.

7 Skeletons

Strands in executions represent both adversarial and non-adversarial behav-
iors. A strand that represents adversarial behavior is called a penetrator
strand. The roles available to a penetrator are determined by the message
signature. For the Basic Crypto Signature in Figure 1, the traces of the roles
are in Figure 4. Penetrator roles make no origination assumptions.

A non-adversarial strand is called regular. A typical protocol contains a
small finite set of roles used by regular strand. In addition, a regular strand
may be an instance of a listener role. For a given message t, a listener’s trace

17

base(t) = 〈+t〉, where t is an atom
tag(t) = 〈+t〉, where t is a tag
cat(t0, t1) = 〈−t0,−t1,+(t0, t1)〉
sep(t0, t1) = 〈−(t0, t1),+t0,+t1〉
enc(t0, t1) = 〈−t0,−t1,+{|t0|}t1〉
dec(t0, t1) = 〈−{|t0|}t1 ,−t2,+t0〉, where t2 = inv(t1)

Figure 4: Penetrator Traces

is 〈−t,+t〉. A listener strand is used to assert that a message is not a secret
and is available from the penetrator.

The cpsa program uses a skeleton to represent the regular behavior that
might make up part of an execution.

Definition 7.1 (Preskeleton). A preskeleton k consists of instance sequence
insts(k), a transitive asymmetric node ordering ≺k, a set of uniquely orig-
inating atoms unique(k), and a set of non-originating atoms non(k). The
following properties hold.

1. The relation ≺k includes strand succession (⇒).

2. Each atom in unique(k) is carried in the trace of some instance in
insts(k).

3. Every inherited unique origination assumption is in unique(k), each
inherited atom originates on the inheriting strand, and the origination
position of the inherited atom is the same as the origination position
of the inherited atom in the strand’s trace.

4. Each atom in non(k) is not carried by an event in the trace of some
instance in insts(k), and each of variable that occurs in the atom occurs
in some trace.

5. Every inherited non-origination assumption is in non(k).

The set K(X) is the set of preskeletons k such that var(insts(k)) ⊆ X,
written K when the variable set X is available from the context. To simplify
notation, let ht(k, s) = height(inst(k)(s)).

18

In a cpsa algebra, a preskeleton is a term of the form k(P, I, O,N, U)
where

insts(k(P, I, O,N, U)) = I,
non(k(P, I, O,N, U)) = N,

unique(k(P, I, O,N, U)) = U.

The implementation of a preskeleton keeps track of its protocol as a set of
roles, P , but we ignore the protocol here as well as the fact in a well formed
preskeleton, the role of every instance is an element of P . The implemen-
tation of a preskeleton node ordering is not so obvious. For preskeleton k,
only a subset of ≺k is explicit: o(n0, n1) ∈ O if n0 ≺k n1, n0 and n1 are on
different strands, n0 is transmitting, and n1 is receiving.

To ease the task of isomorphism testing (Section 8) and generalization
by weakening (Section 13), the implementations normalizes a preskeleton
by performing the transitive reduction on O. The transitive reduction of
a relation is the minimal relation such that both have the same transitive
closure.

Definition 7.2 (Hulled Preskeleton). A preskeleton k is a hulled preskeleton
if each atom in unique(k) originates in at most one trace.

Let O(k, t) be the set of nodes at which t originates in k, and G(k, t) be
the set of nodes at which t is gained in k.

Definition 7.3 (Skeleton). A preskeleton k is a skeleton if each atom in
unique(k) originates in at most one trace, and the node of origination pre-
cedes each node that gains the atom, i.e. for every t ∈ unique(k), n0 ∈ O(k, t)
and n1 ∈ G(k, t) implies n0 ≺k n1.

Definition 7.4 (Preskeleton Homomorphism). There is a preskeleton homo-

morphism from k0 to k1, written k0
φ,σ7−→ k1, if φ and σ are structure-preserving

maps with the following properties:

1. φ maps strands of k0 into those of k1, and nodes as φ((s, p)) = (φ(s), p);

2. σ is a Σ-homomorphism;

3. n ∈ nodes(k0) implies σ(evt(insts(k0), n)) ≡ evt(insts(k1), φ(n));

4. n0 ≺k0 n1 implies φ(n0)≺k1 φ(n1);

5. σ(non(k0)) ⊆ non(k1);

19

6. σ(unique(k0)) ⊆ unique(k1);

7. t ∈ unique(k0) implies φ(O(k0, t)) ⊆ O(k1, σ(t)).

A homomorphism is strandwise injective if its strand map is injective. Two
preskeletons are isomorphic if they are related by strandwise injective homo-
morphism in both directions.

Condition 7 ensures that if t ∈ unique(k0) originates at (s, p) then when
we apply σ to the strand s, σ(t) neither originates nor is gained at (φ(s), j)
for j < p (σ(t) can never originate or be gained later). In other words, σ
alone will either satisfy or violate the last clause.

Definition 7.5 (Homomorphism Composition). Let k0
ψ07−→ k1

ψ17−→ k2 where
ψ0 = (φ0, σ0) and ψ1 = (φ1, σ1). Then the composition of ψ0 and ψ1 is defined

as ψ1 ◦ ψ0 = (φ1 ◦ φ0, σ1 ◦ σ0) where k0
ψ1◦ψ07−→ k2.

Since homomorphisms may arbitrarily add some structure such as adding

terms to unique and non, it is possible to have k0
φ,σ7−→ k1 and k0

φ,σ7−→ k2 with
k1 6= k2. For example k1 and k2 could be identical except that non(k1) (
non(k2). We would like to be able to talk about the image of k0 under (φ, σ).

Definition 7.6 (Image of Homomorphism). Preskeleton k1 is the image of
k0 under ψ = (φ, σ) written ψ(k0) = k1 iff

1. k0
φ,σ7−→ k1

2. ≺k1 = φ(≺k0)∗

3. unique(k1) = σ(unique(k0))

4. non(k1) = σ(non(k0))

5. ht(k1, φ(s)) = max{ht(k0, s
′) | φ(s′) = φ(s)} for s < | inst(k0)|

6. φ is surjective

This definition guarantees that the image does not contain extra strands
or nodes, and that it only contains ordering relations and origination assump-
tions necessary for ψ to be a homomorphism. Whenever there is a skeleton

20

k1 such that k0
ψ7−→ k1, then ψ(k0) is well-defined, and we can view ψ(k0) as

being included into k1. That is, k0
ψ7−→ ψ(k0)

φid,σid7−→ k1.
Given (φid, σ), it is still possible for (φid, σ)(k0) not to exist because σ

may violate the last clause of Definition 7.4. However, if there is some φ for
which (φ, σ)(k0) is well-defined, then (φid, σ)(k0) is also well-defined.

Lemma 7.1. If k0
φ,σ7−→ k1, then there is a preskeleton k such that k0

φid,σ7−→
k
φ,σid7−→ k1.

Proof. Let k = (φid, σ)(k0). Then the homomorphism k
φ,σid7−→ k1 is well-defined

which the reader can easily check by verifying each of the seven clauses of
Definition 7.4.

Corollary 1. If k0
φ,σid7−→ k1

φid,σ7−→ k2, then there is a preskeleton k such that

k0
φid,σ7−→ k

φ,σid7−→ k2.

Proof. We can compose the two homomorphisms to see that k0
φ,σ7−→ k2. We

then apply the previous lemma to find k.

The following definition is frivolous as it is not used anywhere. We’re just
trying out definitions to explore links to category theory.

Definition 7.7 (cpsa Category). Let C(X) be a cpsa algebra generated
by X (see Definition 3.1), and K(X) be a free algebra defined by the carrier
set for sort preskel in C(X). In a cpsa category

1. K(X) is an object, for each variable set X,

2. the set of arrows is (N → N) × (A>(X) → A>(Y)), where the second
component is a homomorphism of the message algebra,

3. Definition 7.4 defines the domain and the codomain of each arrow,

4. component function composition defines arrow composition, and

5. component identity functions define the arrow identity.

Definition 7.8 (Pruned Skeleton). A skeleton k has a set of redundant
strands S if there is a substitution σ that is a variable renaming, a strand
mapping φ such that s ∈ S implies there is some s′ /∈ S such that φ(s) = φ(s′)
and the height of s is no greater than the height of s′, a skeleton k′ such that

21

k
φ,σ7−→ k′ where k′ = (φ, σ)(k), and a homomorphism k′

φ′,σ′7−→ k such that
σ ◦ σ′ = σid and φ ◦ φ′ = φid. A skeleton k is pruned if it contains no
redundant strands.

Suggestion from Carolyn Talcott: Define pruned skeleton as the result of
deleting redundant set of strands. Then prove that we can use homomor-
phisms with the right properties to perform this ‘deletion’.

The concept of an execution skeleton is introduced to relate a skeleton
that contains only regular strands with its executions. An execution skeleton
may include penetrator strands.

Definition 7.9 (Used). Message t0 is used in t1 if t0 or inv(t0) is accessible
in t1 and t0 is not carried by t1.

The accessibility of a term is defined in Definition 2.9.

Definition 7.10 (Execution Skeleton). The execution skeleton k of bundle B
over instances I has the following properties.

1. insts(k) = I.

2. ≺k =≺.

3. unique(k) is the set of atoms that originate uniquely in B.

4. non(k) is the set of atoms used in the traces of I.

Definition 7.11 (Skeleton Compatible Executions). A bundle B is compat-
ible with skeleton k if there is a homomorphism from k to the execution
skeleton of B.

Definition 7.12 (Realized Skeleton). A bundle B realizes skeleton k if B is
compatible with k, and the structure preserving map (φ, σ) has the property
that σ is a bijection, φ is a bijection between the strands in k and the regular
strands in the bundle’s execution skeleton, and φ preserves the height of the
strands it maps.

A bundle models a realized skeleton if it realizes it. A bundle B models
a preskeleton k0 if there is a realized skeleton k1 such that k0

φ,σ7−→ k1 and B
models k1.

22

Discussion

In the refinement of strand space theory, there is no global strand space on
which all analysis is based. Instead, each skeleton and execution defines its
own strand space, and homomorphisms establish relations between them.
The definition of a protocol depends on no strand space.

The definitions in this section are the obvious refinements that result from
using finite ordered strand spaces. In the cpsa program, pruned skeletons
are used for skeletons in the implementation of the cpsa algorithm in [2].
In [2], skeletons were not required to respect origination, but that was just
an oversight.

8 Reductions on Preskeletons

This section describes the algorithm used to transform a preskeleton into a
skeleton as a setwise term reduction system (K,�). Recall that the relation
k K in Section 4 is defined in terms of →⊆ K×K by specifying {k}� K
using →.

If a preskeleton k is not a skeleton, then it is either because some t ∈
unique(k) actually originates at more than one node, or because for some
t ∈ unique(k), there is a node n1 ∈ G(k, t), and a node n0 ∈ O(k, t) such
that n0 ⊀k n1. These obstructions are resolved via identifying strands and
enriching node orderings respectively. We show that we can always resolve
the first obstruction before resolving the second obstruction. Moreover, if the
first obstruction is resolvable, then there is a canonical resolution (although
there may be non-canonical choices to reach it). We call this canonical res-
olution a pre-hull. Then if the second obstruction is also resolvable, it also
has a canonical resolution. This canonical resolution is a skeleton which we
call a hull. We begin by giving the definitions of pre-hull and of hull.

Definition 8.1. Given a preskeleton k, a pre-hull of k is a hulled preskeleton

k0 together with a homomorphism k
ψ07−→ k0 such that for any homomorphism

k
ψ17−→ k1 to a hulled preskeleton, there is a unique homomorphism k0

ψ7−→ k1

such that ψ1 = ψ ◦ ψ0

23

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

A preskeleton k may not have a pre-hull, but if it does, then the definition
implies that it is unique up to isomorphism. Also, every hulled preskeleton
is its own pre-hull where ψ0 is the identity homomorphism.

Definition 8.2. Given a preskeleton k, a hull of k is a skeleton k0 together

with a homomorphism k
ψ07−→ k0 such that for any homomorphism k

ψ17−→ k1 to

a skeleton, there is a unique homomorphism k0
ψ7−→ k1 such that ψ1 = ψ ◦ψ0

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Just like pre-hulls, a preskeleton may not have a hull, but if it does, then
it is unique up to isomorphism. Also, every skeleton is its own hull where ψ0

is the identity homomorphism.
We next show how to take advantage of unification in the Σ-algebra to

provide a sort of unification of strands. Before unifying two strands, we will
unify their traces.

Definition 8.3 (Trace Unification). Let k be a preskeleton which contains
strands s and s′. We say that substitution σ unifies the messages of s and s′

iff σ(evt(k, (s, p))) ≡ σ(evt(k, (s′, p))) for every p < height(s). We say that

homomorphism k
φ,σ7−→ k0 unifies the traces of s and s′ iff σ unifies the mes-

sages of s and s′. We say that the traces of s and s′ are unifiable if there is
a (φ, σ) which unifies them.

Thus, if (φ, σ) unifies the traces of s and s′, not only does σ unify the
messages but also t ∈ unique(k0) implies φ(O(k0, t)) ⊆ O(k1, σ(t)) by Clause
7 in the definition of a homomorphism (Definition 7.4). In fact, as we already
saw, it is generally possible for σ to unify the messages, without respecting
Clause 7. In this case, σ unifies the messages of s and s′, but the traces of s

24

and s′ are not unifiable. By pairing σ with φ, trace unification only allows
homomorphisms with substitutions σ which do not violate Clause 7.

By recalling the discussion which follows Definition 7.6, we can see that
if (φ, σ) unifies the traces of s and s′, then so does (φid, σ). Furthermore, if
(φid, σ) unifies the traces of s and s′, then so does (φid, σ

′) where σ′ unifies
the messages of s and s′, and σ′ E σ. We can view this another way. Let σ
be the most general unifier of the messages of s and s′. If (φid, σ) does not
unify the traces, then the traces are not unifiable.

Definition 8.4 (Substitution Reduction). Preskeleton k0 reduces to pre-

skeleton k1 by the substitution σ, written k0
Sσ−→ k1, iff k1 = ψ(k0) where

ψ = (φid, σ).

The next lemma states that if k is a skeleton in which the traces of two
strands s and s′ are unifiable, then there is a kind of most general trace
unifier. Since this most general trace unifier will turn out to always have the
form (φid, σ), we can use the corresponding Sσ as a way of implementing this
trace unification.

Lemma 8.1. Let k be a preskeleton which contains strands s and s′. Suppose
the traces of s and s′ are unifiable. Then there is a preskeleton k0 and a

homomorphism k
ψ07−→ k0 which unifies the traces of s and s′ such that for

every homomorphism k
ψ17−→ k1 which unifies the traces of s and s′, there is

a unique homomorphism k0
ψ7−→ k1 so that ψ1 = ψ ◦ ψ0.

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Proof. Since the traces of s and s′ are unifiable by some (φ̂, σ̂), we know that
(φid, σ̂) also unifies the traces. Furthermore, there is a most general unifier
σ0 which unifies the messages of s and s′. Since σ0E σ̂ we know that (φid, σ0)
also unifies the traces. Let ψ0 = (φid, σ0) and let k0 = ψ0(k). We show that
this is the preskeleton and homomorphism we want.

The homomorphism ψ0 unifies the traces of s and s′ by construction. Now

let k
ψ17−→ k1 with ψ1 = (φ1, σ1), be a homomorphism which unifies the traces

of s and s′. Since σ0 is the most general unifier of the messages of s and s′,

25

there is a unique σ such that σ1 = σ ◦ σ0. Then by letting ψ = (φ1, σ) we
see that ψ ◦ ψ0 = (φ1, σ) ◦ (φid, σ0) = (φ1, σ ◦ σ0) = (φ1, σ1) = ψ1. It is clear
that φ1 is the unique node map that will work, and we already noted that σ
must also be unique.

We can find the k0 of Lemma 8.1 (when it exists) by finding the most
general σ0 which simultaneously unifies the corresponding messages in the
traces of s and s′ and applying the reduction Sσ0 to k. This reduction will
fail if the traces of s and s′ are not unifiable, and it will succeed otherwise.
Furthermore, Lemma 8.1 guarantees that there is at most a single k0 such

that k
Sσ0−→ k0 where σ0 is the most general unifier of the messages of strands s

and s′.

Definition 8.5 (Strand Unification). Let k be a preskeleton with strands s
and s′. We say that a homomorphism ψ = (φ, σ) unifies the strands s and
s′ iff φ(s) = φ(s′). We say the strands s and s′ are unifiable if there is a
homomorphism which unifies them.

Note that if ψ unifies two strands, then ψ unifies their traces, but the
converse is not true in general. Thus, unification of two strands can be
broken into two steps. First we unify their traces, then we unify the strands
in a very simple way. We already saw that the first step can be performed
in a most general way, as codified by Lemma 8.1. We now want to provide a
similar notion for the second step.

Suppose the trace of strand s is a prefix of the trace of strand s′ in
preskeleton k0. In other words, (φid, σid) unifies the traces of s and s′. This
would be the case, for example, if k0 was the result of unifying the traces of s
and s′ in some other preskeleton. In that case, there is a ψ which unifies the
strands s and s′, namely ψ = (φs,s′ , σid) where

φs,s′(j) =

{
φs(s

′) if j = s
φs(j) otherwise

φs(j) =

{
j − 1 if j > s
j otherwise.

Definition 8.6 (Compression Reduction). Preskeleton k0 reduces to preskel-

eton k1 by compressing the strand s into s′, written k0

Cs,s′−→ k1, iff ψ(k0) = k1,
with ψ = (φs,s′ , σid).

26

The compression reduction Cs,s′ can only be performed on k0 if (φid, σid)
unifies the traces of s and s′, because otherwise (φs,s′ , σid)(k0) is not well-
defined. We generally use this reduction when unifying strands after having
unified their traces. This reduction is used to implement a kind of most
general unification of two strands once their traces have been unified.

Lemma 8.2. Let k be a preskeleton in which (φid, σid) unifies the traces of
two strands s and s′, and suppose the strands s and s′ are unifiable. Then

there is a preskeleton k0 and a homomorphism k
ψ07−→ k0 which unifies the

strands s and s′ such that for every homomorphism k
ψ07−→ k0 which unifies

the strands s and s′, there is a unique homomorphism k0
ψ7−→ k1 so that

ψ1 = ψ ◦ ψ0.

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Proof. Let ψ0 = (φs,s′ , σid), and ψ0(k) = k0. We will show that this is the
preskeleton and homomorphism we want.

By the definition of φs,s′ we see that ψ0 unifies the strands s and s′.

Let k
ψ17−→ k1 with ψ1 = (φ1, σ1) be any homomorphism which unifies the

strands s and s′. We let ψ = (φ, σ1) where φ is a node map we still need to
define. Since φs,s′ maps onto the strands of k0, φ is completely determined
by where it sends φs,s′(j). But in order for ψ1 = ψ ◦ ψ0 we are forced to
define φ(φs,s′(j)) = φ1(j). We can do this because φs,s′ does not identify any
strands except for s and s′, and because φ1 also identifies s and s′. Using
this φ, it is clear that ψ1 = ψ ◦ ψ0. To see that ψ is unique, we note that we
had no choice for either the substitution σ1 or the node map φ.

We can find the k0 of Lemma 8.2 (when it exists) by applying Cs,s′ to k.
This reduction will fail if the strands s and s′ are not unifiable or if the trace
of s is not a prefix of the trace of s′, and it will succeed otherwise. Moreover,

Lemma 8.2 guarantees that there is at most a single k0 such that k
Cs,s′−→ k0.

The substitution and compression reductions are used to unify two strands
in two separate steps. When two strands are unifiable, then their traces are
also unifiable. We may thus use Lemma 8.1 to unify their traces in a most
general way. This will cause the trace of one of the strands to be a prefix

27

of the other, thereby enabling compression. The resulting preskeleton is the
most general one which unifies the two strands, as we show in the following
lemma.

Lemma 8.3. Let k be a preskeleton containing strands s and s′ which are

unifiable. Then there is a preskeleton k0 and a homomorphism k
ψ07−→ k0 which

unifies s and s′ such that for every homomorphism k
ψ17−→ k1 which unifies s

and s′, there is a unique homomorphism k0
ψ7−→ k1 so that ψ1 = ψ ◦ ψ0.

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Proof. Since the strands s and s′ are unifiable, their traces are also unifiable.
Thus, by Lemma 8.1, we can find a preskeleton k′0 and a homomorphism

k
ψ′07−→ k′0 so that any homomorphism from k which unifies the traces of s

and s′ factors through ψ′
0. The preskeleton k′0 now satisfies the hypotheses of

Lemma 8.2, so we can find a preskeleton k′′0 and a homomorphism k′0
ψ′′07−→ k′′0

so that any homomorphism from k′0 which unifies s and s′ factors through
ψ′′

0 . Let ψ0 = ψ′′
0 ◦ ψ′

0 = (φs,s′ , σ) where σ is the mgu of the traces of s and
s′, and let k0 = k′′0 . It remains to show that this ψ0 and k0 have the desired
properties.

First, it is clear that ψ0 unifies s and s′. Now let k
ψ17−→ k1 be an arbitrary

homomorphism which unifies s and s′. By Lemma 8.1, ψ1 factors uniquely
through ψ′

0 as ψ′◦ψ′
0. Moreover, ψ′ is a homomorphism from k′0 which unifies

s and s′, thus by Lemma 8.2, ψ′ factors uniquely through ψ′′
0 as ψ′ = ψ′′ ◦ψ′′

0 .
Thus ψ1 factors uniquely through ψ0 = ψ′′

0 ◦ ψ′
0 as desired.

k
� ψ′0 //
	

ψ1

$$IIIIIIIIIIIIIIIIIIIIII k′0w

ψ′

��7
77

77
77

77
77

77
7
� ψ′′0 // k0_

ψ

��
k1

28

We thus now have a canonical way of unifying two strands when they are
unifiable.

Lemma 8.4. Let k be a preskeleton containing strands s0, s
′
0, s1, s

′
1 (not

necessarily all distinct) such that the pairs of strands (s0, s
′
0) and (s1, s

′
1) are

simultaneously unifiable. Let k0 be the result of first unifying s0 and s′0 and
then s1 and s′1 according to Lemma 8.3. Let k1 be the result of first unifying
s1 and s′1 and then s0 and s′0 also according to Lemma 8.3. Then k0 and k1

are isomorphic.

Proof. We can repeatedly apply Lemma 8.3 to obtain the following diagram.

k9
ψ′0

||yy
yy

yy
yy

yy �
ψ′1

""EE
EE

EE
EE

EE

k′0_
ψ0

��

k′1_
ψ1

��
k0

� ψ2 // k1
�

ψ′2

oo

The preskeleton k′0 is the result of unifying strands s0 and s′0 of k in a
most general way, and k0 is the result of unifying strands ψ′

0(s1) and ψ′
0(s

′
1)

of k′0 in a most general way. Similarly, k′1 is the result of unifying strands
s1 and s′1 of k in a most general way, and k1 is the result of unifying strands
ψ′

1(s0) and ψ′
1(s

′
0) of k′1 in a most general way.

We can infer the homomorphism k0
ψ27−→ k1 and k1

ψ′27−→ k0 from Lemma 8.3
as the unique homomorphisms which make the diagram commute. By the
uniqueness of these arrows we can infer that ψ2◦ψ′

2 = idk1 and that ψ′
2◦ψ2 =

idk0 . Thus ψ2 and ψ′
2 are isomorphisms and they are inverses of each other.

Thus k0 and k1 are isomorphic.

Lemma 8.4 implies that if we want to simultaneously unify several sets
of strands which are simultaneously unifiable, any order of pairwise strand
unification will result in a skeleton which is isomorphic to the result of every
other order. However, given a preskeleton k which is not a hulled preskeleton,
we do not want to unify every pair of strands which are unifiable. We only
want to unify those pairs of strands which demonstrate that for some t ∈
unique(k), O(k, t) has more than one node. For this purpose we use another
reduction which is built out of Sσ and Cs,s′ .

29

Recall that the relation k K in Section 4 is defined in terms of →⊆
K× K by specifying {k}� K using →.

Definition 8.7 (Hulling Reduction). Preskeleton k0 reduces to preskeleton

k1 by hulling strands s and s′, written k0

Hs,s′−→ k1, iff there is some t ∈
unique(k0) and there are distinct strands s and s′ such that {(s, p), (s′, p′)} ⊆
O(k0, t), and the strands s and s′ are unifiable, and k1 is the preskeleton

guaranteed by Lemma 8.3. For the setwise hulling relation, {k0}
Hs,s′−� {k1 |

k0

Hs,s′−→ k1}, when k0 has a message in unique(k0) that originates on both s
and s′.

This hulling reduction Hs,s′ implements the “most general strand unifier”
ψ0 from Lemma 8.3 when it exists, but it is only applicable when s and s′

originate the same t ∈ unique(k). By the proof of Lemma 8.3, k0

Hs,s′−→ k1, iff

there is a (unique) preskeleton k such that k0
Sσ−→ k

Cs,s′−→ k1, where σ is the
most general unifier of the messages of s and s′.

Given a preskeleton k which is not a hulled preskeleton, it is possible that
simultaneously unifying all pairs of strands s and s′ which both originate
some t ∈ unique(k) will not produce a hulled preskeleton. The unification
process may introduce more points of origination of terms which are meant
to be uniquely originating. However, the next lemma shows that repeatedly
resolving these obstructions will yield a pre-hull.

Lemma 8.5. Suppose that there is a homomorphism from k into a hulled
preskeleton. Then k has a pre-hull.

Proof. If k is not a hulled preskeleton, then it has (possibly several) pairs
of strands s and s′ which each originate the same term t ∈ unique(k). All
of these pairs are simultaneously unifiable since the homomorphism from k
into a hulled preskeleton which is assumed to exist performs that unification.
Therefore by Lemmas 8.3 and 8.4, we may unify these pairs s and s′ in

any order in a most general way to find a homomorphism k
ψ07−→ k0 which

simultaneously unifies all the pairs s and s′, such that for any homomorphism

k
ψ17−→ k1 which unifies these pairs there is a unique k0

ψ7−→ k1 such that
ψ1 = ψ ◦ ψ0.

By the properties of ψ0 and k0, if k0 is a hulled preskeleton it is the
pre-hull of k. If not, then k0 again satisfies the hypothesis of this lemma,

30

so we can repeat the process of the above paragraph. Since each iteration
reduces the number of strands, this process will eventually terminate. By the
properties of the resulting preskeleton at each step, it will terminate with the
pre-hull.

Lemma 8.6. If a preskeleton k has a pre-hull, then repeated applications of
Hs,s′ will terminate in the pre-hull of k.

Proof. For every pair of strands s and s′ which are eventually unified in the
pre-hull, there is a sequence of hulling reductions which causes s and s′ to
originate the same term which should be uniquely originating. Furthermore,
by Lemma 8.4 this obstruction is introduced by the end of every reordering of
such a sequence, although it may be introduced earlier. Thus, we may apply
the hulling reductions in any order, and we will eventually unify the same
sets of strands. Again by Lemma 8.4, the preskeletons resulting from each
order of hulling reductions will all be isomorphic. Since Lemma 8.5 shows
that at least one such order results in the pre-hull, every order will result in
the pre-hull.

Definition 8.8 (Order Enrichment). Suppose hulled preskeleton k0 is not a
skeleton. Hulled preskeleton k0 reduces to skeleton k1 by order enrichment,

written k0
O−→ k1, iff k1 is the result of adding node orderings implied by

origination. That is,

1. ≺k1 = (≺k0 ∪ {n0, n1 | n0 ∈ O(k0, t) ∧ n1 ∈ G(k0, t)})∗,

2. ht(k1, s) = ht(k0, s) for s < | inst(k0)|,

3. unique(k1) = unique(k0), and

4. non(k1) = non(k0).

There is a homomorphism from k0 to k1 that is an embedding. For the

setwise order enrichment reduction, {k0}
O−� {k1 | k0

O−→ k1} when k0 is a
hulled preskeleton that is not a skeleton.

Lemma 8.7. Suppose k is a preskeleton such that every t in unique(k)
originates in k at most once. Suppose also that there is a homomorphism
from k to a skeleton. Then there is a skeleton k0 and a homomorphism

k
ψ07−→ k0 such that for every homomorphism k

ψ17−→ k1 to a skeleton k1, there

is a unique homomorphism k0
ψ7−→ k1 so that ψ1 = ψ ◦ ψ0.

31

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Proof. Let k0 be obtained from k by adding edges to the node ordering
relation. That is, n0 ≺k0 n1 is the transitive closure of pairs such that either
n0≺kn1 or for some t ∈ unique(k), t originates at n0 and n1 ∈ G(k, t). Let ψ0

be the obvious embedding of k into k0. We must show that k0 is a skeleton.
It will be sufficient to check that we did not introduce any cycles into the
node ordering. But, in fact, if ≺k0 had a cycle, then so would the

First, we chose k0 to be a skeleton. Now let k
ψ17−→ k1 be an arbitrary

homomorphism to a skeleton k1. Then we can also apply ψ1 to k0, but we
must be careful to check that it remains a homomorphism. Only clause 4 of
Definition 7.4 could potentially fail. However, assume

Our current understanding of pruning is this. We have an example that
shows that pruning one strand at a time does not remove all redundant
strands. We are searching for efficient ways to perform multiple strand prun-
ing in one step, but haven’t found one yet.

We also do not know if single strand pruning is confluent.

Definition 8.9 (Pruning). Suppose skeleton k0 has a redundant strand s.
Then there exists a distinct strand s′ that describes more specific behavior.

Skeleton k0 reduces to skeleton k1 by pruning, written k0
Ps−→ k1, iff there

is a substitution σ such that σ(evt(k0, (s, p))) ≡ evt(k0, (s
′, p)) for all p < h,

where h is the height of strand s in k0, no variable in Dom(σ) occurs in the
trace of any strand other than s, t ∈ unique(k0) implies σ(t) ∈ unique(k0),

t ∈ non(k0) implies σ(t) ∈ non(k0), there is a k such that k0
Sσ−→ k

Cs,s′−→ k1,
and if (s, p)≺k0 (s′′, p′′) then (s′, p′)≺k0 (s′′, p′′), and if (s′′, p′′)≺k0 (s, p) then

(s′′, p′′)≺k0 (s′, p′). For the setwise pruning reduction, {k0}
Ps−� {k1 | k0

Ps−→
k1}, when there is a k1 such that k0

Ps−→ k1.

Lemma 8.8 (Pruning). Let k be a skeleton with redundant strand s. For

every pruned skeleton k1 such that k
ψ17−→ k1, there is a skeleton k0 and

homomorphisms ψ0 and ψ with k
Ps−→ k0, k

ψ07−→ k0, ψ1 = ψ ◦ ψ0, and ψ0 =
(φs,s′ , σ), where strand s′ and substitution σ are as specified in Definition 8.9.

32

Proof. Pruning operations commute. Suppose k has two redundant strands, s
and s′. If s describes more specific behavior and is used to justify pruning s′,
then the strand that justifies the pruning of s can serve the same purpose.
The proof is not complete. Something more needs to be added here.

Notice that a setwise hulling reduction may produce the empty set, but
a setwise order enrichment and pruning reduction never does.

Let reduction �=
⋃
s,s′

Hs,s′−� ∪ O−� ∪
⋃
s

Ps−�.

Theorem 8.9. The reduction � is convergent.

Proof. The reduction� is confluent by Lemmas 8.3 and 8.8. It’s convergent
because the number of hulling and pruning steps is bounded by the number
of strands in a preskeleton.

Definition 8.10 (Preskeleton Reduction System). Preskeleton k0 reduces to

pruned skeleton k1, written k0
skel−→ k1, if {k0} �∗ K, k1 ∈ K, and K is a

normal form of �.

It is easy to show k0
skel−→ k1 implies k0 7→ k1. Furthermore, the structure-

preserving map that demonstrates the homomorphism is easy to derive. For

each pruned skeleton k, k
skel−→ k.

Theorem 8.10 (Preskeleton Reduction System Correct). Let k be a pre-

skeleton. For every pruned skeleton k1 such that k
ψ17−→ k1, there is a pruned

skeleton k0 and homomorphisms ψ0 and ψ with k
skel−→ k0, k

ψ07−→ k0, and
ψ1 = ψ ◦ ψ0.

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Old stuff.

Lemma 8.11 (Hulling). Suppose k 7→ k′ with k a preskeleton and k′ a
hulled preskeleton. There exists a set of homomorphisms Ψ and a set of
hulled preskeletons K, such that for every hulled preskeleton k1 and every

homomorphism k
ψ17−→ k1, for some ψ0 ∈ Ψ, k0 ∈ K, and ψ, ψ1 = ψ ◦ψ0, ψ is

unique to within isomorphism, and k0 is isomorphic to some k2 with k →∗ k2,

where reduction →=
⋃
s,s′

Hs,s′−→.

33

Theorem 8.12. Suppose k 7→ k′ with k a preskeleton and k′ a pruned skele-
ton. There exists a set of homomorphisms Ψ and a set of pruned skeletons K,

such that for every pruned skeleton k1 and every homomorphism k
ψ17−→ k1, for

some ψ0 ∈ Ψ, k0 ∈ K, and ψ, ψ1 = ψ◦ψ0, ψ is unique to within isomorphism,

and k0 is isomorphic to some k2 with k
skel−→ k2.

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

9 Penetrator Derivable

For each algebra, the powers of the adversary are defined by a set of roles.
For the Basic Crypto Signature in Figure 1, the traces of the penetrator roles
are in Figure 4. Penetrator roles make no origination assumptions.

The context in which penetrator strands appear determine the messages
the adversary can derive. The context includes previously sent messages
and atoms it is forbidden to originate. An atom that is assumed to be non-
originating must be avoided as is a uniquely originating atom that is assumed
to originate on a regular strand.

The ternary relation Tp : Ta ` t states that message t is penetrator
derivable from previously sent messages Tp while avoiding atoms Ta. The
relation is defined by a set of inference rules. Most of the rules are justified by
a penetrator role that when instantiated, derives a message in the conclusion
of the rule.

The first rule states that no additional penetrator behavior is required to
derive t if it has been previously sent.

t ∈ Tp
Tp : Ta ` t

A uniquely originating atom need not be avoided if it has been sent.

Tp : Ta ` t
{t0} ∪ Tp : {t0} ∪ Ta ` t

(1)

There are two decomposition steps available to the penetrator.

{t0, t1} ∪ Tp : Ta ` t
{(t0, t1)} ∪ Tp : Ta ` t

[by sep(t0, t1)] (2)

34

Tp : Ta ` inv(t1) {t0, {|t0|}t1} ∪ Tp : Ta ` t
{{|t0|}t1} ∪ Tp : Ta ` t

[by dec(t0, t1)] (3)

There are two constructive steps.

Tp : Ta ` t0 Tp : Ta ` t1
Tp : Ta ` (t0, t1)

[by cat(t0, t1)]

Tp : Ta ` t0 Tp : Ta ` t1
Tp : Ta ` {|t0|}t1

[by enc(t0, t1)]

There are three rules for indivisible messages.

Tp : Ta ` Ci [by tag(Ci)]

t /∈ Ta t an atom
Tp : Ta ` t

[by base(t)]

A non-base sorted variable is derivable in a bundle that instantiates it with
any message other than an element of X>.

t ∈ X>
Tp : Ta ` t

Definition 9.1 (Outbound predecessors). The outbound predecessors of skele-
ton k at n is outpred(k, n) = {msg(k, n0) | n0 ≺k n, n0 is transmitting}.

Definition 9.2 (Avoidance Set). The avoidance set of skeleton k is avoid(k) =
non(k) ∪ {t | t ∈ unique(k) ∧ |O(k, t)| = 1}.

An atom in avoid(k) is not available to the penetrator, except if it is
exposed by a messages transmission. Clearly, only uniquely originating atoms
can be exposed.

Definition 9.3 (Derivable Before). A message t is derivable before recep-
tion node n in skeleton k, written der(k, n, t), if Tp : Ta ` t where Tp =
outpred(k, n) and Ta = avoid(k).

Definition 9.4 (Realized Node). A reception node n is realized in skeleton k
if msg(k, n) is derivable before n in k.

35

Notice that one can read off penetrator behavior from the proof tree used
to demonstrate that msg(k, n) is derivable before n in k. For example, if
a decryption step is required by the proof, an instance of the penetrator’s
decryption role is indicated. In a bundle, for a non-base sorted variable,
there is a substitution that maps the variable to a message that is not a non-
base sorted variable. The substitution determines the penetrator behavior
associated with the variable.

Theorem 9.1 (Realized Skeleton). A skeleton is realized if and only if all
of its reception nodes are realized.

Proof. Given a skeleton k in which all of its reception nodes are realized, the
combination of the regular behavior in the skeleton, the penetrator behavior
specified by the proof trees used to demonstrate each node is realized, and a
substitution for non-base sorted variables determines a bundle. The skeleton
of the bundle may have more non-originating atoms than is in non(k), how-
ever since the extra non-originating atoms are derivable by the bundle that
realizes k, the proof trees for those atoms specify any additional penetrator
behavior required.
I haven’t figure out how to do the “only if” part of this proof yet.

9.1 Implementation

The derivable before a node predicate is implemented using auxiliary func-
tions.

Definition 9.5 (Buildable). Message t is buildable from previously sent mes-
sages Tp while avoiding Ta, written bld(t, Tp, Ta), if Tp : Ta ` t without the
use of Inference Rules 1, 2, and 3.

Consider the following reduction system based on Inference Rules 1, 2,
and 3.

{t} ∪ Tp : Ta → Tp : Ta \ {t} if t is an atom or in X>
{(t0, t1)} ∪ Tp : Ta → {t0, t1} ∪ Tp : Ta
{{|t0|}t1} ∪ Tp : Ta → {t0, {|t0|}t1} ∪ Tp : Ta if t0 /∈ Tp and

bld(inv(t1), Tp, Ta)

Definition 9.6 (Decompose). Previously sent messages Tp and avoidance
set Ta decompose to T ′

p, T
′
a, written decompose(Tp, Ta) = (T ′

p, T
′
a), if Tp :

Ta →∗ T ′
p : T ′

a and (T ′
p, T

′
a) is a normal form of reduction →.

36

The penetrator derivable predicate Tp : Ta ` t is implemented as

Tp : Ta ` t =
let T ′

p, T
′
a = decompose(Tp, Ta) in

bld(t, T ′
p, T

′
a)

The decomposition at a node function is

dcmp(k, n) =
decompose(outpred(k, n), avoid(k))

The derivable before a node predicate is implemented as

der(k, n, t) =
let Tp, Ta = dcmp(k, n) in
bld(t, Tp, Ta)

Discussion

Add discussion.

10 Carried Only Within

A set of encryptions Te protects critical message t in message t′ if t is carried
by t′ only within a member of Te. The definition of the carried only within
(cow) relation to follow makes this concept precise. The concept is used
when solving authentication tests (Section 11).

The question of the protection of a critical message is posed within the
context of a given pruned skeleton k. The message algebra is A>(X), whereX
is the finite variable set vars(k). Thus all substitutions in this section are
finite maps.

Definition 10.1 (Ancestors). Let t′ = t@ p. The ancestors of t′ in t at p is
the set anc(t, p) = {t@ p′ | p′ a proper prefix of p}.

Definition 10.2 (Carried Only Within). Message t is carried only within
set Te in t′, written t�Te t′, if for all carried positions p of t in t′, there exists
an ancestor ta ∈ anc(t′, p) and te ∈ Te such that ta ≡ te. The negation,
¬(t�Te t′) is written t †Te t′.

37

cows(t, T, t′) =
cows0(t, T, t

′, σid) — σid is the identity subst

cows0(t, T, t
′, σ) =

if σ(t) is cow σ(T) at σ(t′) then
{σ}

else
let S = fold(t, T, t′, σ) in⋃
σ′∈S cows0(t, T, t

′, σ′)

fold(t, T, t′, σ) =
{σ′ ◦ σ | σ′ ∈ fold0(σ(T), σ(t′), {σid}, carpos(σ(t), σ(t′)))

fold0(T, t
′, S, {}) = S

fold0(T, t
′, S, 〈p〉 a P) =

fold0(T, t
′, solve(anc(t′, p), T, S), P)

solve(T, T ′, S) =
{σ′ | t ∈ T, t′ ∈ T ′, σ ∈ S, σ′ ∈ unify(t, t′, σ)}

Figure 5: The cows Function

Definition 2.11 defines carpos(t, t′), the set of positions at which t′ car-
ries t.

The details of a reduction on skeletons called a augmentation will be
described in Section 12. In simplified form, for an augmentation, given t, Te,
and t′, one must find all most general unifiers σ such that σ(t) is carried only
within set σ(Te) in σ(t′).

A carried only within solution cannot be directly computed using Defi-
nition 10.2. Given terms ta and te, the unify function specified at the end
of Section 2 finds substitutions σ such σ(ta) ≡ σ(te), however, the carried
positions carpos(σ(t), σ(t′)), are used before the unify function computes the
substitution σ. Figure 5 displays the iterative procedure that breaks the
cyclic dependencies. Each step of the iteration improves an approximation
of a solution to the problem. The correctness of this function is the subject
a paper in preparation.

38

11 Authentication Tests

In what follows, we assume all skeletons are pruned, and use the word “skele-
ton” to mean pruned skeleton.

Definition 11.1 (Protectors). Let deriv be a boolean valued function that
determines if a message is derivable. The encryptions that protect tc in t is
protectors(deriv , tc, t) = prot(t) where

prot(t) =



undefined if t ≡ tc, else
{} if t = {|t0|}t1 and tc is not carried by t0, else
{{|t0|}t1} if t = {|t0|}t1 and ¬ deriv(inv(t1)), else
prot(t0) if t = {|t0|}t1 , else⋃
i<n prot(ti) if t = f(t0, . . . , tn−1) and t is not an atom, else
{} otherwise.

Definition 11.2 (Escape Set). The escape set for message tc at n in skele-
ton k is the set of encryptions esc(k, n, tc) where

esc(k, n, tc) = {te | te ∈ protectors(λt. der(k, n, t), tc, to), to ∈ outpred(k, n)}

and der(k, n, t) is true when t is derivable before n in k (See Definition 9.3).

The der function is implemented as der(k, n, t) = bld(t, Tp, Ta) where
(Tp, Ta) = dcmp(k, n), so that Tp and Ta need not be recomputed.

Definition 11.3 (Critical Position). Position p is a critical position of t =
msg(k, n) if

1. p is a carried position in t,

2. either t @ p ∈ unique(k) and t @ p originates in k, or t @ p = {|t0|}t1
and t1 is not derivable before n in k,

3. esc(k, n, t@ p) is defined, and

4. anc(t, p) ∩ esc(k, n, t@ p) = ∅.

The message at a critical position is called a critical message. It is a
critical nonce if the message is an atom, otherwise it is a critical encryption.
Observe that every critical message at a node in a skeleton is not derivable
at the node.

39

Theorem 11.1. A reception node is unrealized iff it has a critical position.

Definition 11.4 (Critical Position Solved). Suppose p is a critical posi-

tion at n0 in k0 and k0
φ,σ7−→ k1. Let t0 = msg(k, n) @ p, t1 = σ(t0),

T = σ(esc(k0, n0, t0)), n1 = φ(n0), and t = msg(k1, n1). Critical position p is
solved in k1 after k0 at n0 if:

1. anc(t, p) ∩ T 6= ∅, or

2. for some tp ∈ outpred(k1, n1), t1 is not carried only within T in tp, or

3. the decryption key of a member of T is derivable before n1 in k1, or

4. t1 is an encryption and its encryption key is derivable before n1 in k1.

Definition 11.5 (Contraction). Let p be a critical position at n in k, t =
msg(k, n), and Te = esc(k, n, t @ p). Suppose there is a substitution σ such
that for some ta ∈ anc(t, p), te ∈ Te, σ(ta) = σ(te). Skeleton k1 is a contrac-

tion if k
Sσ−→ k0

skel−→ k1.

cpsa computes a set of substitutions for each critical position, and then
removes some substitutions to form a complete set of most general unifiers.
Only most general unifiers are used for contractions.

The function Ai,n augments a preskeleton with a new strand. It appends
the instance i to the sequence of instances, adds node orderings, and adds
atoms as specified by the role of the instance. The function orders the last
node in the strand before some node n in the preskeleton.

Definition 11.6 (Augmentation). Skeleton k0 reduces to preskeleton k1 by

the augmentation i, n, written k0
Ai,n−→ k1 if

1. insts(k1) = insts(k0)
a 〈i〉;

2. ≺k1 = (≺k0 ∪⇒k1 ∪{(n0, n)})∗, where n0 = (| insts(k0)|, height(i)−1));

3. unique(k1) is unique(k0) and the inherited uniquely originating atoms
in i;

4. non(k1) is non(k0) and the inherited non-originating atoms in i.

40

Definition 11.7 (Regular Augmentation). Let tc be a critical message at n
in k, and i be an instance of a regular, non-listener role. Skeleton k2 is a

regular augmentation if k
Sσ−→ k0

Ai,n−→ k1
skel−→ k2 for some substitution σ

and tc is solved in k2 after k0 at n.

The details of regular augmentation is the subject of the next section.

Definition 11.8 (Listener Augmentation). Let tc be a critical message at n
in k, and T = esc(k, n, tc). For each {|t0|}t1 ∈ T , skeleton k1 is a listener

augmentation if k
Ai,n−→ k0

skel−→ k1 and i is a listener for inv(t1). If tc = {|t0|}t1 ,
then skeleton k1 is a listener augmentation if k

Ai,n−→ k0
skel−→ k1 and i is a

listener for t1.

Definition 11.9 (Cohort Member). For unrealized node n in a skeleton k0,

and a position p at n, k0
n,p−→ k1 asserts that k1 is a member of the cohort

of k0, where k1 is derived using contraction, regular augmentation, or listener
augmentation, and p is solved in k1 after k0 at n. For the setwise cohort

member reduction, {k0}
n,t−� {k1 | k0

n,p−→ k1}, when n is unrealized in k0,
and p is a critical position at n.

Theorem 11.2 (Cohort Correct). Let node n be unrealized in skeleton k,
and p be a critical position at n. For every realized skeleton k1 such that

k
ψ17−→ k1, there is a k0, ψ0, and ψ with k

n,p−→ k0, k
ψ07−→ k0, and ψ1 = ψ ◦ ψ0.

k
� ψ0 //
�

ψ1 ""EE
EE

EE
EE

EE k0_

ψ
��
k1

Theorem 11.3 (Cohort). Reduction
co−�=

⋃
n,t

n,p−� is confluent.

Theorem 11.4 (Critical Message Solved). If k0
n0,p0−→ k1

n1,p1−→ . . .
n`−1,p`−1−→ k`

is a sequence of cohort member reductions, then for positive `, p0 is solved
in k` after k0 at n0.

12 Finding Regular Augmentations

Let tc be the critical message that demonstrates n is a test node in skeleton k.
For each substitution-instance pair (σ, i) that satisfies some properties, there

41

cowt(t, T, C, S) =⋃
σ∈S cowt0(t, T, C, σ)

cowt0(t, T, C, σ) =
if ∀t.±t ∈ C → σ(t) is cow σ(T) at σ(t′) then
{σ}

else
cowt(t, T, C, foldn(t, T, C, {σ}))

foldn(t, T, 〈〉, S) = S
foldn(t, T, 〈±t′〉 a C, S) =

foldn(t, T, C,
⋃
σ∈S fold(t, T, t′, σ))

Figure 6: The cowt Function

is a potential regular augmentation with
skel−→ ◦ Ai,n−→ ◦ Sσ−→. When successful,

the message t in the last node of the added strand is outbound, carries σ(tc),
but σ(tc) is not carried only within escape set σ(Te) in t. Moreover, for every
other message t in the strand, σ(tc) is carried only within escape set σ(Te)
in t. The last node in the strand is called a transforming node, as this node
no longer protects the critical message, but nodes that precede it do.

When generating a candidate substitution-instance pair (σ, i) for aug-
mentation, trace(i) must contain a member of Tt, the set of target messages.
The critical message tc is a member along with each ancestor of the critical
message tc on every path to a place at which tc is carried in every mem-
ber of the escape set Te, with the exception of the members of Te. That is,
Tt = {tc} ∪ {tt | te ∈ Te, p ∈ carpos(tc, te), tt ∈ anc(te, p)} \ Te.

To find all candidate substitution-instance pairs, each role in the protocol
is considered. For each role r, a substitution σr is created. The domain of σr,
Dom(σr), is the variables that occur in the role’s trace. The substitution σr
is a bijection, and each variable in Ran(σr) is chosen in a way that ensures
it does not occur in the skeleton k or in any of its roles.

Consider each outbound message tn−1 in rtrace(r) = 〈±t0, . . . ,+tn−1, . . .〉.
Let substitutions S be a complete set of most general unifiers σ′ such that for
every message t that is carried by tn−1 and message tt ∈ Tt, σ′(t) ≡ σ′(tt), and
σrEσ′. This operation inserts the critical message into the trace σr◦rtrace(r).

The next step is to explore ways to extend the substitution σ′ so that for

42

events in σ′ ◦ rtrace(r) that precede tn−1, the critical message is carried only
within the escape set. The function cowt , presented in Figure 6, performs the
explorations, producing the substitutions S ′ = cowt(tc, Te, rtrace(r)|n−1, S).
Function fold is defined in Figure 5.

The final step is to remove substitutions σ ∈ S ′ such that σ(tc) is carried
only within σ(Te) in σ(tn−1) and produce a complete set of most general
unifiers S ′′ by removing less general unifiers. For each σ′ ∈ S ′′, there is a
potential regular augmentation constructed from (σ, i), where role(i) = r,
height(i) = n, subst(i) = σ, and σ is σ′ stripped of mappings to messages
with variables that do not occur in σ′ ◦ rtrace(r)|n.
For target terms to be the reasonable set for insertion of the critical mes-

sage, one must require that variables of sort message are acquired. This fact
needs to be explained and noted as another reason for the acquired variable
constraint.

12.1 Regular Augmentation and Hulling

Consider regular augmentation k
Sσ−→ k0

Ai,n−→ k1
skel−→ k2, where k1 is not a

hulled preskeleton. Let k3 be the result of one hulling step. It is crucial
that k 7−→ k2, but it need not be the case that k1 7−→ k3. The reason
is that a point of origination on the augmenting strand may move during
hulling, but that’s okay since the augmenting strand is not in the image of
a homomorphism from k. An implementation must be careful not to check
the preservation of origination points in this particular case.

13 Generalization

Each problem statement for cpsa is expressed as a preskeleton. If the pre-
skeleton cannot be transformed into a single skeleton using the Preskele-
ton Reduction System, an error is signaled. Otherwise, the first skeleton is
designated as the point-of-view skeleton. For each skeleton generated from
a point-of-view skeleton via contraction, augmentation, and generalization,
there is a homomorphism from the point-of-view skeleton. Simplifying the
implementation is the motivation for restricting the algorithm to problem
statements that are expressed by a single skeleton.

Definition 13.1 (Generalize). A skeleton k0 generalizes skeleton k1, written

43

k1
<−→k k0, if both k0 and k1 are realized, k0 and k1 are not isomorphic, there

is a homomorphism from a point-of-view skeleton k to k0, and a strandwise
injective homomorphism k0 7→ k1.

Recent experiments show that pruning must not be performed when general-
izing.

If skeletons are allowed to be isomorphic, we write k1
≤−→k k0, and note

that
≤−→k defines a partial ordering. Therefore, there are maximal elements

in the partial ordering. A shape associated with a preskeleton is a maximally
generalized realized skeleton derived from the preskeleton.

Definition 13.2 (Shape). Let k0 be a preskeleton such that k0
skel−→ k and k

is unique, and let k1 be a realized skeleton such that k 7→ k1. Skeleton k2

is a shape of k0 if k1
≤−→k k2, and k2 is maximal among skeletons that

generalize k1.

There are four generalization reductions used to transform a realized
skeleton into its shapes: deletion, weakening, forgetting, and separation.

Definition 13.3 (Deletion). Skeleton k0 generalizes by deletion skeleton k1,

written k1
Dn−→k k0, if k1

<−→k k0, k2
skel−→ k0, and k2 is the result of deleting

node n in k1 and all of the nodes that follow it in its strand.

Definition 13.4 (Weakening). Skeleton k0 generalizes by weakening skele-

ton k1, written k1

Wn,n′−→ k k0, if k1
<−→k k0, k2

skel−→ k0, and k2 is k1 except
≺k2 = (≺k1 \ {(n, n′)})∗.

Definition 13.5 (Forgetting). Skeleton k0 generalizes by origination as-

sumption forgetting skeleton k1, written k1
Ft−→k k0, if k1

<−→k k0, k2
skel−→ k0,

and k2 is k1 except unique(k2) = unique(k1)\{t} and non(k2) = non(k1)\{t}.

Sometimes a more general skeleton can be found by replacing some oc-
currences of one variable by a fresh variable. For variable separation, the
location of an occurrence of a variable is defined using a skeleton’s instance
sequence.

Definition 13.6 (Location). Message t is at location (s, x, p) in k if t =
subst(I(s))(x) @ p and I = insts(k).

44

Definition 13.7 (Separation). Skeleton k0 generalizes by variable separation

skeleton k1, written k1
Vt−→k k0, if k1

<−→k k0, k2
skel−→ k0, and k2 is k1 except

t is a variable that occurs in multiple locations in k1, and k2 is the result of
replacing t with a variable t0 of the same sort at a subset of t’s locations,
where t0 occurs nowhere in k1.

When separating a non-originating term, both the term and its clone are
non-originating. When separating a uniquely originating term, either the
term or its clone is uniquely originating.
What happens when separating t in k into t and t0, and ltk(t, t) ∈ non(k)?

Should a skeleton k0 with ltk(t, t0) ∈ non(k0) be a candidate separation?
Currently, only skeletons k1 with ltk(t, t) ∈ non(k1) and ltk(t0, t0) ∈ non(k1)
are considered.

Definition 13.8 (Generalization). The reduction
gen−→k=

⋃
n

Dn−→k ∪
⋃
n,n′

Wn,n′−→ k

∪
⋃
t

Ft−→k ∪
⋃
t

Vt−→k is the generalization relation. For the setwise general-

ization reduction, {k0}
gen−�k {k1} when k0

gen−→k k1.

The fact that each generalization reduction replaces a singleton with just a
singleton requires explanation. We’re not sure it’s justified, and harbor seri-
ous doubts. It is justified if we can prove the conjecture that the cohort re-
duction relation produces every shape, and generalization just identifies which
realized skeletons are shapes. However, one member of the test suite provides
a counter example to the conjecture. Barring a bug in cpsa, the conjecture
must be false.

Theorem 13.1 (Generalization). The relation
gen−�k is terminating.

Discussion

In [2], the shapes of a point-of-view skeleton are said to be minimal, in
the partial ordering induced by injective homomorphism, among all realized
homomorphic images of the point-of-view skeleton. Minimal corresponds to
maximally generalized. The need for origination assumption forgetting was
not known when [2] was written. Generalization by variable separation uses
non-carried positions, and in particular, positions that traverse an atom edge.
Algebras in previous strand space papers have no concept of a position that
traverses an atom edge, and therefore cannot be used to specify generalization
by variable separation.

45

14 Collapsing

Let reduction
cg−�k= (

co−� ∪ gen−�k)
+, the transitive closure of the cohort and

generalization setwise reduction relations. The normal forms of this relation
are sets of shapes, however, shapes may be missing from each set. The
missing shapes are found by collapsing other shapes.

Definition 14.1 (Collapsing). Let k0 and k1 be two skeletons such that
there are two strands, s and s′, and a substitution σ with σ(evt(k0, (s, p))) =
σ(evt(k0, (s

′, p))) for all p < h, where h is the height of strand s in k0. Then k0

collapses to k1, written k0
clp−→ k1, if k0

Sσ−→ k
Cs,s′−→ k′

skel−→ k1.

Definition 14.2 (Setwise Collapsing). For the collapsing relation
clp−�k⊆

2K × 2K, K0
clp−�k K1 if K0 is a normal form of

cg−�k, for some k0 ∈ K0,

k0
clp−→ k, {k} ∪K0

cg−�k K1, and K0 6= K1.

Notice that a setwise cohort reduction may produce the empty set, but a
setwise generalization and collapsing reduction never does.

15 Skeleton Reduction System

Let reduction �k=
cg−�k ∪(

clp−�k)
+.

Theorem 15.1. The reduction �k is confluent.

Theorem 15.2 (Soundness). Let k0 be a preskeleton such that k0
skel−→ k

and k is unique and unrealized. Skeleton k1 is a shape of k0 if {k} �k K,
k1 ∈ K, and K is a normal form.

Theorem 15.3 (Completeness). Let k0 be a preskeleton such that k0
skel−→ k

and k is unique and unrealized. If {k} �k K, and K is a normal form,
then k1 is a shape of k0 only if k1 ∈ K.

A Programs Specified by a Role’s Trace

The behavior associated with a role’s trace is possible as long as some mes-
sages are available initially. The required initial messages are specified by a

46

pair of ternary relations, T0, C B T1 and T0,±tB T1. The relation T0, C B T1

asserts that messages in T1 are available after a run of C given the messages
in T0 are available initially. The relation is defined using the T0,±t B T1

relation.

T, 〈〉B T T0,±tB T T,C B T1

T0, 〈±t〉 a C B T1

The T0,±t B T1 relation is defined using the T0, C B T1 relation. An
outbound message can be formed if it is available initially

t ∈ T
T,+tB T

or if it can be formed by construction.

T, 〈+t0, . . . ,+tn−1〉B T
T,+f(t0, . . . , tn−1)B T

[
f ∈ Σw,s ∧ n = |w| ∧
f(t0, . . . , tn−1) not an atom

]
An inbound message makes atoms, acquired variables, and encryptions

available.
T,−tB T ∪ {t} [t an atom or a variable]

When the decryption key is available, the contents of the encryption is also
available. Furthermore, the encryption can be sent in future messages with-
out access to its encryption key.

T0,+ inv(t1)B T0 T0,−t0 B T1

T0,−{|t0|}t1 B T1 ∪ {{|t0|}t1}

A received encryption that can be sent ensures the encyption agrees with
currently available terms and makes nothing new available.

T,+{|t0|}t1 B T
T,−{|t0|}t1 B T

Consider an operation f ∈ Σw,s other than the encryption operation.
The order in which messages that occur in a message constructed using f
are made available may determine if the decryption key of an encryption is
available. Let πn be a permutation on the domain of a sequence of length n.

T0, 〈−t0, . . . ,−tn−1〉 ◦ πn B T1

T0,−f(t0, . . . , tn−1)B T1

[
f ∈ Σw,s ∧ n = |w| ∧ f 6= enc∧
f(t0, . . . , tn−1) not an atom

]

47

Definition A.1 (Trace Parameters). The set of atoms T0 are parameters of
trace C if T0, C B T1 for some T1, and T0 is minimal, that is for all T ′

0 such
that T ′

0, C B T1, T
′
0 6⊂ T0.

The role 〈+{|a, n|}Kb
,−{|n|}Ka〉 has two sets of parameters, {a, n,Kb, K

−1
a }

and {a, n,Kb, Ka}. A program that implements the role using the second set
is useless, so it will be ignored. The intended program for the role follows.

proc(a, n,Kb, K
−1
a)

send({|a, n|}Kb
);

x0 ← recv();
x1 ← decrypt(x0, K

−1
a); — may fail

x1 6= n→ fail;
end

Let T0 = {a, n,Kb, K
−1
a } and T1 = T0 ∪ {{|n|}Ka}. The derivation tree

that specifies the intended program has the following outline.

. . . construct outbound message
T0,+{|a, n|}Kb

B T0

. . . decode inbound message
T0,−{|n|}Ka B T1

. . . compose trace
T0, 〈+{|a, n|}Kb

,−{|n|}Ka〉B T1

The decoding of the inbound message is specified by this derivation.

T0,+K
−1
a B T0

T0,+nB T0

T0,−nB T0

T0,−{|n|}Ka B T1

Acknowledgment

Carolyn Talcott and Leonard Monk provided valuable feedback on drafts of
this document.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

48

[2] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Search-
ing for shapes in cryptographic protocols. In Tools and Algorithms
for Construction and Analysis of Systems (TACAS), number 4424 in
LNCS, pages 523–538. Springer, March 2007. Extended version at
http://eprint.iacr.org/2006/435.

[3] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217–273, 1992.

[4] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the
structure of bundles. Theor. Comput. Sci., 283(2):333–380, 2002.

[5] Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning.
The MIT Press, 2001.

[6] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security,
7(1), 1999.

49

Index

acquired, 14
asymmetric relation, 17
atom, 6

carried position, 7
carried positions, 8
cpsa algebra, 11
cpsa category, 21

domain of substitution, 9

gained, 14, 19

homomorphism
order-sorted, 9
preskeleton, 19
strandwise injective, 20

inbound, 14

listener strand, 18

match, 10
message, 6
more general substitution, 9

originates, 14
outbound, 14

penetrator strand, 17
point-of-view skeleton, 43

range of substitution, 9
regular signature, 4
regular strand, 17

sequence, 2
substitutions, 9

unification type, 6
unify, 10
unitary unification type, 6

variable set, 4

50

Contents

1 Overview 3

2 Messages 4

3 Data Structures 11

4 Algorithms as Term Reduction Systems 13

5 Protocols 13

6 Executions 15

7 Skeletons 17

8 Reductions on Preskeletons 23

9 Penetrator Derivable 34
9.1 Implementation . 36

10 Carried Only Within 37

11 Authentication Tests 39

12 Finding Regular Augmentations 41
12.1 Regular Augmentation and Hulling 43

13 Generalization 43

14 Collapsing 46

15 Skeleton Reduction System 46

A Programs Specified by a Role’s Trace 46

51

