
CPSA Design

John D. Ramsdell Joshua D. Guttman
The MITRE Corporation

November 5, 2010

c© 2010 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

Contents

1 Introduction 4
1.1 Notation . 5
1.2 Document Status . 5

2 Messages 6
2.1 Algebra Interface . 8

2.1.1 Equations . 8
2.1.2 Term Internals . 9
2.1.3 Encryptions and Derivations 10

3 Protocols and Preskeletons 11
3.1 Protocols . 12
3.2 Preskeletons . 14

3.2.1 Preskeleton S-Expression Syntax 15

4 Reductions 18
4.1 Preskeleton Reductions . 18

4.1.1 Substitution . 19
4.1.2 Compression . 19
4.1.3 Transitive Reduction 19

4.2 Augmentation . 20
4.3 Generalization . 20

5 Search Strategy 22

6 Visualization 23

A Basic Crypto Algebra Syntax Reference 26

2

B The Basic Crypto Many-Sorted Algebra 28

3

Chapter 1

Introduction

The Cryptographic Protocol Shapes Analyzer (cpsa) enumerates all essen-
tially different executions possible for a cryptographic protocol. We call them
the shapes of the protocol. Naturally occurring protocols have only finitely
many, indeed very few shapes. Authentication and secrecy properties are
easy to determine from them, as are attacks and anomalies.

The shapes analysis is performed within a pure Dolev-Yao model. The
cpsa program reads a sequence of problem descriptions, and prints the steps
it used to solve each problem. For each input problem, cpsa is given some
initial behavior, and it descovers what shapes are compatible with it. Nor-
mally, the initial behavior is from the point of view of one participant. The
analysis reveals what the other participants must have done, given the par-
ticipant’s view. The search is complete, i.e. every shape can in fact be found
in a finite number of steps.

A cpsa release includes two other documents, The cpsa Specification
and The cpsa Primer. The specification describes the cpsa algorithm in
a form that is closely related to its implementation. Algorithm correctness
proofs are given in the specification formalism.

There are many design decisions that are not reflected in The cpsa Spec-
ification. Including these decisions in the specification would clutter the doc-
ument and unnecessarily complicate proofs. The purpose of this document is
to describe the key omitted design decisions. It assumes the specification has
been thoroughly read. Definitions are not reproduced, so the specification
should be accessible when reading this document. The cpsa Primer pro-
vides an overview of cpsa, and may be worth reading before this document
is approached.

4

1.1 Notation

Originally, the specification and the design were one and the same. Every-
thing was specified in the design formalism. After the split, the description
of protocols and preskeletons diverged by omitting details in the design for-
malism in what is used for the specification formalism. Appendix A in The
cpsa Specification relates the two formalisms.

The key difference between the two formalisms is the design formalism
more directly models the Haskell data structures used in the cpsa program.
An instance of a Haskell data structure is modeled as an element in an order-
sorted term algebra [3]. The reduction systems in the specification translate
to term reduction systems in the design.

Zero-based indexing is used though out this document and in the source
code it describes. Within the document, a finite sequence is a function from
an initial segment of the natural numbers. Angle brackets are used for se-
quence construction and a is used for sequence concatenation. Thus

〈3, 2〉 a 〈99〉 = {0 7→ 3, 1 7→ 2, 2 7→ 99}.

The length of a sequence S is |S|. The phrase “for x ∈ S” is shorthand for
“for x in the range of S”. The mapping of sequence S by function f is f ◦S.
Some sets are represented by sequences with no duplicates, and f(S) is used
for f ◦ S after duplicates have been eliminated.

You might wonder why lowercase k is used for skeletons rather than black-
board bold A. The notation used in the design document is motivated by the
code, and k with and without decoration somehow became associated with
preskeletons, probably because p, r, t, and s, were already in use. Many
other notational conventions are directly inspired by the code.

In this document, lowercase Latin letters usually stand for terms, and
uppercase Latin letters stand for sequences or sets of terms.

1.2 Document Status

This version of the design describes the cpsa implementation that assumes
the unification problem for the message algebra has one most general unifier.
The Basic Crypto Algebra has this property.

5

Chapter 2

Messages

The formalism used in the design and the specification for message algebras
is the same, an order-sorted term algebra. This chapter describes the relation
between terms and the external syntax used by the cpsa program for the
Basic Crypto Algebra, and then describes the interface between the algebra
module and the rest of the program.

Table 2.1 presents a slightly modified signature for the Basic Crypto Alge-
bra. It specifies a syntax for operations that follows mathematical tradition,
such as writing KA for pubk(A). Tag constants are quoted strings. The
sort of all messages is mesg, the sort symbol used by the cpsa program. The
sort > is used in the specification so that the carrier set of all messages is A>,
instead of Amesg.

For pairing, parentheses are omitted when the context permits, and comma
is right associative. Pairing was once called concatenation, hence the use of
the symbol cat for pairing.

In the S-expression syntax used by the program, the simplest term is
a variable, which syntactically is a symbol as described in Appendix A.
Internally, each variable has a sort, so the sort of each variable in the input
must be declared in a vars form, such as:

(vars (t text) (n name) (k akey)).

The translation of S-expression terms is given in Table 2.2. Figure 3.2
on Page 13 contains examples of bca message terms. Also see term in
Table A.1, Appendix A.

The code that implements the Basic Crypto Algebra does not directly
implement an order-sorted algebra. Instead, it implements a many-sorted

6

Base sort symbols: name, text, data, skey, akey
Non-base sort symbol: mesg

Subsorts: name, text, data, akey, skey < mesg

{| · |}(·) : mesg×mesg→ mesg Encryption
(·, ·) : mesg×mesg→ mesg Pairing
“. . . ” : mesg Tag constants
K(·) : name→ akey Public key of name
(·)−1 : akey→ akey Inverse of asymmetric key
ltk : name× name→ skey Long term shared key

Axiom: (x−1)−1 ≈ x for x : akey

Table 2.1: Basic Crypto Signature

[[(pubk t)]] = K[[t]]

[[(privk t)]] = K−1
[[t]]

[[(invk t)]] = [[t]]−1

[[(ltk t0 t1)]] = ltk([[t0]], [[t1]])
[[" . . . "]] = “. . . ”

[[(enc t0 . . . tn−1 tn)]] = {|[[(cat t0 . . . tn−1)]]|}[[tn]]

[[(cat t)]] = [[t]]
[[(cat t0 t1 . . .)]] = ([[t0]], [[(cat t1 . . .)]])

Table 2.2: S-expression Terms

7

algebra and exports an order-sort algebra based on the implementation. Ap-
pendix B provides the complete details of the implementation.

2.1 Algebra Interface

The details of each implementation of a cpsa message algebra are hidden
by an interface. This section presents the view of a term algebra exposed by
the interface. Some aspects of the interface are omitted from this discussion.
For example, each implementation of an algebra must provide a means to
read a term from an S-expression, and write a term as an S-expression.
Also omitted are functions in the interface that are specializations of a more
general function added to enhance performance.

Each algebra provides a predicate to determine if a term is a variable,
and another to determine if a term is an atom. A fresh variable generator
is in the interface. Given a generator state and a term, it produces a clone
of the term in which the variables have been replaced with freshly generated
ones. It also returns the new generator state.

2.1.1 Equations

An algebra reports answers to unification and matching problems by re-
turning an order-sorted substitution or an error indicator. A different data
structure is used for each problem, in this document indicated by using σ
for answers to the unification problem of σ(t0) ≡ σ(t1), and using σE for
answers to the matching problem of σE(t0) ≡ t1. As the typical case is for
sets of equations to be solved, the unification and match functions have been
designed to allow an incremental approach to solving the members of the set,
by extending a substitution for one pair of equated terms. They have the
following signatures:

unify : T>(X)× T>(X)× (X → T>(X))→ (X → T>(X))?

match : T>(X)× T>(Y)× (X → T>(Y))→ (X → T>(Y))?

For type T , we write T ? to describe the lifted type for T that includes an
error indicator. In this formalism, sequences of length less than two are used
for the lifted type, and the error indicator is the empty sequence. In Haskell,
the lifted type is Maybe T .

8

An answer to the matching problem is called an environment. An envi-
ronment differs from a substitution produced as an answer to a unification
problem in that it may explicitly specify identity mappings, thus forbidding
extensions to the environment that conflicts with these mappings. This dis-
tinction is crucial for correctly answering matching problems by iteratively
extending an environment.

To support checks to see if terms are isomorphic via the match function,
the algebra interface includes the match variable renaming predicate that
tests an environment to see if it is a one-to-one variable-to-variable order
sorted substitution.

To support pruning, there is a function that given an environment and a
term, determines if there are variables in the term that are in the domain of
the environment.

2.1.2 Term Internals

The interface includes a function that returns the set of variables in a term,
and a function that returns the terms carried by a term. Other subterms
are accessed via position oriented functions. Recall that a position is a fi-
nite sequence of natural numbers, and the message in t that occurs at p, is
written t @ p. The interface includes a data type for a position that hides its
implementation. The interface also includes the ancestors function anc(t, p)
and the carried positions function carpos(t, t′) as defined in the specification.

Each algebra provides a way to obtain a set of positions at which a sub-
term occurs within a term, and a way to replace the subterm at a given
position with another term. These functions are used to generalize by vari-
able separation.

Definition 2.1 (All Positions). Given a term t, the set of positions at which t
occurs in t′ is allpos(t, t′), where

allpos(t, t′) =

{〈〉} if t′ ≡ t, else
{〈i〉 a p | p ∈ allpos(t, ti), i < n}

if t′ = f(t0, . . . , tn−1), else
{} otherwise.

Definition 2.2 (Replace). Given terms t and t′, and position p, the term

9

that results from replacing the term at p with t in t′, is replace(t, p, t′), where

replace(t, 〈〉, t′) = t;
replace(t, 〈i〉 a p, f(t0, . . . , tn−1)) = f(t′0, . . . , t

′
n−1) where

t′j =

{
replace(t, p, ti) if i = j;
tj otherwise.

2.1.3 Encryptions and Derivations

Finally, the remaining functions in the interface are the ones that expose the
encryption oriented properties of terms. The decryption key function returns
the key used to decrypt a term if it is an encryption, otherwise it returns an
error indicator. The encryptions function returns the set of encryption terms
carried by a term, each one paired with its encryption key. The penetrator
derivable function from the section in the specification of the same name is
in the interface. Given a derivable predicate that has been specialized with
a given set of supported terms and a set of atoms to avoid, a target term,
and a source term, the protectors function returns an error indicator if the
target is carried by the source outside of an encryption, where the derivable
predicate is used to determine if a decryption key can be used to expose the
target. Otherwise, it returns a set of encryptions in the source that carry
the target and have underivable decryption keys. If two encryptions protect
the target, only the outside one is returned. The inside encryption is the one
that is carried by the outside encryption. Pseudo code for the decryption
key and the protectors functions is in the specification.

10

Chapter 3

Protocols and Preskeletons

Terms over an order-sorted signature extended from a message signature
describe key data structures in the cpsa program. Given a message signature
that defines the sort mesg and the atoms, the additional sorts and operations
are in the cpsa Signature in Table 3.1. The signature uses the sort s list
for sequences of terms of sort s, and the sort s set for injective sequences of
terms of sort s. The sorts used in the signature are in Table 3.2.

Some of the terms over a cpsa signature are not well-formed, and omit-
ted from interpretation. The text describing a term of a sort includes the
conditions for it being well-formed.

In what follows, the external syntax for protocols is presented, and later,
its translation into terms over a cpsa signature. For preskeletons, the inter-
nal representation is presented first, followed by its external syntax.

Additional sort symbols: evt, role, maplet, instance,
node, ordering, and preskel

+: mesg→ evt − : mesg→ evt r : evt list× atom set× atom set→ role
m : mesg×mesg→ maplet i : role× nat×maplet set→ instance

n : nat× nat→ node o : node× node→ ordering
k : role set× instance list× ordering set× atom set× atom set→ preskel

Table 3.1: cpsa Signature

11

mesg the sort of all messages (implementation of >)
evt a transmission or reception event

trace a sequence of events used in a role
role a trace, a non-originating set, and a uniquely-originating set

protocol a set of roles
nat a natural number

maplet a map from a role variable to a preskeleton term
instance a strand’s trace and inheritance as instantiated from a role

node a pair of numbers, a strand identifier and a strand position
ordering a causal ordering between a pair of nodes
preskel a preskeleton

Table 3.2: Protocol and Preskeleton Sorts

•

•

init {|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB
•

•

resp {|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB

Figure 3.1: Needham-Schroeder Initiator and Responder Roles

3.1 Protocols

A protocol defines the patterns of allowed behavior for non-adversarial par-
ticipants, called the regular participants. The behavior of each regular partic-
ipant is an instance of a protocol template, called a role. Figure 3.1 displays
the roles that make up the Needham-Schroeder protocol.

In S-expression syntax, a protocol is a named set of roles and is defined
by the defprotocol form. See protocol in Table A.1, Appendix A.

(defprotocol ns basic

(defrole init . . .)
(defrole resp . . .))

The name of this protocol (id) is ns, and the second identifier (alg)
names the message algebra in use. The identifier for the Basic Crypto Algebra
is basic.

12

(defrole resp (vars (b a name) (n2 n1 text))

(trace (recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

(recv (enc n2 (pubk b)))))

Figure 3.2: Needham-Schroeder Responder Role

During the reading process, the appropriate algebra is implicitly bound
to the internal representation of a protocol and many data structures derived
from it. The protocol name is used at read time to bind it with its usages,
and for output and error messages, but is otherwise unused and thus omitted
from the design specification. The internal representation of a protocol is
simply a set of roles—as a term of sort role set in Table 3.1.

The S-expression syntax for a role has a name, a declared set of variables,
and a trace that provides a template for the behavior of its instances. A
trace is a non-empty sequence of events, either a message transmission or
a reception. An outbound term is (send t) and an inbound message with
term t is (recv t). The translations of events are +[[t]] and −[[t]] respectively,
where [[t]] is the translation of the S-expression t into an term of sort mesg
in Table 3.1. Needham-Schroeder responder’s role in S-expression syntax is
in Figure 3.2.

Some atoms in a role have special properties. The atoms listed in the
non-orig form are assumed to be non-originating, and those in the uniq-orig
form are assumed to be uniquely originating. The implications of these as-
sumption is as in the specification.

Internally, role r(C, N,U) has a trace C, and two sets of atoms, N and U .
The atoms in N are assumed to be non-originating, and the atoms in U are
assumed to be uniquely originating. As with protocols, the name is used
during input and output, but omitted from this specification.

A role is well-formed if it satisfies the conditions listed for a role in the
specification. A protocol is well-formed if no variable occurs in more than
one role. The external syntax used by cpsa uses variable renaming to create
the illusion that the same variable may occur in two roles. In the external
syntax, two roles may share the same identifier.

Associated with each protocol is an implicit set of roles. For each term t
in its algebra, there is a listener role of the form lsn(t) = r(〈−t, +t〉, 〈〉, 〈〉).
A listener role is used to assert that a term is not a secret. In the implemen-

13

tation, the only difference between a listener role and non-listener roles is its
name is the empty string, a fact used when printing.

3.2 Preskeletons

The other key cpsa data structure is a preskeleton—see the k operator in
Table 3.1. A preskeleton is used to encode classes of protocol executions,
including its shapes, the answers produced by cpsa. One component of a
preskeleton is its protocol, and one component is a set of strands. There are
more components, but the set’s representation is presented next.

As in the specification, a sequence of instances represents a set of strands.
The instance i(r, h, E) contains a role r, a positive number h called its height,
the length of the trace associated with the instance, and an environment E,
a term of sort maplet set.

The environment E is well-formed if it represents the order-sorted sub-
stitution σE such that for every maplet m(x, y), σEx = y. Note that x is
always a variable, unlike its analog in the external syntax. An instance is
well-formed if its role is well-formed, its environment is well-formed, and its
height is not greater that the length of its role’s trace.

The set of strands in a preskeleton is represented by a sequence of in-
stances. The identity of a strand is its position in the sequence, which
is where the description of its trace is located. The node n(s, p) is asso-
ciated with the event at position p in strand s’s trace. In other words,
if I is a sequence of instances, the event at n(s, p), written evt(I, n(s, p)),
is σE(C(p)), where I(s) = i(r(C, N,U), h, E) and p < h ≤ |C|. A node
associated with an inbound term is a reception node, and a node associ-
ated with an outbound term is a transmission node. The term stripped of
its direction is written msg(I, n(s, p)). The set of nodes in sequence I is
{n(s, p) | s < |I|, I(s) = i(r, h, E), p < h}.

The preskeleton k(P, I, O,N, U) contains a protocol P , a non-empty se-
quence of instances I, a set of communication orderings O, a set of non-
originating terms N , and a set of uniquely originating terms U . The node
ordering o(n0, n1) asserts that n0 precedes n1, that the event at n0 is out-
bound, the event at n1 is inbound, and n0 and n1 are on different strands.
The atoms in N are assumed to be non-originating, and the atoms in U are
assumed to be uniquely originating.

Members of the set of communication orderings O relate nodes in differing

14

•

•

init

•

•

resp

�

≺

{|N1, A|}KC
{|N1, A|}KB

{|N1, N2|}KA
{|N1, N2|}KA

{|N2|}KC
{|N2|}KB

Figure 3.3: Needham-Schroeder Shape (K−1
A uncompromised, N2 fresh)

strands. There is an implied ordering of nodes within the same strand.
Strand succession orderings of the form o(n(s, p−1), n(s, p)), where 0 < p < h
and h is the height of strand s are implicit, and must not be in O.

Associated with each preskeleton k is a graph. The vertices of the graph
are the nodes of the instance sequence I, and the edges are the reverse of the
both communication ordering O and the implied strand succession orderings.
The edges are reversed because events in a node’s past are of interest when
analyzing a node. When the graph is acyclic, the transitive asymmetric
relation ≺k of k is the transitive closure of the graph, and n0 ≺k n1 asserts
that the message event at n0 precedes the one at n1. (A preskeleton with a
graph that contains cycles is not well-formed.)

To be well-formed, in addition to the requirements on communication
orderings listed above, a preskeleton must satisfy the same conditions listed
for a preskeleton in the specification.

A Needham-Schroeder shape in traditional Strand Space notation is in
Figure 3.3, and its representation using order-sorted terms is given in Fig-
ure 3.4.

3.2.1 Preskeleton S-Expression Syntax

The defskeleton form in Table A.1, Appendix A is used to specify a pre-
skeleton in S-expression syntax. (With the exception of the initial problem
statement, a preskeleton is always a skeleton.) On output, a preskeleton
Referring to Table A.1, the id in the preskeleton form names a protocol. It
refers to the most recent protocol definition of that name which precedes the
preskeleton form in the input. The id in the defstrand form names a role.
The integer in the strand form gives the height of the strand. The sequence
of pairs of terms in the strand form specify an environment used to construct

15

With A, A′, A′′, B, B′, B′′, C : name, N1, N
′
1, N

′′
1 , N2, N

′
2, N

′′
2 : text:

resp = r(respt, 〈〉, 〈〉) where
respt = 〈−{|N1, A|}KB

, +{|N1, N2|}KA
,−{|N2|}KB

〉

init = r(init t, 〈〉, 〈〉) where
init t = 〈+{|N ′

1, A
′|}KB′ ,−{|N ′

1, N
′
2|}KA′ , +{|N ′

2|}KB′ 〉

k(〈resp, init〉, I, O, 〈K−1
A′′ 〉, 〈N ′′

2 〉) where
I = 〈i(resp, 3, E), i(init , 3, E ′)〉
E = 〈m(A, A′′), m(B, B′′), m(N1, N

′′
1), m(N2, N

′′
2)〉

E ′ = 〈m(A′, A′′), m(B′, C), m(N ′
1, N

′′
1), m(N ′

2, N
′′
2)〉

O = 〈o(n(0, 1), n(1, 1)), o(n(1, 2), n(0, 2))〉

Figure 3.4: Needham-Schroeder Preskeleton

(defskeleton ns (vars (n2 n1 text) (a b b-0 name))

(defstrand resp 3 (n2 n2) (n1 n1) (b b) (a a))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b-0))

(precedes ((0 1) (1 1)) ((1 2) (0 2)))

(non-orig (privk a))

(uniq-orig n2))

Figure 3.5: Needham-Schroeder defskeleton

the events in a strand from its role’s trace. The first term is interpreted using
the role’s variables and the second term uses the preskeleton’s variables. The
environment used to produce the strand’s trace is derived by matching the
second term using the first term as a pattern. The deflistener form creates
an instance of a listener role for the given term.

The precedes form specifies members of the node relation. The first
integer in a node identifies the strand using the order in which strands are
defined in the defskeleton form.

A variable may occur in more then one role within a protocol. The
reader performs a renaming so as to ensure these occurrences do not overlap.
Furthermore, the maplets used to specify a strand need not specify how to
map every role variable. The reader inserts missing mappings, and renames
every preskeleton variable that also occurs in a role of its protocol. The sort

16

of every preskeleton variable that occurs in the non-orig or uniq-orig list
or in a maplet must be declared, using the vars form.

Needham-Schroeder shape in S-expression syntax is displayed in Fig-
ure 3.5. The effect of reader renaming is shown in Figure 3.4 by adding
primes to variables.

The prot-alist, role-alist, and skel-alist productions in Table A.1
are Lisp style association lists, that is, lists of key-value pairs, where every
key is a symbol. Key-value pairs with unrecognized keys are ignored, and are
available for use by other tools. On output, unrecognized key-value pairs are
preserved when printing protocols, but elided when printing preskeletons.

See the cpsa Primer for more examples of cpsa external syntax.

17

Chapter 4

Reductions

This chapter describes the implementation-oriented refinements made to sup-
port reduction that are considered too detailed to be included in the specifi-
cation.

In the cpsa implementation and the design formalism, every preskele-
ton includes a link to its protocol. Two preskeletons are not related by a
homomorphism unless they specify the same protocol.

For each preskeleton k, the implementation maintains an origination map,
O(k, t). It maps each of the preskeleton’s uniquely originating terms to the
set of nodes at which it originates. For hulled preskeletons, the range of
this map must contain singleton sets or the empty set. The origination map
returns an error indicator when given a term not assumed to be uniquely
originating, a feature used to check the implementation’s consistency.

Each preskeleton contains the state of a variable generator. It’s used to
ensure a source of fresh variables for any preskeleton derived from it.

4.1 Preskeleton Reductions

Given a well-formed preskeleton, an attempt is made to convert it into a set
of skeletons. This section describes a few implementation details omitted
from the specification.

The implementation uses sequences to represent some sets. The function
nub removes duplicates from a sequence.

18

4.1.1 Substitution

The function Sσ applies the order-sorted substitution σ to a preskeleton.

Sσ(k(P, I, O,N, U)) = k(P, Sσ ◦ I, O, nub(σ ◦N), nub(σ ◦ U))
Sσ(i(r, h, E)) = i(r, h, Sσ ◦ E)
Sσ(m(x, y)) = m(x, σ(y))

The substitution is permitted as long as it preserves the nodes at which
each uniquely originating term originates. In other words, the substitution
is permitted only if for each uniquely originating term t in k, O(k, t) ⊆
O(k′, σ(t)), where k′ = Sσ(k). The implicit homomorphism is (φid, σ), where φid

is the identity strand map for k.

4.1.2 Compression

The function Cs,s′ compresses s into s′ in a preskeleton.

Cs,s′(k(P, I, O,N, U)) = k(P, I ◦ φ′
s, Cφ ◦O,N, U)

Cφ(o(n0, n1)) = o(Cφ(n0), Cφ(n1))
Cφ(n(s, p)) = n(φ(s), p)

φ(j) = φs,s′(j) =

{
φs(s

′) if j = s
φs(j) otherwise

φs(j) =

{
j − 1 if j > s
j otherwise

φ′
s(j) =

{
j + 1 if j ≥ s
j otherwise

where the trace of I(s) is a prefix of the trace of I(s′). Although not shown,
orderings of the form o(n(s, p), n(s, p′)) are removed from the ordering when
p < p′, so they do not cause the output preskeleton to fail to be well-formed.
The implicit homomorphism is (φs,s′ , σid), where σid is the identity substitu-
tion. Note that φs,s′ ◦ φ′

s = σid.

4.1.3 Transitive Reduction

The function R performs a transitive reduction on a preskeleton’s node re-
lation. The transitive reduction of an ordering is the minimal ordering such
that both orderings have the same transitive closure. Here, communication
orderings implied by transitive closure are removed.

19

The transitive reduction of a skeleton is isomorphic to the skeleton. The
reduction is performed to speed up the code that checks for isomorphisms.
When two skeletons are transitively reduced, and isomorphic, they have the
same number of communication orderings.

In the implementation, transitive reduction is the last operation applied
to a preskeleton during the process of converting a preskeleton into a pruned
skeleton. Isomorphism testing is only performed on pruned skeletons.

4.2 Augmentation

The function Ai,n augments a preskeleton with a new strand. It appends
the instance i to the sequence of instances, adds a node ordering, and adds
atoms as specified by the role. The function orders the last node in the strand
before some node in the preskeleton.

Ai,n(k(P, I, O,N, U)) = k(P, I a 〈i〉, 〈o(n(|I|, h− 1), n)〉 a O,N1, U1)
i = i(r(C, N0, U0), h, E)

N1 = nub(N a σe ◦N0)
U1 = nub(U a σe ◦ U0)

Although not shown, elements in N1 that contain a variable that does not oc-
cur in some event in the constructed preskeleton are dropped, as are elements
in U1 that are not carried in some event in the constructed preskeleton. As
with the preskeleton reductions in Section 4.1, it is straightforward to derive
the homomorphism associated with a successful augmentation.

4.3 Generalization

The generalization process is the only part of the algorithm that requires
non-isomorphic homomorphisms to be explicitly represented. To make this
possible, every preskeleton contains two additional fields not yet described,
a link to the point-of-view skeleton, and a pov strand map. The pov strand
map is the second component of the homomorphism from the point-of-view
skeleton to the preskeleton. The first component can be generated via match-
ing using the point-of-view skeleton.

20

The pov strand map is maintained by every reduction applied to a pre-
skeleton. The compression reduction is the only one that requires careful
thought.

21

Chapter 5

Search Strategy

The top-level loop maintains two sequences of skeletons, a to do list, and a
set of skeletons that have already been seen. When the to do list is empty,
the loop exits.

For each problem statement, cpsa attempts the convert the preskeleton
into a skeleton. If the conversion fails, an error is signaled. Otherwise, a
search is started with the skeleton as the pov skeleton of Section 4.3. The
top-level loop starts with the pov skeleton as the single member of the to do
list and the seen set.

The following steps constitute one iteration of the top-level loop. The first
skeleton on the to do list is removed and is the subject of the iteration. If the
skeleton is unrealized, contraction and augmentation are used to compute its
cohort. Otherwise, generalization reductions are tried in an effort to make
one generalization step. The generated skeletons are the subject’s children.
Each child that is isomorphic to a member of the seen set is dropped. The
other children are added to the seen set and to the end of the to do list. The
final step in the iteration is to print the subject skeleton.

When the subject in unrealized, the test node is selected as follows. The
strands are considered in reverse order, and the first unrealized node in one of
the strands is used as the test node. The program happens to try atoms for
critical messages before it tries encryptions, but the overall results should be
independent of the algorithms used to select test nodes and critical messages,
an assertion that requires justification. The encryptions considered as critical
messages are obtained using the encryptions function in the algebra interface.

22

Chapter 6

Visualization

This section describes the Causally Intuitive Preskeleton Layout algorithm
used to generate visualizations of preskeletons. The algorithm is simple to
implement and explain, and because it is designed for preskeletons, it pro-
duces better results than is available from generic graph layout algorithms,
such as the ones used by Graphviz [2].

The preskeleton is prepared by performing a transitive reduction on its
ordering relation. Communication edges implied by transitive closure are
removed. The result is called a Hasse diagram.

The Hasse diagram is created by considering each communication edge.
If there is a path from its source to its destination that does not traverse the
edge, the edge is deleted.

To simplify the task, each strand is laid out vertically with early nodes
above later ones. The strands are horizontally placed in the same order as
they appear in the preskeleton. The spacing between successive nodes on a
strand is the same, as is the horizontal spacing between strands. The vertical
position of a node is called its rank.

Within this framework, the simplest layout algorithm is to use the posi-
tion of the node in its strand as its rank. When using this layout strategy,
the only difficultly occurs when a node ordering arrow crosses over a node
in an unrelated strand. To avoid ambiguity, arrows that cross strands are
curved.

When using position based ranking, the result often contains upward
sloping arrows. Within a strand, no node that is after a node is above the
node, but with upward sloping arrows, this property no longer holds. The
motivation for the Causally Intuitive Preskeleton Layout algorithm is that

23

eliminating upward sloping arrows makes causal relations easier to grasp.
The layout algorithm has two phases. The first phase stretches strands

so as to eliminate upwardly sloping arrows, and the second phase compresses
them so as to eliminate some unnecessary stretching. Without phase two,
some nodes early in a strand appear to be oddly separated from others in
the strand.

Each phase starts with a to do list containing every node in the preskel-
eton. For each node in the to do list, if conditions are met, it updates the
current node ranking and adds nodes to the to do list. The phase is finished
when the to do list is empty.

Phase I starts with the position based ranking r(s, p) = p. Let P (n) be
the set the predecessors of node n, excluding the nodes on the strand of n.
Let Pr(n) = {r(n′) | n′ ∈ P (n)} be the ranks of P (n). The stretch rule is
considered for each element in the to do list.

The stretch rule applies to node n1 if r(n1) < h, where h = max({r(n1)}∪
Pr(n1)). In that case, the ranking is updated so that r(n1) = h, and the
linearize rule is applied to the next strand node if it exists.

The linearize rule applies to node n1 if r(n1) ≤ r(n0), where n0 is the
previous strand node. In that case, the ranking is updated so that r(n1) =
r(n0)+1, the to do list is augmented with elements in S(n1), and the linearize
rule is applied to the next strand node if it exists, where S(n) is the set the
successors of node n, excluding the nodes on the strand of n.

In phase II, the compress rule is considered for each element in the to do
list. It applies to node n1 with a next strand node of n2 if r(n1) < h, where
h = min({r(n2)− 1)} ∪ Sr(n1)) and Sr(n) is the ranks of S(n). In that case,
the ranking is updated so that r(n1) = h, and the to do list is augmented
with elements in P (n1) and the previous strand node of n1 if it exists.

24

Acknowledgement

Carolyn Talcott provided valuable feedback on drafts of this document.

25

Appendix A

Basic Crypto Algebra Syntax
Reference

The complete syntax for the analyzer using the Basic Crypto Algebra is
shown in Table A.1. The start grammar symbol is file, and the terminal
grammar symbols are: (,), symbol, string, integer, and the constants
set in typewriter font.

The prot-alist, role-alist, and skel-alist productions are Lisp
style association lists, that is, lists of key-value pairs, where every key is
a symbol. Key-value pairs with unrecognized keys are ignored, and are avail-
able for use by other tools. On output, unrecognized key-value pairs are
preserved when printing protocols, but elided when printing skeletons.

The contents of a file can be interpreted as a sequence of S-expressions.
The S-expressions used are restricted so that most dialects of Lisp can read
them, and characters within symbols and strings never need quoting. Seven-
bit ascii is used to encode characters. Every list is proper. An S-expression
atom is either a symbol, an integer, or a string. The characters that
make up a symbol are the letters, the digits, and the special characters in
“-*/<=>!?:$%_&~^+”. A symbol may not begin with a digit or a sign followed
by a digit. The characters that make up a string are the ascii printing
characters omitting double quote and backslash. Double quotes delimit a
string. A comment begins with a semicolon, or is an S-expression list at
top-level that starts with the comment symbol.

26

file ← form+
form ← comment | protocol | skeleton

comment ← (comment . . .)
protocol ← (defprotocol id alg role+ prot-alist)

id ← symbol
alg ← symbol

role ← (defrole id vars trace role-alist)
vars ← (vars decl∗)
decl ← (id+ sort)
sort ← text | data | name | skey | akey | mesg

trace ← (trace event+)
event ← (send term) | (recv term)
term ← id | (pubk id) | (privk id) | (invk id)

| (ltk id id) | string | (cat term+)
| (enc term+ term)

role-alist ← (non-orig ht-term∗) role-alist
| (uniq-orig term∗) role-alist | . . .

ht-term ← term | (integer term)
prot-alist ← . . .
skeleton ← (defskeleton id vars

strand+ skel-alist)
strand ← (defstrand id integer maplet∗)

| (deflistener term)
maplet ← (term term)

skel-alist ← (non-orig term∗) skel-alist
| (uniq-orig term∗) skel-alist
| (precedes node-pair∗) skel-alist | . . .

node-pair ← (node node)
node ← (integer integer)

Table A.1: cpsa Syntax

27

Appendix B

The Basic Crypto Many-Sorted
Algebra

The implementation uses a many-sorted algebra. The many-sorted message
algebra described here is a reduction of the order-sorted message algebra in
Table 2.1 using the method described in [3, Section 4]. The order-sorted
message signature is reproduced in Table B.1 in a form that uses prefix
notation for every term formed using an operator. In the related many-
sorted signature in Table B.2, the inclusion function symbols are text, data,
name, skey, and akey. Section 4 of the paper describes the sense in which
algebras that model the many-sorted signature are essentially the same as
the ones that model the order-sorted message signature.

Terms are constructed from a set I of identifiers and a set of functions
symbols. The symbols of arity one are text, data, name, skey, akey, pubk, and
invk. The symbols of arity two are ltk, cat, and enc. The signature is given

Base sort symbols: name, text, data, skey, akey
Non-base sort symbol: mesg

Subsorts: name, text, data, akey, skey < mesg

pubk : name→ akey invk : akey→ akey ltk : name× name→ skey
enc : mesg×mesg→ mesg cat : mesg×mesg→ mesg Ci : mesg

Axiom: invk(invk(x)) ≈ x for x : akey

Table B.1: Basic Crypto Order-Sorted Signature

28

Sort symbols: name, text, data, skey, akey, and mesg

pubk : name→ akey invk : akey→ akey ltk : name× name→ skey
enc : mesg×mesg→ mesg cat : mesg×mesg→ mesg Ci : mesg

name : name→ mesg text : text→ mesg data : data→ mesg
skey : skey→ mesg akey : skey→ mesg

Axiom: invk(invk(x)) ≈ x for x : akey

Table B.2: Basic Crypto Many-Sorted Signature

in Table B.2. Grammar rules define the terms used by this algebra.
The set of asymmetric keys K is defined as follows.

K ← I | pubk(I) | invk(I) | invk(pubk(I))

The key invk(x) is the inverse of the asymmetric key x, and pubk(x) is prin-
cipal x’s public key.

Each occurrence of an identifier in a term is associated with a sort symbol.
The context in which an identifier occurs determines the sort. The sort
symbols are text, data, name, akey, skey, and mesg, where a name refers
to a principal. An identifier occurrence in an asymmetric key of the form
pubk(x) has sort name, otherwise it has sort akey.

The set of atoms B is defined as follows.

B ← text(I) | data(I) | name(I) | skey(I) | skey(ltk(I, I)) | akey(K)

The atom skey(ltk(x, y)) is a symmetric, long term key shared between two
principals x, and y. The occurrence of x in text(x) has sort text, sort data for
data(x), sort name for name(x), and sort skey for skey(x). The occurrences
of x and y in skey(ltk(x, y)) both have sort name.

The set of terms T is defined as follows.

T ← I | B | Q | cat(T, T) | enc(T, T)

where Q is the set of tags, represented by quoted string literals. The second
argument in enc is a term for a key. A term of the form x is called an
indeterminate, and the identifier occurrence has sort mesg.

The terms of interest are well-formed. A term is well-formed if every
occurrence of each identifier has the same sort. An example of a non-well-
formed term is cat(x, akey(x)) because the identifier x occurs with two sorts,

29

mesg and akey. A pair of well-formed terms are compatible if every identifier
that occurs in both terms occurs with the same sort.

A term is a variable if it specifies an identifier and its sort.

V ← I | text(I) | data(I) | name(I) | skey(I) | akey(I)

When a term is well-formed, the same variable is associated every occurrence
of an identifier in a term.

There are efficient ways of implementing unification for this algebra be-
cause there are efficient ways for implementing for unification in equational
theories representable by a convergent term rewrite system [1]. As long as
terms are compatible, substitutions produced by unifiers map an identifier
that occurs with a given sort to a term of the same sort. Depending on the
sort symbol, a substitution is limited to the following forms:

mesg I 7→ I I 7→ B I 7→ cat(T, T) I 7→ enc(T, T) . . .
akey I 7→ I I 7→ pubk(I) I 7→ invk(I) I 7→ invk(pubk(I))
skey I 7→ I I 7→ ltk(I, I)
text I 7→ I
data I 7→ I
name I 7→ I

The current implementation uses an algorithm for unification without
equations described by Laurence Paulson [4, Page 381] with modifications to
the unification functions as shown in Figure B.1, where e :: ` means 〈e〉 a `.
The function unify calls unify aux in the unmodified version.

30

unify(`, t, t′) = unify aux(`, chase(`, t), chase(`, t′))

chase(`, x) =
let t = lookup(x, `) in
if x = t then x else chase(`, t)

chase(`, invk(t)) = chase invk(`, t) (!)
chase(`, t) = t

chase invk(`, x) = (!)
let t = lookup(x, `) in (!)
if x = t then invk(x) else chase invk(`, t) (!)

chase invk(`, invk(t)) = chase(`, t) (!)
chase invk(`, t) = invk(t) (!)

lookup(x, 〈〉) = x
lookup(x, (y, t) :: `) = if x = y then t else lookup(x, `)

unify aux(`, x, x) = `
unify aux(`, x, t) = if occurs(x, t) then raise failure else (x, t) :: `
unify aux(`, t, x) = unify aux(`, x, t)
unify aux(`, invk(x), pubk(y)) = unify aux(`, x, invk(pubk(y))) (!)
unify aux(`, pubk(x), invk(y)) = unify aux(`, y, invk(pubk(x))) (!)
unify aux(`, f(t, . . .), f(t′, . . .)) = unify list(`, 〈t, . . .〉, 〈t′, . . .〉)
unify aux(`, t, t′) = raise failure

unify list(`, 〈〉, 〈〉) = `
unify list(`, t :: u, t′ :: u′) = unify list(unify(`, t, t′), u, u′)
unify list(`, u, u′) = raise failure

Figure B.1: Unifier

31

match(`, x, t) =
if ¬ bound(x, `) then (x, t) :: `
else if lookup(x, `) = t then `
else raise failure

match(`, invk(x), pubk(y)) = match(`, x, invk(pubk(y))) (!)
match(`, f(t, . . .), f(t′, . . .)) = match list(`, 〈t, . . .〉, 〈t′, . . .〉)
match(`, t, t′) = raise failure

bound(x, 〈〉) = false
bound(x, (y, t) :: `) = x = y or bound(x, `)

match list(`, 〈〉, 〈〉) = `
match list(`, t :: u, t′ :: u′) = match list(match(`, t, t′), u, u′)
match list(`, u, u′) = raise failure

Figure B.2: Matcher

32

Bibliography

[1] M. Fay. First-order unification in an equational theory. In Proc. 4th
Workshop on Automated Deduction, 1979.

[2] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software — Practice
and Experience, 30(11):1203–1233, 2000.

[3] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217–273, 1992.

[4] Laurence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 1991.

33

Index

all positions, 9

comments, 26
communication ordering, 14
compatible terms, 30

environment, 9, 14
event, 13

graph
preskeleton, 15

identifiers, 28
inbound, 13
inclusion function, 28
indexing, zero-based, 5
instance, 14

listener role, 13

maybe type, 8

node, 14
non-originating term, 14
nub, 18

ordering, 14
origination map, 18
outbound, 13

preskeleton, 14
preskeleton graph, 15
protocol, 13

reception node, 14
replace, 9
role, 13

listener, 13

strand, 14
strand succession orderings, 15

transitive reduction, 19
transmission node, 14

well-formed, 11
well-formed preskeleton, 15
well-formed role, 13
well-formed term, 29

zero-based indexing, 5

34

