
CPSA Theory

Moses D. Liskov John D. Ramsdell Paul D. Rowe

November 5, 2010

cpsa takes a partial description of a run of a protocol, and attempts to
produce a compact description of all possible runs of the protocol compatible
with the partial description. Given a partial description, cpsa uses an au-
thentication test to infer what else must have happened, and thereby reduce
the problem to finding possible runs starting with a set of more refined de-
scriptions. The goal of this document is to precisely describe authentication
tests.

The formal definition of a partial run of a protocol is called a skeleton,
and is introduced in Section 4. To motivate the definition, Section 1 describes
a simplified version of a message algebra used in cpsa. Section 2 describes
a bundle [4, 2], a model of asynchronous messages-passing that includes the
behaviors of honest and adversarial participants. It also introduces the notion
of a protocol, and specifies what it means for a bundle to be a run of a
protocol.

Section 3 describes the capabilities of the adversary. cpsa does not ex-
plicitly represents adversarial behaviors. Section 4 and Section 5 reveal the
means by which the details of adversarial behavior are abstracted away. Fi-
nally, Section 6 describes authentication tests.

1 Order-Sorted Message Algebras

cpsa models a message by an equivalence class of terms over a signature. A
sort system is used to classify messages. cpsa depends on the sort system

c© 2010 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

Sorts: name, text, data, skey, akey < mesg

Base sorts: name, text, data, skey, akey
Carried positions: • denotes a carried position.

{| • |}(·) : mesg×mesg → mesg Encryption
(•, •) : mesg×mesg → mesg Pairing
“. . . ” : mesg Tag constants
K(·) : name → akey Public key of name
(·)−1 : akey → akey Inverse of key
ltk(·, ·) : name×name → skey Long term key

Equation: (x−1)−1 ≈ x for x : akey

Figure 1: Basic Crypto Signature and Equation

to allow it to treat a variable that represents an asymmetric key differently
from a variable that represents an arbitrary message. In particular, cpsa uses
order-sorted quotient term algebras [1] for message algebras. This formalism
enables the use of well-known algorithms for unification and matching in the
presences of equations and sorts [3, Chapter 8].

This paper makes no attempt to provide a general introduction to order-
sorted quotient term algebras. We use a message algebra called the Basic
Crypto Algebra (bca), which is the main algebra used by cpsa.

There are six bca sorts: mesg, the sort of all messages, skey, the sort
of symmetric keys, akey, the sort of asymmetric keys, name, the sort of
participant names, and text and data for ordinary values. All sorts are
subsorts of mesg. The function symbols, or operations, used to form terms
are given by the signature in Figure 1.

Each variable x used to form a term has a unique sort s, written x : s.
Variable set X is an indexed set of sets of variables, Xs = {x | x : s}. For
bca, Xmesg, Xskey, Xakey, Xname, Xtext, and Xdata partition the
set of variables in X. By abuse of notation, at times, we write X for the set
of variables in X.

The Basic Crypto Quotient Term Algebra A generated by variable set X
is displayed in Figure 2. The union of the messages in A is set of terms
generated by X, and A partitions the set of terms into a set of equivalence
classes induced by the equations. Terms t0 and t1 are equivalent, written
t0 ≡ t1, iff t0 ∈ T ∧ t1 ∈ T for some T ∈ A. The canonical representative

2

Askey = {{x} | x ∈ Xskey} ∪ {{ltk(a, b)} | a ∈ Xname, b ∈ Xname}
Aakey = {{x−2n | n ∈ N} | x ∈ Xakey}

∪ {{x−2n−1 | n ∈ N} | x ∈ Xakey}
∪ {{K−2n

x | n ∈ N} | x ∈ Xname}
∪ {{K−2n−1

x | n ∈ N} | x ∈ Xname}
Aname = {{x} | x ∈ Xname}
Atext = {{x} | x ∈ Xtext}
Adata = {{x} | x ∈ Xdata}
Tags = {{x} | x is a tag constant }

B = Askey ∪ Aakey ∪ Aname ∪ Atext ∪ Adata
A0 = B ∪ {{x} | x ∈ Xmesg} ∪Tags

An+1 = An ∪ {{(t0, t1) | t0 ∈ T0, t1 ∈ T1} | T0 ∈ An, T1 ∈ An}
∪ {{{|t0|}t1 | t0 ∈ T0, t1 ∈ T1} | T0 ∈ An, T1 ∈ An}

A = Amesg =
⋃

n∈N An

Figure 2: bca Messages A and Atoms B

of a message is the t in {t′ | t′ ≡ t} with the fewest occurrences of the (·)−1

operation.
Keys, names, data, and texts in the algebra are called atoms and are

members of B. We write t : B iff t : S for some S 6= mesg. Note that
encryption is defined with an encryption key of sort mesg. When the en-
cryption key is of sort akey this is meant to model asymmetric encryption:
otherwise, this models symmetric encryption. Note that even complex mes-
sages such as encryptions can be used as encryption keys in the symmetric
sense.

To find the decryption key associated with an encryption, one must ex-
clude the case in which the key is a variable of sort mesg, as there is no way
to determine if the encryption operation denotes symmetric or asymmetric
encryption. Therefore, the decryption key associated with encryption key t
is inv(t).

inv(t) =


invk(t) if t : akey;
undefined if t is a variable of sort >;
t otherwise.

An important property possessed by the algebra is that for all T ∈ A, if

3

there are any encryptions in T then all members of T are encryptions. As
a result, a message can be identified as representing an encryption and if it
is, decomposed into its plaintext and its decryption key. This property is a
consequence of the fact that equations relate atoms, not arbitrary messages.
A similar property holds for pairs.

We write AX when it is important to identify the variable set X that
generates the algebra. Given two variable sets X and Y , a substitution is
an order-sorted map σ : X → AY such that σ(x) 6= x for only finitely many
elements of X. For a substitution σ, the domain is the set of variables
Dom(σ) = {x | σ(x) 6= x} and the range is the set Ran(σ) = {σ(x) | x ∈
Dom(σ)}. Given a substitution σ : X → AY , the unique homomorphism
σ∗ : AX → AY induced by σ is also denoted σ.

In what follows, a finite sequence is a function from an initial segment
of the whole numbers. The length of a sequence f is |f |, and sequence f =
〈f(1), . . . , f(n)〉 for n = |f |. Alternatively, 〈x1, x2, . . . , xn〉 = x1 :: x2 :: . . . ::
xn :: 〈〉. If S is a set, then S∗ is the set of finite sequences of S, and S+ is the
non-empty finite sequences of S.

The concatenation of sequences f0 and f1 is f0
a f1. When the context

distinguishes sequences and their elements, such as for sequences of integers,
we often write f0

a 1 a f1 instead of f0
a 〈1〉 a f1. The prefix of sequence f of

length n is f |n.
A position p is a finite sequence of whole numbers. The term in t that

occurs at p, written t @ p, is:

t @ 〈〉 = t;
(t1, t2) @ i :: p = ti @ p for i ∈ {1, 2};
{|t1|}t2 @ i :: p = ti @ p for i ∈ {1, 2};
t−1 @ 1 :: p = t @ p.

A term t occurs in term t′ if t = t′ @ p for some p. A message T occurs
in message T ′ if the canonical representative of T occurs in the canonical
representative of T ′.

A carried term is one that can be extracted from a message reception
assuming plaintext is extractable from encryptions. The positions at which

4

term t is carried in t′ is carpos(t, t′), where

carpos(t, t′) =



{〈〉} if t′ ≡ t, else
{1 :: p | p ∈ carpos(t, t1)}

if t′ = {|t1|}t2 , else
{i :: p | i ∈ {1, 2}, p ∈ carpos(t, ti)}

if t′ = (t1, t2) else
∅ otherwise.

Term t carries t′ if carpos(t′, t) is not empty, and t′ v t when t′ is car-
ried by t. Note that for all terms t0, t1, t

′
0, t

′
1, if t0 ≡ t1 and t′0 ≡ t′1, then

carpos(t0, t
′
0) = carpos(t1, t

′
1). We write t′ vp t when p ∈ carpos(t′, t) and

t @ p ≡ t′.
In what follows, we will often conflate a term with the message of which

it is a member, and use lowercase letters to denote both.

2 Strand Spaces and Bundles

A run of a protocol is viewed as an exchange of messages by a finite set
of local sessions of the protocol. Each local session is called a strand. The
behavior of a strand, its trace, is a sequence of messaging events. An event
is either a message transmission or a reception. Outbound message t ∈ AX

is written as +t, and inbound message t is written as −t. The set of traces
over AX is CX = (±AX)+. A message originates in a trace if it is carried by
some event and the first event in which it is carried is outbound. A message
is gained by a trace if it is carried by some event and the first event in which
it is carried is inbound. A message is acquired by a trace if it first occurs in
a reception event and is also carried by that event.

Abstractly, a strand space is a multiset of traces, but since we wish to
name each element, a strand space ΘX over algebra AX is defined to be a
sequence of traces in CX . A strand s is a member of the domain of ΘX , and
its trace is ΘX(s). In a strand space, the elements of the generator set X
denote atomic message elements, such as keys, and not composite messages,
such as encryptions and pairs. Therefore, the sort of every variable in X is
a base sort.

Message events occur at nodes in a strand space. For each strand s, there
is a node for every event in Θ(s). The nodes of strand space Θ are {(s, i) |
s ∈ Dom(Θ), 1 ≤ i ≤ |Θ(s)|}, the event at a node is evtΘ(s, i) = Θ(s)(i),

5

and the message at a node is msgΘ(s, i) = m such that evtΘ(s, i) = ±m.
Just as a position names a subterm within another term, a strand names a
trace within a strand space, and a node names an event in a strand space.
The relation ⇒ defined by {(s, i) ⇒ (s, i + 1) | s ∈ Dom(Θ), 1 ≤ i < |Θ(s)|}
is called the strand succession relation.

A bundle in strand space Θ is a finite directed acyclic graph Υ(Θ,→),
where the vertices are the nodes of Θ, and an edge represents communica-
tion (→) or strand succession (⇒). For communication, if n0 → n1, then
there is a message t such that evtΘ(n0) = +t and evtΘ(n1) = −t. For each
reception node n1, there is a unique transmission node n0 with n0 → n1.

Each acyclic graph has a transitive asymmetric relation ≺ on its vertices.
The relation specifies the causal ordering of nodes in a bundle. Relation R
on set S is asymmetric iff x R y implies not y R x for all distinct x, y ∈ S.

An atom uniquely originates in a bundle if it originates in the trace of
exactly one strand. An atom is non-originating in a bundle if it originates
on no strand, but each of its variables occurs in some strand’s trace.

In a run of a protocol, the behavior of each strand is constrained by a
role in a protocol. Adversarial strands are constrained by roles as are non-
adversarial strands. A protorole over AY is rY (C, N,U), where C ∈ CY , N ⊆
BY , and U ⊆ BY . The trace of the role is C, its non-origination assumptions
are N , and its unique origination assumptions are U . A protorole is a role
if (1) t ∈ N implies t is not carried in C, and all variables in N occur in C,
(2) t ∈ U implies t originates in C, and (3) if variable x occurs in C then x
is an atom or it is acquired in C. A protocol is a set of roles. Let Vars(P)
be the set of variables that occur in the traces of the roles in protocol P .

A bundle Υ(ΘX ,→) is a run of protocol P if there is a role mapping
rl : ΘX → P that satisfies properties for each s ∈ Dom(ΘX). Assuming
rl(s) = rY (C, N,U) and X and Y share no variables, and let h = |ΘX(s)|, the
properties are (1) h ≤ |C|, (2) there is a homomorphism σ : AY → AX such
that σ ◦ C|h = ΘX(s), (3) Dom(σ) is the set of variables that occur in C|h,
(4) if the variables in t ∈ N occur in Dom(σ), then σ(t) is non-originating in
Υ(ΘX ,→), and (5) if t ∈ U originates at index i in C, and i ≤ h, then σ(t)
uniquely originates in Υ(ΘX ,→) at node (s, i). Origination assumptions in
bundles specified by roles are called inherited origination assumptions.

6

Create(z : B) 〈+z〉 〈+“. . . ”〉
Pair(x, y : mesg) 〈−x,−y, +(x, y)〉 〈−(x, y), +x, +y〉
Encrypt(x, y : mesg) 〈−x,−y, +{|x|}y〉 〈−{|x|}y,− inv(y), +x〉

Figure 3: Basic Crypto Algebra Penetrator Role Traces

3 Adversary Model

A fixed set of penetrator roles encodes the adversary model associated with
a message algebra. For the Basic Crypto Algebra, there are eight roles. Each
role makes no origination assumptions, and the trace of each role is given in
Figure 3. The first line of the figure specifies five traces, one for base sort,
and a trace for each tag.

A strand exhibits non-adversarial behavior when its role is not a pen-
etrator role. A non-adversarial strand is called a regular strand as is its
role.

The penetrator cannot use a non-originating atom to encrypt or decrypt a
message, because every key it uses must be carried in a message. Consider a
uniquely originating atom that originates on a regular strand. The penetrator
cannot make the atom using a create role, because the atom would originate
at more than one node. Therefore, the penetrator can use a uniquely origi-
nating atom to encrypt or decrypt a message only if it is transmitted by a
regular strand unprotected by encryption.

4 Skeletons

The details of penetrator behavior are abstracted away when performing
protocol analysis. The abstracted description of a bundle is called a real-
ized skeleton, which is defined using a protoskeleton. A protoskeleton over
AX is kX(rl , P, ΘX ,≺, N, U), where rl : ΘX → P is a role map, the sets X
and Vars(P) are disjoint, ΘX is a sequence of traces in CX , ≺ is a relation on
the nodes in ΘX , N ⊆ BX are its non-origination assumptions, and U ⊆ BX

are its unique origination assumptions. Unlike a strand space, the sort of a
variable in X need not be a base sort.

Assume the strands in bundle Υ(ΘX ,→) have been permuted so that
regular strands precede penetrator strands in sequence ΘX , and rl demon-
strates the bundle is a run of protocol P . Let P ′ be P without penetrator

7

roles. Skeleton kX(rl ′, P ′, Θ′
X ,≺, N, U) realizes the bundle if rl ′ and Θ′

X are
the truncations of rl and ΘX respectively that omit penetrator strands from
their domains, ≺ is the transitive asymmetric relation associated with the
bundle without penetrator nodes, N is the set of non-originating atoms with
variables that occur in Θ′

X , and U is the set of atoms that uniquely originate
and are carried by some regular node.

A protoskeleton kX(rl , P, ΘX ,≺, N, U) is a preskeleton if the following
properties hold.

1. Sequence rl demonstrates that the strands in Dom(ΘX) satisfy the
conditions for being a part of a run of protocol P .

2. Relation≺ is transitive, asymmetric, and includes the strand succession
relation (⇒).

3. Each atom in N is carried at no node, and each variable in the atom
occurs at some node.

4. Each atom in U is carried at some node.

5. N includes the non-originating atoms inherited from roles via the role
map.

6. U includes the uniquely originating atoms inherited from roles via the
role map.

Let Ok(t) be the set of nodes at which t originates in preskeleton k,
and Gk(t) be the set of nodes at which t is gained in k. Preskeleton
kX(rl , P, ΘX ,≺, N, U) is a skeleton if each atom in U originates on at most
one strand, and the node of origination precedes each node that gains the
atom, i.e. for every t ∈ U , n0 ∈ Ok(t) and n1 ∈ Gk(t) implies n0 ≺ n1.

Let k0 = kX(rl0, P, Θ0,≺0, N0, U0) and k1 = kY (rl1, P, Θ1,≺1, N1, U1) be
preskeletons. There is a proto-homomorphism from k0 to k1 if φ and σ are
maps with the following properties:

1. φ maps strands of k0 into those of k1, and nodes as φ((s, p)) = (φ(s), p),
that is φ is in Dom(Θ0) → Dom(Θ1);

2. σ : AX → AY is a message algebra homomorphism;

3. n ∈ nodes(Θ0) implies σ(evtΘ0(n)) = evtΘ1(φ(n));

8

4. σ(N0) ⊆ N1;

5. σ(U0) ⊆ U1;

A proto-homomorphism is structure-preserving if n0 ≺0 n1 implies φ(n0) ≺1

φ(n1). We write k0
φ,σ7−→ k1 when (φ, σ) is structure-preserving. A proto-

homomorphism is a preskeleton homomorphism if it is structure-preserving
and also, t ∈ U0 implies φ(Ok0(t)) ⊆ Ok1(σ(t)), that is, the node at which
each uniquely originating atom originates is preserved under homomorphism.

A homomorphism is strandwise injective if its strand map is injective.
Two preskeletons are isomorphic if they are related by strandwise injective
homomorphism in both directions. A homomorphism is nodewise isomorphic
if the strand map φ implies a bijection on nodes, and n0 ≺1 n1 implies
φ−1(n0) ≺0 φ−1(n1). A skeleton is realized if there is a nodewise isomorphic
homomorphism from it to a skeleton that realizes a bundle, and message
component of the homomorphism is injective.

Our formalism requires that every protocol include a listener role of the
form: lsn(x : >) = r(〈−x, +x〉, ∅, ∅). Instances of this role are sometimes
used to make penetrator derived messages visible in skeletons. We say skele-
ton k realizes modulo listeners bundle Υ(Θ,→) if k realizes Υ(Θ′,→′) and
Υ(Θ,→) is the result of removing full length listener strands, and adjusting
the communication ordering → appropriately.

The set of bundles denoted by preskeleton k, [[k]], is:

[[k0]] = {Υ | k0
φ,σ7−→ k1 and k1 realizes modulo listeners Υ}

A cpsa algorithm is complete if when given a preskeleton k0, either the
algorithm diverges, or else it terminates and produces a finite set of realized
skeletons K, such that [[k0]] =

⋃
k1∈K [[k1]].

Let −→ be an irreflexive reduction relation on preskeletons. The rela-
tion −→ is semantics preserving if [[k0]] =

⋃
k1∈{k1|k0−→k1}[[k1]].

4.1 Dolev-Yao Example 1.3

The example has an initiator and responder role.

init(a, b : A, m : S) = r(〈+{|{|m|}b, a|}b,−{|{|m|}a, b|}a〉, ∅, ∅)
resp(a, b : A, m : >) = r(〈−{|{|m|}b, a|}b, +{|{|m|}a, b|}a〉, ∅, ∅)

9

init resp resp

• // •

��
•

��

•oo

•

��

•oo

•

Figure 4: Dolev-Yao Example 1.3 Shape

The algebra for the initiator is generated from X, where X> = ∅, XS = {m},
and XA = {a, b}, and the algebra for the responder is generated from Y ,
where Y> = {m}, YS = ∅, and YA = {a, b},

An interesting point of view for analysis is to see if m is kept secret after
the initiator sends its message. Let variable set Z = a, b : A, m : S. The
initial scenario preskeleton is:

kZ(〈init(a0, b0, m0), lsn(x)〉, Role map
{init(a0, b0, m0), resp(a1, b1, m1), lsn(x)}, Protocol
〈〈+{|{|m|}b, a|}b〉, 〈−m〉〉, Strands
∅, Node orderings
{a−1, b−1}, Non-origination
{m}) Unique origination

where the variable set that generates the algebra for the initiator role has
been renamed so as to avoid conflicts with the variable set Z used by the
preskeleton.

cpsa determines m is not kept secret by producing the shape in Figure 4.
The added strands in the shape are instances of responder roles. The strands
in the shape are:

〈+{|{|m|}b, a|}b〉
〈−m〉
〈−{|{|m|}b, a

′|}b, +{|{|m|}a′ , b|}a′〉
〈−{|{|{|m|}b, a|}b, a

′′|}b, +{|{|{|m|}b, a|}a′′ , b|}a′′〉

10

init resp resp

•

��

,,// •

��

•

��
• •oo •ll

Figure 5: Exercise Skeleton

The non-origination and unique origination assumptions are as they are in
the initial scenario preskeleton. An interesting exercise left for the reader is
to produce a bundle that is realized by the shape.

4.2 Exercise

Consider the following roles.

init(a, b : A) = r(〈+(a, b),−(b, a)〉, ∅, ∅)
resp(a, b : A) = r(〈−(a, b), +(b, a)〉, ∅, ∅)

Let X = x, y : A and k = kX(〈init(a, b), resp(a, b), resp(a, b)〉,
{init(a, b), resp(a, b)},
〈〈+(x, y),−(y, x)〉,
〈−(x, y), +(y, x)〉,
〈−(x, y), +(y, x)〉〉,

Node ordering in Figure 5,
∅,
∅)

What is [[k]]?
One member is shown in Figure 6.

5 Penetrator Derivable Messages

To simplify notation, we write Uk to refer to U when k = k(rl , P, Θ,≺, N, U),
and similarly for the other components of preskeleton k.

This section specifies what the penetrator can derive in a skeleton at a
given reception node. In the section on the adversary model, it is explained

11

init 〈+(x, y),−(y, x)〉
resp 〈−(x, y), +(y, x)〉
resp 〈−(x, y), +(y, x)〉
pair 〈−(y, x),−(y, x), +((y, x), (y, x))〉
sep 〈−((y, x), (y, x)), +(y, x)〉

init resp resp pair sep

•

��

,,// •

��

•

��
•

--

• // •

��
•

��
• // •

��
• •oo

Figure 6: A Bundle Realized by the Example Skeleton

12

why the penetrator cannot use create roles for atoms in the what is called
the exclusion set Xk = Nk ∪ {t | t ∈ Uk, |Ok(t)| = 1}. At reception node n,
the messages available to the penetrator due to message transmissions in the
past are Tk(n) = {t | n′ ≺k n, evtk(n

′) = +t}. Therefore, for an algebra
generated by X, the public messages available to the penetrator at node n
are Pk(n) = Tk(n) ∪ (B \Xk) ∪Xmesg ∪Tags.

The penetrator roles derive messages.

D0(T) = T

Dn+1(T) =


(t0, t1) | t0, t1 ∈ Dn(T)
{|t0|}t1 | t0, t1 ∈ Dn(T)

t0, t1 | (t0, t1) ∈ Dn(T)
t0 | {|t0|}t1 , inv(t1) ∈ Dn(T)


D(T) =

⋃
n∈N Dn(T)

Here, inv(t1) is defined to be t−1
1 if t1 : akey, and inv(t1) is otherwise

defined to be t1 so long as t1 /∈ Xmesg. A message t is derivable from T ,
written T ` t, if t ∈ D(T). A message t is derivable at node n if Pk(n) ` t.

Sometimes we may be interested in separating the notion of available
messages from the notion of the context, which defines the set of derivable
keys.

D0(T, S) = T

Dn+1(T, S) =


(t0, t1) | t0, t1 ∈ Dn(T, S)
{|t0|}t1 | t0, t1 ∈ Dn(T, S)

t0, t1 | (t0, t1) ∈ Dn(T, S)
t0 | {|t0|}t1 ∈ Dn(T, S), S ` inv(t1)


D(T, S) =

⋃
n∈N Dn(T, S)

In what follows, we find it useful to discuss the “minimum decryptions”
available - that is, the messages we get by applying as much deconstruction
as possible. We also are sometimes interested in this calculation when the
set of messages available for deriving keys is distinct from the set of available
messages. Let → be a reduction relation on pairs of sets of messages defined
as follows:

({(t0, t1)} ∪ T, S) → ({t0, t1} ∪ T, S)
({{|t0|}t1} ∪ T, S) → ({t0, {|t0|}t1} ∪ T, S)

→ if t−1
1 ∈ D(S) and t0 /∈ T

13

The minimum decryption set (M(T, S), S) is the normal form of relation →,
i.e. (T, S) →∗ (M(T, S), S) and there is no (T ′, S ′) such that (M(T, S), S) →
(T ′, S ′). Define M(T) to be M(T, T), and define M(t, S) to be M({t}, S).

6 Authentication Tests

In a realized skeleton, the message at every reception node is derivable, but
this is not so for an unrealized skeleton. A reception node that has a derivable
message is called realized, and cpsa infers the existence of additional regular
behavior by analyzing unrealized nodes.

It does so by identifying a so called critical message, a message carried
by the node’s message. The message is critical in the sense that the context
in which it appears can only be explained by adding more regular strands,
identifying messages, adding more constrains on node orderings, or various
combinations of these actions.

Consider a reception node n that receives {|x|}k0 , where critical message x
is a uniquely originating symmetric key, and k0 is an asymmetric key. In this
case, x is being used as a nonce, and not for encryption, an artifact of alge-
bra simplification. Assume that +{|x|}k1 is the only event that precedes n,
where k−1

1 is a non-originating asymmetric key. Message {|x|}k0 is not deriv-
able at n, because

{{|x|}k1} ∪ (B \ {x, k−1
1 }) ∪Xmesg 6` {|x|}k0 .

cpsa might explain this reception by identifying messages k0 and k1, or it
might add a strand that receives {|x|}k1 and transmits x before node n if a
role permits this new behavior.

A critical message might also be an encryption. Continuing the previous
example, suppose that k0 is non-originating, which makes {|x|}k0 into a crit-
ical message. cpsa might explain this reception by identifying messages k0

and k1, or it might add a strand that receives {|x|}k1 and transmits {|x|}k0

before node n if a role permits the new behavior.
We proceed with making the definition of a critical message precise by

first considering the contexts of interest in which a critical message appears.
For reception node n, the contexts are encryptions derived from the pub-
lic messages at n, P(n), that contain the critical message. Furthermore,
the encryptions are members of the minimum decryption set M(P(n)) with
underivable decryption keys. The context is called an escape set.

14

Definition 6.1 (Escape Set). Let S and S ′ be sets of public messages.
The escape set for t in messages S in context S ′ is E(S, S ′, t) = {{|t0|}t1 ∈
M(S, S ′) | t v t0∧S 6` t−1

1 } when t /∈ M(S, S ′). Otherwise, E(S, S ′, t) = {t}.

We use the notation E(S, t) as shorthand for E(S, S, t); normally, the
context is the set of messages.

The intuition is that, a message tc that is carried by the message at n is
critical when the contents of the escape set E(Pn(k), tc) cannot be used to
derive mesg(n). To do so, the penetrator would have to decrypt a member of
the escape set, which by definition it is not allowed to do. A critical message
is one that has escaped the protection of previously transmitted encryptions,
and cpsa infers more regular behavior in response.

We continue with the task of with making the definition of a critical mes-
sage precise by stating what it means for an escape set to protect a message.
Suppose t is carried by t′, and S is a set of public messages. Furthermore,
suppose that at every carried position at which t is carried in t′, a subterm
containing t is a member of the escape set E(S, t). In this case, we say that
term t is carried only within E(S, t) in t′, and observe that the subterm con-
taining t is derivable because every member of the escape set is derivable.
There is nothing about the fact that t′ carries t that can be used to infer more
regular behavior. An essential property of a critical message is that it is not
carried only with the escape set in the message received at an unrealized
node. The precise definition of carried only within follows.

Definition 6.2 (Ancestors). For t′ = t @ p, the ancestors of t′ in t at p is
the set anc(t, p) = {t @ p′ | p′ a prefix of p}.

Definition 6.3 (Carried Only Within). Term t is carried only within T
in t′, written cow(t, T, t′), if p ∈ carpos(t, t′) implies anc(t′, p) ∩ T 6= ∅.
Term t escapes T in t′, written ncow(t, T, t′), if ¬(cow(t, T, t′)), and therefore
ncow(t, T, t′) = ∃p.∈ carpos(t, t′) such that anc(t′, p) ∩ T = ∅.

Lemma 6.1. If for every u ∈ U we have that cow(tc, T, u), and we have that
cow(tc, U, t′) then cow(tc, T, t′)

Proof. Let p is a carried position of tc in t′. There is some ancestor ue ∈
anc(t′, p) equivalent to a member of U . This ancestor ue occurs at positions
p′ in t′ where p′ is a prefix of p. Let p = p′ a p′′; then since cow(tc, T, ue)
there is an ancestor te ∈ anc(ue, p

′′) equivalent to a member of T . But
te ∈ anc(t′, p) so this occurrence of tc is carried within T .

15

Lemma 6.2. For any set of messages S, If T0 ⊂ T1 then for every tc, for
every t ∈ E(S, T0, tc), cow(tc, E(S, T1, tc), t).

Proof. Let t ∈ E(S, T0, tc) and let p ∈ carpos(tc, t). Note that M(S, T0) ⊂
D(S, T1), since the enlarged context allows for possibly some more decryp-
tions to be done, but all decryptions that can be done with the smaller
context can still be done.

If t is an atom, it must be tc, and therefore, D(S, T0) ` tc so D(S, T1) ` tc,
and tc is a (non-proper) ancestor of itself.

Otherwise, t = {|t0|}t1 . Since t ∈ E(S, T0, tc), t ∈ M(S, T0) and thus
t ∈ M(S, T1). If T1 6` t−1

1 then t ∈ E(S, T1, tc) and so p is carried within.
Otherwise, one of two cases must happen: (1) ∃t′ = {|t′0|}t′1

in anc(t, p) such

that T1 6` t′1
−1 or (2) tc ∈ E(S, T1, tc). In the latter case, tc ∈ anc(t, p) so p

is carried within. In the former case, assume t′ is the largest such ancestor:
then t′ ∈ E(S, T1, tc) and t′ ∈ anc(t, p), so p is carried within.

In particular, the previous two lemmas imply that if n′ ≺ n then for any
set of messages S, and any tc and any t′, if cow(tc, E(S,Pk(n

′), tc), t
′) then

cow(tc, E(S,Pk(n), tc), t
′).

Lemma 6.3. Let S be a set of available messages and let tc be a term such
that either tc is an atom or tc = {|t0|}t1 with S 6` t1. Then if S ` t and tc v t,
cow(tc, E(S, tc), t).

Proof. If t is an atom, it cannot be derived from terms not carrying it. If t
is an encryption, it can be derived from non-carrying terms only if its key is
derivable.

Suppose t ∈ Dn(S); we prove the theorem by induction. For n = 0,
D0(S) = M(S). Suppose that tc vp t. Then consider anc(t, p)—the encryp-
tions on the path from tc to t, including tc. The minimal such encryption
such that t−1

1 is not derivable from S will be in E(S, tc). Thus, any carried
position of tc within t is carried within E(S, tc).

Suppose t ∈ Dn(S) but t /∈ Dn−1(S). Then either t = (t0, t1) where
t0, t1 ∈ Dn−1(S), or t = {|t0|}t1 where t0, t1 ∈ Dn−1(S). In the former case,
we must have that if tc vp t then either p = 1 a p′ and tc vp′ t0, or p = 2 a p′

and tc vp′ t1. In either case, there is some ancestor of p which is an ancestor of
p′ within t0 or t1, in E(S, tc) by inductive assumption. The case for t = {|t0|}t1

is similar but since only the plaintext of an encryption is carried, all carried
positions are of the form 1 a p′ where tc vp′ t0.

16

Definition 6.4 (Target terms). Let T be a set of terms, and let tc be a term.
Then the set of target terms containing tc within T , denoted targ(tc, T) is
the set {t|∃t′ ∈ T : tc v t v t′ but t /∈ T} ∪ {tc}.

A critical message may be either an atom or an encryption with an under-
ivable encryption key. A critical message cannot be derived from its subterms.
Here we define the notion of a critical position:

Definition 6.5 (Critical Position). Position p is a critical position of t in
the context of public messages S, written p ∈ critp(S, t), iff

1. p is a carried position in t

2. t @ p is an atom or t @ p = {|t0|}t1 and S 6` t1, and

3. anc(t, p) ∩ E(S, t @ p) = ∅.

Conjecture 6.1. S ` t iff critp(S, t) = ∅.

A critical message is t@p where p is a critical position. A critical message
that is an atom is called a nonce test, and one that is an encryption is called
an encryption test, and both types of tests are called an authentication test.

Definition 6.6 (Test Node). Node n is a test node in k if evtk(n) = −t and
critp(Pk(n), t) 6= ∅.

cpsa makes progress by solving a test.

Definition 6.7 (Critical Position Solved). Suppose p is a critical position

at n in k, i.e. evtk(n) = −t and p ∈ critp(Pk(n), t), and suppose k
φ,σ7−→ k′.

Let T = E(Pk(n), t@p), T ′ = σ(T), n′ = φ(n), and t′ = msgk′(n′). Position p

at n in k is solved in k′, written k
n,p−� k′, if there exists a (φ, σ) such that:

1. anc(t′, p) ∩ T ′ 6= ∅, or

2. for some tp ∈ Tk′(n′), ncow(t′ @ p, T ′, tp), or

2a. targ(t′c, T
′) \ σ(targ(tc, T)) 6= ∅, or

3. for some {|t0|}t1 ∈ T ′, Pk′(n′) ` t−1
1 , or

4. t′ @ p = {|t0|}t1 , and Pk′(n′) ` t1.

17

In words, cpsa makes progress by a contraction (Item 1), where mes-
sages are identified, an augmentation (Item 2), where something is added to
the escape set, or a listener augmentation (Item 3 and Item 4), where an
assumption about the lack of the derivability of a key is shown to be invalid.

If solving a test is semantics preserving, and cpsa produces a finite set
of skeletons that preserve the semantics at every step, cpsa will produce a
set of realized skeletons that describe every possible bundle associated with
an initial skeleton whenever cpsa terminates.

Theorem 6.1. For any skeleton k with an unrealized node n and a critical
position p at n in k, [[k]] =

⋃
k′∈{k′|k n,p−�k′}[[k

′]].

Proof. Let k be a skeleton in which n is an unrealized node, and tc is a critical
message at n in k. Let t be the message at n. Let k′ be the skeleton of a bundle

such that k
φ,σ7−→ k′. Let n′ = φ(n), let t′ = σ(t). Let T = E(Pk(n), t @ p),

and let T ′ = σ(T). Let S ′ = Pk′(n′).
Let tc = t @ p and t′c = t′ @ p. Because k′ is the skeleton of a bundle,

there is no critical message at n′. Therefore, t′c is not a critical message at n′

in k′. That is, there is no position p′ such that t′ @ p′ = t′c and p′ is a critical
position at n′ in k′.

If t′c = {|t0|}t1 and S ′ ` t1 then by condition 4 of the solved definition,

k
n,p−� k′.
Otherwise, cow(t′c, E(S ′, t′c), t

′).
Suppose that ∀te ∈ E(S ′, t′c), cow(t′c, T

′, te). Since we know cow(t′c, E(S ′, t′c), t
′),

by Lemma 6.1, cow(t′c, T
′, t′). Thus, since t′ @ p = t′c, anc(t′, p) ∩ T ′ 6= ∅ and

thus k
n,tc−� k′ by condition (1) of the definition of solved.

Otherwise, there is some te ∈ E(S ′, t′c) such that ncow(t′c, T
′, te). If te

is not an encryption, it must be that E(S ′, t′c) = {t′c} and that t′c is an
atom. In this case, note that t′c ∈ Xk′ because tc ∈ Xk and because (φ, σ)
is a homomorphism. Thus, regardless of whether te is an encryption or not,
(B \Xk) ∪Xmesg 6` te, but since te ∈ E(S ′, t′c), we know that te ∈ M(S ′).
Therefore, te can be derived from some public message.

To make this precise, define M0(tp, S
′) recursively as follows:

• tp ∈ M0(tp, S
′).

• If {|t0|}t1 ∈ M0(tp, S
′) and S ′ ` t−1

1 then t0 ∈ M0(tp, S
′).

• If (t0, t1) ∈ M0(tp, S
′) then t0, t1 ∈ M0(tp, S

′).

18

Then define M(tp, S
′) to be the all the non-pairs in M0(tp, S

′).
In other words, M(tp, S

′) is the portion of M(S ′) derivable from tp using
keys derivable from S ′. It is clear that M(S ′) = M((B\Xk)∪Xmesg)∪tp∈Tk′ (n′)

M(tp, S
′). So let tp be such that te ∈ M(tp, S

′).
Define q to be a position such that tp@q = te and such that for every

proper prefix q′′ of q, either tp@q′′ is a pair, or tp@q′′ = {|t0|}t1 where S ′ ` t−1
1

and where q′′ _ 1 is also a prefix of q. In other words, let q be a position at
which te is carried in tp and derivable. We know such a q must exist because
te ∈ M(tp, S

′).
Since ncow(t′c, T

′, te), let q′ be a carried position of t′c within te such that
no ancestor is in T ′. Consider position q a q′. If there is some position q a q′′

for q′′ a prefix of q′ such that tp @ q a q′′ is in T ′ then the same could be said
of te @ q′′, but this would be a contradiction. So either there is no ancestor
in anc(tp, q

a q′) equivalent to a member of T ′ (in which case k
n,p−� k′ by

condition (2) of the definition of solved), or there is some position q′′ such
that tp @ q′′ is equivalent to some u ∈ T ′. By our choice of q, and by the fact
that any such u must necessarily be an encryption1, it follows that u = {|t0|}t1

where S ′ ` t−1
1 . In this case, k

n,p−� k′ by condition (3) of the definition of
solved.

Thus allows us to conclude that for every bundle Υ denoted by k, there

is a skeleton k′, namely, the skeleton of Υ, such that k
n,tc−� k′. Since Υ is

denoted by k′, this proves that [[k]] ⊆
⋃

k′∈{k′|kn,tc−�k′}
[[k′]]. The other direction

is far simpler: we just note that for each k′ such that k
n,tc−� k′, there is a

homomorphism from k to k′, so the set of bundles denoted by k′ is a subset
of those denoted by k. This completes the proof.

7 Test Solving Algorithm

Intro text missing.

1The only case in which a value in T ′ is not an encryption is when tc ∈ M(S) and tc
is an atom, which we know is false here.

19

7.1 Primitive Preskeleton Operators

The are four primitive operators on preskeletons used by cpsa to solve
authentication tests. Each operator is a partial map from preskeletons to
preskeletons.

Definition 7.1 (Substitution Operator). For order-sorted substitution σ : X →
AY , the operator Sσ is:

Sσ(kX(rl , P, ΘX ,≺, N, U)) =
kY (rl , P, s 7→ σ ◦ΘX(s),≺, σ(N), σ(U))

For k′ = Sσ(k), there is a homomorphism from k to k′ only if for all
t ∈ Uk, Ok(t) ⊆ Ok′(σ(t)). The structure preserving maps associated with
the homomorphism are φid and σ.

Definition 7.2 (Compression Operator). For distinct strands s and s′, op-
erator Cs,s′ compresses strand s into s′.

Cs,s′(kX(rl , P, ΘX ,≺, N, U)) =
kX(rl ◦ φ′

s, P, ΘX ◦ φ′
s,≺′, N, U)

where

φ′
s(j) =

{
j + 1 if j ≥ s
j otherwise,

relation ≺′ is the transitive closure of φs,s′(≺), and

φs,s′(j) =

{
φs(s

′) if j = s
φs(j) otherwise

φs(j) =

{
j − 1 if j > s
j otherwise.

The compression operator is only used when ΘX(s) is a prefix of ΘX(s′),
and when there is a homomorphism from k to Cs,s′(k). The structure pre-
serving maps associated with the homomorphism are φs,s′ and σid. Note that
the compression operator is defined only when relation ≺′ is asymmetric, and
that φs,s′ ◦ φ′

s = φid.

Definition 7.3 (Ordering Enrichment Operator). Operator E(k) enriches≺k

by adding all elements implied by unique origination.

20

The ordering enrichment operator is total and idempotent. The struc-
ture preserving maps associated with the operator’s homomorphism are φid

and σid, i.e. the homomorphism is an embedding.

Definition 7.4 (Augmentation Operator). For node n, role r, and trace C,
operator An,r,C is:

An,r,C(kX(rl , P, ΘX ,≺, N, U)) =
kX′(rl ar, P, ΘX(s) a C,≺′, N ′, U ′)

where X ′ is X extended to include the variables in C, ≺′ is the minimal
extension of ≺ such that (|ΘX | + 1, |C|) ≺′ n, N ′ is N extended with non-
origination assumptions inherited from r by C, and likewise for U ′.

The structure preserving maps associated with the augmentation opera-
tor’s homomorphism are φid and σid, i.e. the homomorphism is an embedding.

7.2 Hulling Step

For preskeleton k = k(, , Θk, , , Uk), assume t ∈ Uk originates on distinct
strands s and s′, and the height of s is no greater than the height of s′.
Operator Hs,s′ = Cs,s′ ◦Sσ is a hulling step if there is a most general unifier σ
such that σ ◦Θk(s) = σ ◦Θk(s

′)|h with h = |Θk(s)|, and there is a homomor-
phism from k to Hs,s′(k). The structure preserving maps associated with the
homomorphism are φs,s′ and σ.

7.3 Pruning Step

For preskeleton k = k(, , Θk, , , Uk), assume strands s and s′ are distinct,
and the height of s is no greater than the height of s′. Operator Ps,s′ =
Cs,s′ ◦ Sσ is a pruning step if there is a sort preserving variable renaming σ
such that σ ◦ Θk(s) = Θk(s

′)|h with h = |Θk(s)|, and two homomorphisms.

Let k′ = Ps,s′(k) and φ = φs,s′ . The required homomorphisms are k
φ,σ7−→ k′

and k′
φ′,σ′
7−→ k such that φ ◦ φ′ = φid and σ ◦ σ′ = σid.

7.4 Augmentation Step

An augmentation step is used to add a strand to a skeleton. An augmentation
step has the form An,r,C ◦ Sσ. Suppose skeleton k = kX(, P, , , ,) has a

21

critical position p at node n, and tc = msgk(n) @ p is the critical message.
cpsa computes the parameters for a set of augmentation steps as follows.
First, compute the target messages. Let Te = E(Pk(n), tc). The target
messages are targ(tc, Te). Next, for each rY (C, N,U) ∈ P and each index h
where C(h) = +t, a transmission, do the following.

Create fresh variables: Let σr be a sort preserving variable renaming,
where the domain is the variables that occur in C|h, and every variable
in the range does not occur in X or Vars(P).

Insert critical message: For each message t′ carried by t, and each tt ∈
targ(tc, Te), consider most general unifiers σ′ where, σ′(t′) = σ′(tt) and
σr E σ′.

Ensure previous events do not transform: For each σ′, find most gen-
eral unifiers σ such that for 1 ≤ i < h, cow(σ(tc), σ(Te), σ(C(i))) and
σ′ E σ. Let Sr,h be a set of substitutions σ with non-most general
unifiers removed.

Ensure last event transforms: For each σ ∈ Sr,h, if ncow(σ(tc), σ(Te), σ(C(h))),
try augmenting with parameters n, r, σ ◦ C|h, and σ.

7.5 Preskeleton Reductions

Function skel is a partial function that maps preskeletons to pruned skeletons.
If given a preskeleton k where some uniquely originating atoms originate more
than once, skel applies hulling steps so as to eliminate uniquely originating
atoms that originate more than once or is undefined. Otherwise, it applies
the ordering enrichment operator once to produce a skeleton. Finally, it
applies as many pruning steps as is possible to produce a skeleton that is
pruned subject to restriction that only pairs of strands are considered. The
structure preserving maps associated with function skel ’s homomorphism are
composed from the structure preserving maps for the operators it uses.

7.6 Test Solving Reductions

Suppose k is a skeleton with a critical position p at node n. Let −t = evtk(n),

tc = t @ p, and Te = E(Pk(n), tc). Skeleton k reduces to k′, written k
n,p−→ k′,

22

if the homomorphism k
φ,σ7−→ k′ exists, position p at n in k is solved in k′, and

one of four cases hold.

Contraction: k′ = skel(Sσ(k)), where σ is a most general unifier such that
for some ta ∈ anc(t, p) and te ∈ Te, σ(ta) = σ(te).

Augmentation: k′ = skel(An,r,C(Sσ(k))), where n, r, C, and σ are as de-
scribed in Section 7.4.

Escape set listeners: For te ∈ TE, if te = {|t0|}t1 and C = 〈−t−1
1 , +t−1

1 〉
then k′ = skel(An,lsn,C(k)).

Critical message listener: If tc = {|t0|}t1 then k′ = skel(An,lsn,〈−t1,+t1〉(k)).

By definition, when k
n,p−→ k′, there is a homomorphism k

φ,σ7−→ k′, where
maps φ and σ are the composition of the maps from the steps used to perform
a test solving reduction. Since each operator does not ensure that the node at
which each uniquely originating atom originates is preserved, skeletons that
do not meet this requirement must be filter out. To perform the filtering,
the implementation computes σ and φ.

Conjecture 7.1 (Authentication Solving Algorithm Complete). Suppose k
is a skeleton with a critical position p at node n, and p at n in k is solved in
skeleton k′, i.e. k

n,p−� k′. Then there exists a skeleton k′′, strand map φ, and

substitution σ such that k
n,p−→ k′′, and k′′

φ,σ7−→ k′.

The proof appears to be too hard. Instead we focus on the following
conjecture.

Definition 7.5 (Listener expanded bundle). Let bundle Υ be a run of pro-
tocol. Its listener expanded bundle is lsn(Υ), which is Υ after inserting a
listener after every message transmitted by a non-listener strand.

Conjecture 7.2. Suppose k is a skeleton with a critical position p at node n.
For all Υ ∈ [[k]] and the k′ that realizes lsn(Υ), there exists a skeleton k′′,

strand map φ, and substitution σ such that k
n,p−→ k′′, and k′′

φ,σ7−→ k′.

23

8 Completeness of CPSA

NOTE: This section is still an unstable draft!
In this section, we prove that the cpsa cohort of finding regular and

listener augmentations and contractions to solve a test is complete in the

sense that if k is a skeleton and k
φ,σ7−→ k′ and k

n,p−� k′ then there is some
k′′ directly obtainable from k and a factorization k

φ0,σ07−→ k′′
φ1,σ17−→ k′ such that

φ = φ1 ◦ φ0 and σ = σ1 ◦ σ0.
This would be the ideal theorem statement but we need to make the

statement more complicated because of cpsa’s use of listener augmentations
which are not reflected in bundles. So instead, we will have to prove that
if k is a skeleton that denotes a bundle Υ, then there is some k′′ directly
obtainable from k that denotes Υ. In order to relate this to the solved
predicate, we make use of the theorem from the previous section, which

states that if k
φ,σ7−→ k′ and k′ is realized, then k

n,p−� k′ for any unrealized n
in k with critical position p. Let k′ be the skeleton of bundle Υ. For the non-
listener cases we will prove the homomorphism from k to k′ factors through
k′′; for the listener cases, we will simply prove that Υ is still denoted by k′′.

Let k be an unrealized skeleton and let n be an unrealized node and p be
a critical position at that node. Let Υ(Θ,→) be a bundle denoted by k and

let k′ be the skeleton of that bundle. Note that k
φ,σ7−→ k′ and k

n,p−� k′. The
proof proceeds by cases, corresponding to the conditions of the definition of
solved.

[Condition (1) of solved]: If p′ is a prefix of p such that t′ @ p′ = t′e ∈ T ′,
then σ is a unifier of t @ p′ and te where σ(te) = t′e. Specifically, let k′′ be
nodewise isomorphic to k, and let σ0 be a most general unifier of te and
t @ p′ more general than σ so that σ = σ1 ◦ σ0. Then let φ0 be the nodewise
isomorphism and let φ1 = φ ◦ φ−1

0 . We have now specified σ0, σ1, φ0, φ1, and
note that φ = φ◦φ−1

0 ◦φ0 and that σ = σ1◦σ0, which proves the factorization
commutes.

[Conditions (3) and (4) of solved]: If Pk′(n′) ` t′1
−1 where {|t′0|}t′1

∈ T ′, a
listener augmentation will serve as our intermediate step. cpsa attempts a
listener augmentation for every decryption key associated with an encryption
in its escape set; let {|t0|}t1 be (one) preimage of {|t′0|}t′1

under σ in the escape

set T . cpsa will thus attempt a listener augmentation for t−1
1 . Let k′′ be

defined to be k with an additional listener for t−1
1 . The map φ0 is nodewise

injective with image that avoids the new listener, and the map σ0 is the

24

identity. Let k′1 be k′ with an additional listener for t′−1
1 , ordered immediately

before n′ (that is, the listener nodes are previous to n′ and all nodes of k′

strictly previous to n′ are strictly previous to the first node of the listener.)
We can define a homomorphism from k′′ to k′1, namely, φ1, σ1 where σ1 = σ
and where φ1 is defined to be φ◦φ−1

0 for nodes in the image of φ0, with the two
listener nodes mapping to the two listener nodes of k′1. k′1 will still be realized;
the only new reception is for t′−1

1 but we assumed that Pk′(n′) ` t′−1
1 and

all public messages sent before n′ are available before the listener reception
since n′ contains a reception event.

In Υ(Θ,→), we must now insert the listener in a way compatible with
k′1, yet also keep the bundle property intact. This may require one or more
penetrator strands be added to produce t′−1

1 if it was not already produced.
Let Θ′,→′ be the extensions of Θ,→ to incorporate the listener strand and
any necessary penetrator strands. Then k′1 realizes Υ(Θ′,→′) and so k′′

realizes Υ(Θ,→) modulo listeners.
If t′c = {|t′0|}t′1

and Pk′(n′) ` t′1 then, again, we use a listener augmenta-
tion. When the critical term is an encryption, cpsa will attempt a listener
augmentation for its encryption key. In this case, if tc = {|t0|}t1 , cpsa will
attempt a listener augmentation for t1. The rest of the argument for this
case is effectively identical to the argument for condition (3), but the listener
in k′′ will be for t1 rather than t−1

1 and the listener in k′1 will be for t′1 rather
than t′−1

1 .
[Condition (2) of solved]: The proof of this case proceeds via the proof

of two lemmas. The first lemma proves that a good candidate augmentation
exists, and the second lemma proves that this augmentation is successful,
produces a distinct result from k, and covers k′.

Definition 8.1. Let r = (C, N,U) be a role, i be whole number, pp be a
position, and tt be a term. Then (r, i, pp, tt) is an augmentation candidate
for (k, n, p) if:

1. |C| ≤ i,

2. Position pp in C(i) is a well-defined, carried position.

3. tt is either t@p or a proper, carried subterm of an element of E(Pn(k), t@
p) that carries t @ p.

Definition 8.2. Let k be an unrealized skeleton with unrealized node n and
critical position p. Let k′ be a realized, pruned skeleton, and let k

φ,σ7−→ k′.

25

Then (r, i, pp, tt) is a solving augmentation candidate for (k, k′, n, p, φ, σ) if
(r, i, pp, tt) is an augmentation candidate for (k, n, p), and

1. There is a send of a message t′ at a node n′ = (s, i) in k′ such that (1)
n′ ≺ φ(n), (2) strand Θ′(s) is an instance of role r, (3) t′ @ pp = σ(tt),
and (4) if t′′ = msgk(s, j) for j < i then cow(t′c, T

′, t′′).

2. There is some position q such that t′c vq t′ and such that (1) anc(t′, q)∩
T ′ = ∅ or (2) there exists some q′, q′′ : q′ a q′′ is a prefix of q and
t′ @ q′ ∈ T ′ and t′ @ q′ a q′′ ∈ targ(t′c, T

′) but t′ @ q′ a q′′ /∈ σ(targ(tc, T)).

Lemma 8.1. If k
n,p−� k′ via k

φ,σ7−→ and only condition (2) of the solved predi-
cate holds, then there exists a solving augmentation candidate for (k, k′, n, p, φ, σ).

Proof. In order to concisely deal with similarities between more complex
cases and simpler cases, we define several related sequences which become
defined as needed. Specifically, we define a sequence T ′

i of sets of terms, a
sequence t′i of terms, sequences pi and p′i of positions, and a sequence ni of
nodes, such that:

• T ′
i ⊂ T ′.

• For i > 0, T ′
i = {t′i} ∪ (E(Pk′(ni),Pk′(n′), t′c) ∩ T ′

i−1).

• For i > 0,p′i is a prefix of pi.

• For i > 0, t′c vpi
t′i but t′i @ p′i ∈ targ(t′c, T

′) and t′i @ p′i /∈ σ(targ(tc, T))

• For i ≥ 0, ni+1 � ni, and n0 � n′.

• ncow(t′c, T
′
i ,msg(ni)).

We let T ′
0 = T ′ and we let n0 be the node preceding n′ transmitting the

message tp such that ncow(t′c, T
′, tp). There is no need to define t′0, p0, or p′0

because no conditions are placed on them.
Note that in fact T ′

i = {t′i} ∪ (E(Pk′(ni),Pk′(n′), t′c) ∩ T ′), by repeated
substitution of T ′

i−1 coupled with the fact that these escape sets get smaller
as i grows.

Since T ′ is finite, we know that this sequence cannot be defined farther
than i = |T ′|. Therefore, it suffices to prove that either we can find a solving

26

augmentation candidate given a sequence of length i, or that we can extend
the sequence while maintaining these properties.

Recall that since for all {|t0|}t1 ∈ T ′ we have that Pk′(n′) 6` t−1
1 , and also

if t′c is an encryption, its encryption key is not derivable from Pk′(n′), we
know that if S is a set of messages such that for every x ∈ S we have that
cow(t′c, T

′
i , x), then S ` x′ implies that cow(t′c, T

′, x′). Thus, for any reception
node prior to n′ in k′, if the reception carries t′c not only within T ′

i then there
is an earlier send node that carries t′c not only within T ′

i ; if the earliest such
node is a reception, its message would not be derivable.

Thus, for the message at any node � ni in k′, if that message does not
carry t′c only within T ′

i , then either that node is a send, or there is an earlier
node whose message does not carry t′c only within T ′. In other words, if such
a message exists, we can find an ealiest transmission node νi sending τi such
that ncow(t′c, T

′, τi) and for all τ sent earlier than νi, cow(t′c, T
′, τ). Note

that since ncow(t′c, T
′
i ,msg(ni)), there must exist some node νi such that (1)

evtk′(νi) = +τi, (2) ncow(t′c, T
′
i , τi), and (3) for all ν ≺ νi, cow(t′c, T

′
i ,msg(ν)).

In other words, νi is an earliest transmission node whose message carries t′c
not only within T ′

i .
Since k′ is realized, we know that cow(t′c, E(Pk′(νi), t

′
c), τi) and therefore,

cow(t′c, E(Pk′(ni),Pk′(n′), t′c), τi) by Lemma 6.2. Since ncow(t′c, T
′
i , τi), let

q be such that t′c vq τi and anc(τi, q) ∩ T ′
i = ∅. If such a q exists such

that anc(τi, q) ∩ T ′ = ∅ then let q have this property. Let t? ∈ anc(τi, q) ∩
E(Pk′(ni),Pk′(n′), t′c) \ T ′

i , where t? ∈ T ′ if such a t? exists given our choice
of q. If t? ∈ T ′ then t? = ti (recall, T ′

i \ (T ′ ∩ E(Pk′(ni),Pk′(n′), t′c)) = {t′i}).
In such a case, assume without loss of generality that we can write q = q′ a pi

where τi @ q′ = t?.2

Note that q satisfies condition (3) of a solving augmentation candidate,
a condition which depends only on the transforming message, τi. If t? /∈ T ′

then it is because anc(τi, q) ∩ T ′ = ∅. Otherwise, t? = ti, and q a p′i is the
prefix required: τi @ q′ = ti ∈ T ′ and τi @ q′ a p′i = ti @ p′i is in targ(t′c, T

′) but
not in σ(targ(tc, T)).

From here, we must identify our solving augmentation candidate or iden-
tify our extension of the sequence.

Let ri = (Ci, Ni, Ui) be the role associated with νi’s strand in k′ via its
role map, and let νi = (si, hi). We know that νi is a sending node, so let tr be

2If not, write q = q0
a q1 where t′ @ q0 = t? and t′c vq1 t?. Consider q′ = q0

a pi. Then
t′c vq′ τi and t? ∈ anc(τi, q

′).

27

such that C(hi) = +tr. If q is a well-defined position of tr then (ri, hi, q, tc)
is a solving augmentation candidate. (Proof omitted.)

If not, then let q′ be the longest prefix of q such that q′ is a well-defined
position of tr (and let q = q′ a q′′); then tr @ q′ = x where x is of sort
mesg. Since our protocol satisfies the acquired constraint there is an earlier
message C(haq) = −taq in which x is acquired; let paq be such that x vpaq taq.
If t′aq = msg(n′

aq) where n′
aq = (si, haq) then we know that t′aq @(paq

a q′′) = t′c
so there must be some ancestor t′e in T ′

i ∩ anc(t′aq, paq
a q′′). Specifically, let

t′e be the ancestor closest to t′aq @ (paq
a q′′) in E(Pk′(n′

aq),Pk′(n′), t′c). We
know there is some ancestor in E(Pk′(n′

aq), t
′
c) because k′ is realized, and by

Lemma 6.2 and Lemma 6.1, there is some ancestor in E(Pk′(n′
aq),Pk′(n′), t′c).

Given that there is at least one, we can without loss of generality pick the
smallest as t′e.

Furthermore, t′e must appear at some position p′aq in t′aq which is a proper
prefix of paq, otherwise, t′e would be in anc(tp, q). Let paq = p′aq

a p′′aq. If there
is some target term tt such that σ(tt) = t′e @p′′aq then (ri, hi, q

′, tt) is a solving
augmentation candidate. (Proof omitted.)

Otherwise, for all tt ∈ targ(tc, T), σ(tt) 6= t′e @ p′′aq. Let t′i+1 = t′e, let
pi+1 = p′′aq, let T ′

i+1 = (T ′
i \ {t′e}) ∩ E(Pk′(n′

aq),Pk′(n′), t′c), and let ni+1 be
some node� n′

aq such that t′e ∈ M(mesg(ni+1),Pk′(n′)); we know such a node
exists because t′e ∈ E(Pk′(n′

aq),Pk′(n′), t′c). Then ncow(t′c, T
′
i+1,mesg(ni+1)

because t′e ∈ M(mesg(ni+1) and t′e has at least one carried position of t′c,
namely p′′aq, that has no ancestor in E(Pk′(n′

aq),Pk′(n′), t′c).

This establishes that a solving augmentation candidate exists. Next we
must prove that the existence of such an augmentation candidate implies a
cohort member that we can factor through.

Lemma 8.2. If (r, i, pp, tt) is a solving augmentation candidate for (k, k′, n, p, φ, σ)
then if k′′ = aug(k, r, i, pp, tt) then there exist homomorphisms (φ′, σ′) and

(φ′′, σ′′) such that k
φ′,σ′
7−→ k′′

φ′′,σ′′
7−→ k′ where φ = φ′′ ◦ φ′ and σ = σ′′ ◦ σ′, and

k′′ is not isomorphic to k.

STOP READING HERE

Proof. In such cases, the map from k to k′ filters through k′′ which is the
result of an augmentation followed by pruning. To specify an augmentation
operation, we must specify an n which the new instance precedes, a role r,
a trace C (an instantiation of r under some substitution up to some height)

28

and a substitution σ to apply in conjunection with the augmentation. This
produces a pre-skeleton k′′0 and then k′′ is the result of first hulling k′′0 and
then pruning single strands.

n′ will serve as the n for the augmentation, and r will be the role.
In k′, there is a node ν = (s′, i) such that ν ≺ n′ such that evt(ν) = +τ

and τ @ pp = σ(tt), and where s is an instance of role r, and such that for
all j < i, cow(t′c, T

′,msgk(s, j)).
First step: adding a fresh instance

Let k0 be the skeleton An,r,C(Sσid
(k)) where C is a variable-disjoint re-

naming of the trace in r up to the ith event.3 There is a homomorphism

k
φ0,σ07−→ k0 with σ0 = σid and φ0 being nodewise bijective. In other words,

(φ0, σ0) is an inclusion map.
Furthermore, (φ, σ) factors through (φ0, σ0). Let φ̂ be defined to be φ◦φ−1

0

for those nodes in the image of φ0. Nodes not in the image of φ0 are the
nodes in the additional strand introduced by the augmentation. For such
nodes (s, i), φ̂ maps them to (s′, i) in k′. σ̂ is defined to be σ on all variables
appearing in φ0(k). For the variables appearing outside the image of φ0, note
that there is a renaming ρ that maps the first i events in the trace of r to C
used in our augmentation, and there is a substitution σr, the instantiation
map in k′, which unifies the first i events in the trace of r with the first i
events in the strand s′ in k′. (Specifically, let σr be the full instantiation map
for that strand, restricted to the variables that appear in the first i events
in the trace of r.) Then σ̂ on variables appearing outside the image of φ0 is
σr ◦ ρ−1.
Second step: placing the critical message

Let tr be the message sent in the ith node of the newly added strand in
k0. Note that σ̂ unifies tr @ pp with tt, because σ̂(tr) = τ and τ @ pp =
σ̂(tt) = σ(tt). Let σ1 be a most general unifier of tr @ pp and tt more general
than σ̂, and let σ̂1 be such that σ̂ = σ̂1 ◦ σ1.

Consider k1 = Sσ1(k0). Let φ1 be the identity map. Then (φ1, σ1) is a
proto-homomorphism from k0 into k1.

The second step in the augmentation is relies on parameters (k, n, r, i, pp, tt)
where pp, the placement position, is a well-defined position in C(i), and
where tt, the target term, is either t @ p where t is the message to be re-
ceived at node n, or a member of {tt|tt is a subterm of an element of

3We can see that k0 is a skeleton because no origination of values already in k changes,
and because C is consistent with the origination restrictions introduced.

29

E(Pk(n), t @ p)} \ E(Pk(n), t @ p).4 Here, we seek to find a preskeleton
aug1(k, n, r, i, pp, tt) that has a new instance of role r at height i, that is as
fresh as possible, subject to the constraint that t′ @ pp = tt, where t′ is the
message sent in the new instance at height i.

We accomplish this, essentially, by considering aug0(k, n, r, i) where t′ is
the message sent in the new instance at height i, and finding σ1 ∈ unify(t′ @
pp, tt) and then applying σ1 to aug0(k, n, r, i) to produce aug1(k, n, r, i, pp, tt).
This step can fail, if there is no unifier, or if aug1(k, n, r, i, pp, tt) is not a pre-
skeleton, or if the map (φ1 ◦φ0, σ1 ◦σ0) is not a preskeleton homomorphism.5

However, if k
φ,σ7−→ k′ and k′ has a strand sr for which |sr| ≥ i, rl(sr) = r,

(sr, i) ≺ φ(n), and t′ @ pp = σ(tt) where t′ is the message sent at (sr, i), then
(φ, σ) always factors through (φ1 ◦ φ0, σ1 ◦ σ0) and this step does not fail.
Third step: ensuring carried-only-within

(complete me!)

Acknowledgments

The presentation of penetrator derivable messages in Section 5 is based on
ideas by Javier Thayer.

References

[1] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217–273, 1992.

[2] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the
structure of bundles. Theor. Comput. Sci., 283(2):333–380, 2002.

[3] Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning.
The MIT Press, 2001.

4Note that the latter will always include t@p itself unless the escape set is empty. It is
possible for the escape set to be empty, in which case, explicitly specifying that tt = t @ p
is necessary.

5If, for instance, the unification requires identifying a variable occurring but not carried
in t′ @pp with a term in N(k), and that variable appears earlier in the instance in a carried
position, aug1 would be a non-preskeleton.

30

[4] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Security,
7(1), 1999.

31

