
CPSA Primer

John D. Ramsdell Joshua D. Guttman
The MITRE Corporation

September 10, 2010

Analyzing a cryptographic protocol means finding out what security
properties—essentially, authentication and secrecy properties—are true in
all its possible executions. Protocol analysis is hard because an adversary
can often manipulate the regular, law-abiding participants. The adversary
may be able to manipulate the regular participants into an unexpected exe-
cution, breaking a secrecy or authentication property that the protocol was
intended to ensure.

cpsa, The Cryptographic Protocol Shapes Analyzer, is a software tool.
Given a protocol definition and some assumptions about executions, it at-
tempts to produce descriptions of all possible executions of the protocol com-
patible with the assumptions. Naturally, there are infinitely many possible
executions of a useful protocol, since different participants can run it with
varying parameters, and the participants can run it repeatedly.

However, for many naturally occurring protocols, there are only finitely
many of these runs that are essentially different. Indeed, there are frequently
very few, often just one or two, even in cases where the protocol is flawed.
We call these essentially different executions the shapes of the protocol. Au-
thentication and secrecy properties are easy to “read off” from the shapes,
as are attacks and anomalies.

The purpose of this document is to provide the background required to
make effective use of a cpsa software distribution. In particular, the advice
in Section 11 is essential reading.

c© 2010 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

The cpsa program reads a sequence of problem descriptions, and prints
the steps it used to solve each problem. Each input problem contains some
initial behavior, together with assumptions about some uncompromised keys
and freshly chosen values. cpsa discovers what shapes are compatible with
this problem description. Normally, the initial behavior is a local run of
one participant, so that the problem is to see what possible executions exist
from that participant’s “point of view.” The analysis reveals what the other
participants must have done, given the first participant’s view.

The shapes analysis is performed within a pure Dolev-Yao model [3].
cpsa’s search is based on a high-level algorithm shown to be complete, i.e.
every shape can in fact be found in a finite number of steps [2]. cpsa’s search
has not been shown to be complete, a deficiency we are committed to repair.

1 Overview

A cpsa release includes several programs, an analyzer, and various tools used
to interpret the results. The analyzer, cpsa, provides support for several al-
gebras, one of which is the Basic Crypto Algebra. Programs that assist in the
interpretation of results are cpsashape and cpsagraph. The analyzer prints
the steps it used to solve each problem. The cpsashapes program extracts
the shapes discovered by an analyzer run. The cpsagraph program graphs
both forms of output using Scalable Vector Graphics (svg). A standards-
compliant browser such as FireFox or Safari displays the generated diagrams.

The expected work flow follows. An analysis problem is entered using an
ordinary text editor, preferably one with support for Lisp syntax. Problem
statement errors in the input are detected by running the analyzer. Many
error reports are of the form that allow editors such as Emacs to move its
cursor to location of the problem.

There are two classes of problem statement errors: syntax and semantic
errors. Correcting syntax errors is straightforward, but correcting semantic
errors requires an understanding of the core data structures. Section 9.1
describes their correction.

Once the problem statement errors have been eliminated, the analyzer
should produce useful output as a text document. The text document con-
tains each step used to derive a shape from a problem statement. It is
common to filter the output using the cpsashapes program, and look only
at the computed shapes associated with each problem statement.

2

The cpsagraph program is applied to the output to produce a more
readable, hyperlinked xml document that can be displayed in a standards-
compliant web browser. The cpsa User Guide contains the up-to-date de-
scription of cpsagraph generated documents. The guide is also the place to
find command-line usage information for all programs in a release. The user
guide is an xhtml document delivered with the software.

The cpsa program uses S-expressions for both input and output. S-
expression is an abbreviation for a Symbolic Expression of Lisp fame, and is
described in Appendix A.

The input consists of two forms: protocol definitions and initial behavior
descriptions. The exact details of both forms depend on the message algebra
specified by the protocol. Protocols that specify basic as their algebra get
an implementation of the Basic Crypto Algebra (bca) described in the next
section. A complete grammar for cpsa input with bca protocols is displayed
in Table 1 on Page 25.

2 BCA Messages

Each message exchanged in a protocol is represented by a term. Terms
represent atomic values such text objects, principal names, and asymmetric
and symmetric keys. They also represent values composed from other values
via encryption and concatenation.

A sort system is used to classify terms. A cpsa message algebra is an
order-sorted algebra [4] with restrictions, hence the use of the word sort
instead of type. Other aspects of cpsa’s use of order-sorted algebras is
beyond the scope of this paper.

The sorts that correspond to the atomic values are the base sorts—for
bca they are text , data, name, akey , and skey . The non-base sort is mesg .
Every term is of sort mesg , and every one of the other sorts is a subsort
of mesg .

The simplest term is a variable, which syntactically is a symbol as de-
scribed in Appendix A. Internally, each variable has a sort, so the sort of
each variable in the input must be declared in a vars form, such as:

(vars (t text) (n name) (k akey)).

Asymmetric keys come in pairs related by the invk operator. If t is a
term of sort akey , so is (invk t). Furthermore, (invk (invk t)) is equated

3

with t. A name can be used to identify an asymmetric key pair using the
pubk and privk operators, as in (pubk n) and (privk n)—the latter is
interpreted as (invk (pubk n)). A name may be associated with more
than one key using the binary form of pubk, where the first argument is a
quoted constant, as in (pubk "sig" n) and (pubk "enc" n). Two names
can be used to identify a long term symmetric key with the ltk operator.

Terms formed from base sorted variables, and the operators invk, pubk,
privk, and ltk are called atoms, because each one represents an atomic
value. A key property of an atom is that the receiver of an atom carried in
a message term cannot decompose the atom into parts. For example, the
reception of a message that consists of the atom (invk k) does not allow its
receiver to deduce k. Within this document, S-expression syntax will often,
for the sake of readability, be replaced by the traditional notation for terms.
Thus (invk k) will be written as K−1, and (pubk n) as KN .

The terms in this algebra are freely generated from the atoms, tags, en-
cryption, and concatenation. A tag is a quoted constant. Given t, the term
to be protected, and key term k, the encryption of t using k is {|t|}k in tradi-
tional notation and (enc t k) in S-expression syntax. The term represents
asymmetric encryption when the key is of sort akey, otherwise it represents
symmetric encryption. The concatenation of terms t and t′ is t, t′ in tra-
ditional infix notation and (cat t t′) in S-expression syntax. The comma
operator is right associative and (cat a b c d) is equivalent to (cat a (cat

b (cat c d))). Finally, (enc a b c d k) is equivalent to (enc (cat a b
c d) k). Figure 2 on Page 5 contains examples of bca message terms. Also
see term in Table 1, Appendix A.

A message term carries a subterm of the message if the possession of the
right set of keys allows the extraction of the subterm. The carries relation is
the least relation such that (1) t carries t, (2) {|t0|}t1 carries t if t0 carries t,
and (3) t0, t1 carries t if t0 or t1 carries t. As noted above, the message k−1

does not carry k. Also, {|t|}k does not carry k unless (anomalously) t carries k.

3 Protocols

A protocol defines the patterns of allowed behavior for non-adversarial partic-
ipants. In other words, the behavior of each participant must be an instance
of some protocol template, called a role. Figure 1 displays the roles that
make up the Needham-Schroeder protocol.

4

•

•

init {|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB
•

•

resp {|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB

Figure 1: Needham-Schroeder Initiator and Responder Roles

(defrole resp (vars (b a name) (n2 n1 text))

(trace (recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

(recv (enc n2 (pubk b)))))

Figure 2: Needham-Schroeder Responder Role

In S-expression syntax, a protocol is a named set of roles and is defined
by the defprotocol form. See protocol in Table 1, Appendix A.

(defprotocol ns basic

(defrole init . . .)
(defrole resp . . .))

The name of this protocol (id) is ns, and the second identifier (alg)
names the message algebra in use. The identifier for the Basic Crypto Algebra
is basic.

A role has a name, a declared set of variables, and a trace that provides a
template for the behavior of its instances. A trace is a non-empty sequence
of message events, either a message reception or a transmission. An inbound
message with term t is −t in text and (recv t) in S-expression syntax. An
outbound term is +t in text and (send t) in S-expression syntax. The
Needham-Schroeder responder’s role in S-expression syntax is in Figure 2.

Zero-based indexing is used though out this document and in the source
code it describes. Within the document, a finite sequence is a function from
an initial segment of the natural numbers. Angle brackets are used for se-
quence construction. Thus 〈3, 2, 99〉 = {0 7→ 3, 1 7→ 2, 2 7→ 99}, and the
responder’s trace is 〈−{|N1, A|}KB

, +{|N1, N2|}KA
,−{|N2|}KB

〉. The length of
a sequence x is |x|.

5

A term originates in a trace if it is carried in some event and the first
term in which it is carried is an outbound term. A term is acquired by a
trace if it first occurs in an inbound term and is also carried by that term.

Some atoms in a role have special properties. An atom may be declared
to be non-originating with the non-orig form and uniquely originating with
the uniq-orig form. The declarations make assertions about instances of a
role, assertions that will be defined after role instantiation is explained.

Every variable that occurs in each term declared to be non-originating
must occur in some term in the trace, and the term must not be carried by
any term in the trace. Each term declared to be uniquely originating must
originate in the trace. Each variable of sort mesg must be acquired in the
trace.

4 Executions

A protocol analysis problem is specified by a skeleton. Some background
information is presented before details of a problem specification is given.

A skeleton describes a set of executions of a protocol. They specify the
local behavior of participants and their interactions via message-passing. A
definition of an execution is presented for the case in which protocols declare
no terms to be non-originating or uniquely originating, and then is later
amended. The executions are a representation of the strand space notion of
bundle.

A strand represents a principal executing a single local session of a proto-
col role. The sequence of events that describes the session is patterned after
a prefix of its role’s trace. In the context of a protocol, a strand’s trace is
represented by an instance, a triple consisting of a role name, a height, and a
map from role variables to terms. The length of the described sequence is the
instance’s height , and must be positive and no greater than the length of the
associated role’s trace. The map is the instance’s environment. The domain
of the map is the set of variables that occur in the events in the prefix of the
role’s trace of the same length as the instance’s height.

An example of an instance of the Needham-Schroeder responder role is:

(defstrand resp 2 (b a) (a b) (n1 n1) (n2 n2))

The trace associated with this instance is:

〈−{|N1, B|}KA
, +{|N1, N2|}KB

〉.

6

The position of a event in the instance’s trace is its index in the sequence,
and in this example, the position of −{|N1, B|}KA

is zero.
In addition to a protocol, a component of an execution is a collection of

local sessions. An instance cannot be used to identify one session, because
two principals may engage in the same pattern of message passing. Instead, a
sequence of instances is used as a component of an execution, and a strand is
represented by an index that selects an instance from the sequence. In other
words, each principal executing a local session is represented by a natural
number less than the length of the sequence of instances, and its behavior is
described by the instance found using its representation.

A node is a pair of natural numbers that identifies an event within a
sequence of instances. The first integer is the strand, and the second is the
position of the event within the strand’s trace. A node with an inbound term
is a reception node, and one with an outbound term is a transmission node.
Given a sequence i, its nodes are:

{(s, p) | s < |i|, p < height(i(s))}.

The remaining component of an execution is a binary relation between
transmission nodes and reception nodes, where each pair of nodes in the re-
lation agree on their message term. The relation specifies message transmis-
sions between strands. The nodes of the graph associated with an execution
are the nodes in the sequence of instances, and the edges include the ones in
the relation. Additionally, the following strand succession edges are included:

{((s, p), (s, p + 1)) | s < |i|, p + 1 < height(i(s))}.

Executions with cyclic graphs are omitted from consideration, because they
violate causality. Relation R on set S is asymmetric iff x R y implies not
y R x for all distinct x, y ∈ S. The transitive asymmetric relation ≺ is the
transitive closure of the graph’s edges, and n0 ≺ n1 asserts that the message
event at n0 precedes the one at n1.

The node relation of an execution satisfies one additional property. For
each reception node in its sequence, there exists a unique transmission node,
related to it by the communication ordering. In other words, the relation
must be a function. Informally, this property ensures that every message
reception is accounted for by the activity of a principal that is part of the
execution. Figure 3 shows the intended execution of the Needham-Schroeder
Protocol. The node graph of an execution is a bundle.

7

•

•

init

•

•

resp
{|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB

(vars (n1 n2 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(defstrand resp 3 (n2 n2) (n1 n1) (b b) (a a))

(precedes ((0 0) (1 0)) ((1 1) (0 1)) ((0 2) (1 2)))

Figure 3: Needham-Schroeder Intended Run

A set of runs of the protocol is associated with each execution. A vari-
able is associated with an execution if the variable occurs in the range of an
environment in some instance. To derive a run from an execution, a sub-
stitution that maps each variable associated with the execution to a ground
term is applied to the execution. cpsa message algebras do not contain the
constants required to name all the ground terms. For most sorts, the identity
of a particular ground term is irrelevant to the analysis. Message tags are
the only exception to this rule. For this reason, cpsa message algebras are
free algebras, but not initial algebras.

Strands in executions represent both adversarial and non-adversarial be-
haviors. A strand that is an instance of a protocol role is non-adversarial,
and is called regular. A strand that represents adversarial behavior is called
a penetrator strand.

The roles that define adversary behavior codify the basic abilities that
make up the Dolev-Yao model. They include transmitting an atom such as
a name or a key; transmitting a tag; transmitting an encrypted message af-
ter receiving its plain text and the key; and transmitting a plain text after
receiving ciphertext and its decryption key. The adversary can also concate-
nate two messages, or separate the pieces of a concatenated message. Since
a penetrator strand that encrypts or decrypts must receive the key as one
of its inputs, keys used by the adversary—compromised keys—have always
been transmitted by some participant.

Figure 4 shows a penetrated execution of the Needham-Schroeder Pro-

8

tocol. Strand space theory would decompose the penetrator behavior into
multiple strands; instead the description of the penetrator has been simplified
by the use of an artificially constructed role pen.

A non-originating term is an atom that is carried by no message, and it or
its inverse is the key of an encryption in some message. Each non-originating
term is a key that is not compromised, as the penetrator has no access to
the key.

A uniquely originating term is an atom that originates on exactly one
strand in the execution. The correct behavior of some protocols depends
on the fact that its executions include only ones in which some terms are
uniquely originating—each term’s provenance is one node. Implementations
of these protocols can ensure unique origination of a term by freshly gener-
ating a nonce for the component of the message it represents.

Occasionally, protocol roles designate some terms to be non-originating
or uniquely originating. Consider the prefix of the trace of a role associated
with some instance. When a uniquely originating role term is carried in the
prefix, the instance’s environment maps it to a term that must originate in
the instance’s strand. Furthermore, when the variables in a non-originating
role term occur in the prefix, the instance’s environment maps that term to
one that must not be carried by any message term in the execution. The
mapping of a non-originating role term can be conditioned on the height
of the instance. A role non-origination assumption of the form (3 a) as-
serts that a will not be mapped into an instance unless its height is at least
three. Section 11 provides advice on when to add non-origination or unique
origination assumptions to roles.

5 Skeletons

A skeleton represents regular behavior that might make up part of an ex-
ecution. The components of a skeleton are similar to an execution. The
components of a skeleton include a protocol, a sequence of instances, and a
binary relation between transmission nodes and reception nodes within the
sequence. Unlike an execution, the strands in a skeleton specify only regular
behavior. Furthermore, the pair of nodes in the relation need not agree on
their message term. Two nodes are related if the transmitting node precedes
the reception node, as an execution it represents may include nodes between
the related transmission and reception nodes.

9

••

••

• •

B•

PA
{|N1, A|}KP

{|N1, A|}KB

{|N1, N2|}KA

{|N2|}KP

{|N2|}KB

Figure 4: Needham-Schroeder Penetrated

(defskeleton protocol variables

... ; Instance sequence

(precedes ...) ; Node orderings

(non-orig ...) ; Non-originating terms

(uniq-orig ...)) ; Uniquely originating terms

Figure 5: Components of Skeletons

The final two additional components of a skeleton are a set of non-
originating terms, and a set of uniquely originating terms. To be a skeleton,
each uniquely originating term must originate in at most one strand in the
skeleton, and each non-originating term must never be carried by some event
in the skeleton and every variable that occurs in the term must occur in some
event. Furthermore, for each uniquely originating term that originates in the
skeleton, the node relation must ensure that reception nodes that carry the
term follow the node of its origination. Figure 5 shows the components in
the S-expression representation of a skeleton.

Two skeletons are equivalent if there is a permutation of the strands in
one skeleton that when applied to its sequence and its node relation, produces
the other skeleton. Two skeletons are also equivalent if they differ only by
a systematic, sort-preserving renaming of their variables, excluding variables
that occur in the domains of environments—the role variables. The trace of
a strand is used for the comparison, so role names need not match.

A skeleton is normalized by performing a transitive reduction on its node

10

relation. The transitive reduction of an ordering is the minimal ordering
such that both orderings have the same transitive closure. Here, communi-
cation orderings implied by transitive closure are removed. Two skeletons
are equivalent if their normalized forms are equivalent.

One special skeleton is associated with each execution. It summarizes
the regular behavior of the execution. It is derived from the execution by
enriching its node relation to contain all node orderings implied by transitive
closure, deleting all strands and nodes that refer to penetrator behavior, and
then performing the transitive reduction on the resulting node relation. The
set of uniquely originating terms is the set of terms that originate on exactly
one strand in the execution, and are carried in a term of a regular strand.
The set of non-originating terms is the union of two sets. One set contains
each term that is used as an encryption or decryption key in some term in
the execution, but is not carried by any term. The other set contains the
terms specified by non-origination assumptions in roles. If a realized skeleton
instance maps all of the variables that occur in one of its non-originating role
terms, the mapped term is a member of the skeleton’s set of non-originating
terms. A skeleton is realized if it summarizes the behavior of some execution.

Skeletons are a central concept in the cpsa algorithm because they cap-
ture the notion that the details of penetrator behavior are irrelevant to the
analysis. From the perspective of regular behavior, all that is needed is a
description of the messages that can be derived by the penetrator at a given
reception node of a regular strand. In a realized skeleton, some combination
of penetrator behavior and regular behavior derives the message at every
reception node. The skeleton’s node relation specifies the transmission nodes
that provide messages available to the penetrator for message derivations.
The rules for message derivation are algebra specific. If the message deriva-
tion rules imply a message at a reception node in a skeleton is derivable, the
node is realized.

A skeleton with an unrealized node might be related to another skeleton
with additional regular behavior that makes the original node realized. A
skeleton with additional regular behavior is called a refinement.

A skeleton A structurally refines B if the transitive closure of the graph
associated with B is a subgraph of the one associated with A, the event at
corresponding nodes agree, the set of uniquely originating terms of B is a
subset of the ones in A, the set of non-originating terms of B is a subset of
the ones in A, and a uniquely originating term that originates in B originates
at the corresponding node in A.

11

•

•

init

•

•

resp

�

≺

{|N1, A|}KC
{|N1, A|}KB

{|N1, N2|}KA
{|N1, N2|}KA

{|N2|}KC
{|N2|}KB

Figure 6: Needham-Schroeder Shape (K−1
A uncompromised, N2 fresh)

A skeleton A message refines B if A and B agree on all but the terms in
the range of each strand’s environment and its non-originating and uniquely
originating terms, and there is a substitution that maps each term in B to its
related term in A. Similar to structural refinement, a uniquely originating
term that originates in B originates at the same node in the image of B.

A skeleton A refines B if A is equivalent to a skeleton that structurally
or message refines B.1 Each skeleton describes the realized skeletons that
refine it. A skeleton is dead if no realized skeleton refines it. A diagram of a
skeleton is in Figure 6.

The cpsa algorithm computes realized skeletons from unrealized skele-
tons by identifying an unrealized node, and computing the skeletons that
refine the unrealized skeleton by making the target node realized.

6 Listeners

In addition to the roles specified in a protocol, for each term t, a regular
strand may be an instance of the listener role with the trace lsn(t) = 〈−t, +t〉.
There are no non-originating or uniquely originating terms associated with
a listener role.

A listener strand is used in a skeleton to assert that an atom t is available
on its own to the adversary, unprotected by encryption. For example, to
test if the protocol keeps a term t from the adversary, one adds a strand
that listens for t. The term is protected if the resulting skeleton is dead.

1A skeleton A refines B if there is a homomorphism from B to A as defined in [2].
The implementation avoids the complexities of directly representing homomorphisms by
composing structural and message refinement with equivalence checks, as is done in this
chapter.

12

Otherwise, the cpsa analyzer program will find a refined realized skeleton
that shows how the adversary accesses t.

A listener instance in S-expression syntax follows. See strand in Table 1,
Appendix A.

(deflistener term)

The cpsa programs generate the associated listener role and hide it on out-
put. Listener role names are absent in all forms of output, one indication
that a strand is an instance of a listener role.

7 Authentication Tests

Authentication tests guide the search for skeletons that refine one with an
unrealized node into ones in which it is realized. There are two types of
authentication tests, nonce and encryption tests. In both cases, an unrealized
node is selected, called the test node. A term carried by the inbound message
at the test node is identified as the critical term. A critical term is one that
occurs in a message context, the construction of which cannot be explained
by the regular behavior in the current skeleton or by penetrator behavior.
An authentication test determines the additional regular behavior required
to refine a skeleton into ones in which the test node is realized.

The critical term in a nonce test is a uniquely originating term, the nonce.
It is freshly generated by one regular participant in each run of the protocol.
A nonce is unguessable by both regular and adversarial participants except
when it is received in an unprotected context.

A reception node’s outbound predecessors is the set of messages sent by
transmission nodes that precede the reception node, as given by the transitive
closure of its skeleton’s node ordering relation. Suppose every occurrence of
the nonce in the outbound predecessors of the test node is within a context
protected by encryption, but the critical term in the test node occurs outside
of all of those encryptions. Clearly, another participant was able to decrypt
one of the test node’s outbound predecessors. The set of encryptions that
protects a critical term in a test node’s outbound predecessors is called its
escape set.

There are three ways to refine a skeleton to account for the decryption:
regular augmentation, listener augmentation, and contraction. For regular

13

augmentation, an instance of a protocol role is added to the skeleton. The fi-
nal transmission node of the strand is called a transforming node. The strand
is selected for augmentation because relative to the test node’s outbound pre-
decessors, the transforming node’s message shows the strand performed the
decryption.

The penetrator can expose the critical term if it has access to any of the
decryption keys used to protect it in the escape set. For listener augmen-
tation, an instance of a listener role listening to one decryption key used to
protect the critical term is added, and the skeleton’s communication ordering
relation is updated to record the fact that the listener’s transmission node
precedes the test node. If the resulting skeleton is not dead, the decryption
can be explained by penetrator behavior.

For a contraction, a message refining substitution is found that equates
two or more atoms. Sometimes, the key used to protect the critical term can
be equated with one used in previous messages, thus vacuously explaining
the decryption of the critical term.

The critical term in an encryption test is an encryption. When the en-
cryption key is unavailable, the encryption is unguessable. Whenever the
unavailability of the encryption key can be established, the methods used to
refine skeletons with nonce tests apply. Additionally, an instance of a listener
role listening for the critical term’s encryption key is added. If the resulting
skeleton is not dead, the encryption can be explained by penetrator behavior.

8 Generalization

Repeated use of authentication tests either produce realized skeletons or
show that a skeleton is dead. The next step in the algorithm is to make each
realized skeleton into a shape, using the process of generalization.

Realized skeleton A generalizes realized skeleton B if A refines the origin
problem specification, and B refines A. Furthermore, A may not combine
strands in B. The shape associated with a realized skeleton is its maximally
generalized realized skeleton. The shapes of a protocol capture all the es-
sentially different executions possible for the protocol consistent with the
initial behavior specification. Figure 6 shows the shape associated with the
Needham-Schroeder Protocol from the point of view of a responder strand.

A different fixed set of operations is used to transform a realized skeleton
into a shape: deletion, weakening, separation, and forgetting. If an opera-

14

tion succeeds, it produces a more general realized skeleton, one that is not
equivalent to the starting skeleton. If no operations succeeds, the skeleton is
a shape.

For deletion, a node and all nodes that follow it in a strand are deleted,
and the resulting skeleton is checked to see if it generalized the starting
skeleton. The operation is tried for each node in the starting skeleton until
there is a success.

If deletion fails, a skeleton is weakened by deleting one element of the
communication ordering, then checking the result to see if it generalized the
starting skeleton. The operation is tried for each communication ordering in
the starting skeleton until there is a success.

If weakening fails, origination assumption forgetting is tried by deleting
each term in the non-originating set that is not specified by a role. This
is followed by deleting each term in the uniquely originating set that is not
specified by a role.

If origination assumption forgetting fails, variable separation is tried.
Sometimes a more general skeleton can be found by replacing some occur-
rences of one variable by a fresh variable. To separate a variable, the collec-
tion of places at which the variable occurs in the range of all environments is
generated, and a fresh variable is substituted for the variable at a subset of
these places. All possibilities are tried until a more general skeleton is found.

Sometimes a shape is derived from another shape by collapsing two strands
in a shape. Collapsing might produce an unrealized skeleton, so authentica-
tion tests apply.

9 Skeletons

With this background, the defskeleton form in Table 1, Appendix A is
explained. The key object in cpsa input and output is a skeleton, but an
object with weaker properties is allowed for the initial problem statement.
A preskeleton is a skeleton except that terms in the uniquely originating set
may originate in more than one strand. Furthermore, the node relation of
a preskeleton need not imply that a node that carries a uniquely originat-
ing term is after the node of its origination. A preskeleton that cannot be
immediately converted into a skeleton is erroneous, and an error message is
issued.

Referring to skeleton in Table 1, the id in the skeleton form names a

15

protocol. It refers to the most recent protocol definition of that name which
precedes the skeleton form. The id in the strand form names a role. The
integer in the strand form gives the height of the strand. The sequence of
pairs of terms in the strand form specify an environment used to construct
the messages in a strand from its role’s trace. The first term is interpreted
using the role’s variables and the second term uses the skeleton’s variables.
The environment used to produce the strand’s trace is derived by matching
the second term using the first term as a pattern.

The precedes form specifies members of the node relation. The first
integer in a node identifies the strand using the order in which strands are
defined in the defskeleton form.

A variable may occur in more then one role within a protocol. The
reader performs a renaming so as to ensure these occurrences do not overlap.
Furthermore, the maplets used to specify a strand need not specify how to
map every role variable. The reader inserts missing mappings, and renames
every skeleton variable that also occurs in a role of its protocol. The sort of
every skeleton variable that occurs in the non-orig or uniq-orig list or in
a maplet must be declared, using the vars form.

The prot-alist, role-alist, and skel-alist productions are Lisp
style association lists, that is, lists of key-value pairs, where every key is
a symbol. Key-value pairs with unrecognized keys are ignored, and are avail-
able for use by other tools. On output, unrecognized key-value pairs are
preserved when printing protocols, but elided when printing skeletons, with
the exception of the comment key.

9.1 Semantic Errors in the Input

The error messages generated for syntax errors are informative, however the
ones generated for semantic errors are less so. A role might be rejected
because it is not well-formed. A role is not well-formed if (1) there is a term
declared to be uniquely originating that does not originate in the trace, (2)
there is a term declared to be non-originating that is carried by some term
in the trace, a variable occurs in the term that does not occur in the trace,
or the declaration of the term included a height, and a variable occurs in the
term that does not occur in the prefix of the trace of the given height, or (3)
a variable of sort mesg is not acquired in the trace. The error message might
not indicate which condition caused the rejection.

Similarly, a skeleton might be rejected because it is not well-formed. A

16

skeleton is not well-formed if (1) the first node in a node pair refers to an
inbound term, or the second node refers to an outbound term, (2) the node
ordering contains cycles, (3) a term declared to be uniquely originating, is
not carried by any term, (4) an instance maps a uniquely originating role
term to a term that does not originate in the instance’s strand, or (5) a
term declared to be non-originating is carried by a term in some strand, or
a variable occurs in the term that does not occur in any strand. Once again,
the error message might not indicate which condition caused the rejection.

9.2 Needham-Schroeder Input

This section contains the verbatim input of the running example used
throughout this paper. The use of an editor that pretty-prints S-expressions
is recommended.

;;; Hey Emacs, use -*- mode:scheme -*-

An S-expression version of Figure 1 follows.

(defprotocol ns basic

(defrole init

(vars (a b name) (n1 n2 text))

(trace

(send (enc n1 a (pubk b)))

(recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b)))))

(defrole resp

(vars (b a name) (n2 n1 text))

(trace

(recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

(recv (enc n2 (pubk b))))))

The protocol is analyzed from the point of view of a complete run of one
instance of an initiator role.

(defskeleton ns

(vars (a b name) (n1 text))

(defstrand init 3 (a a) (b b) (n1 n1))

(non-orig (privk b) (privk a))

(uniq-orig n1))

17

10 Output

The cpsa output format has been designed so that it can be reused as in-
put. All skeletons in the output are normalized skeletons, with the possible
exception of an initial preskeleton, the one used to state a problem. If an ini-
tial preskeleton cannot be converted into a skeleton, an error is immediately
signaled.

For each skeleton, a cpsa analyzer computes a set of skeletons that refine
it using a fixed set of operations based on authentication tests. The imme-
diate descendants of a skeleton is called its cohort. A member of the cohort
that is equivalent to a previously seen skeleton is replaced by that skeleton.
Thus the skeletons in an analysis form a directed acyclic graph. All but one
skeleton has a single parent, and one skeleton can be a member of several
cohorts.

The operations above either produce realized skeletons or show that a
skeleton is dead. The next step in the algorithm is to make each realized
skeleton into a shape, using the process of generalization. Although the set
of shapes is in some sense the answer to the problem, an understanding of
the operations used to generate the shapes can be very informative. The
remainder of this section describes the annotations in the output that allow
for an understanding of each step of the analysis.

On output, key-value pairs are added to each skeleton’s association list,
skel-alist. Every skeleton in the output is labeled with a unique identifier
with (label integer). A skeleton has (parent integer) if it is a member
of the cohort of the identified parent. A skeleton has (seen integer+)

when members of its cohort are equivalent to previously seen skeletons. A
skeleton lists its unrealized nodes with (unrealized node∗). The traces
associated with each strand is given by the (traces . . .) form.

Figure 7 shows a skeleton generated during an analysis of the Needham-
Schroeder Protocol from the point of view of an initiator strand. It is labeled
as 1. It’s parent is labeled 0. It has one child, and that child has not been
seen before. It is unrealized.

The operation used to derive a skeleton is recorded with
(operation test kind term node term∗), where test is the au-
thentication test encryption-test or nonce-test, kind is (added-strand
id integer), (contracted maplet∗), or (added-listener term), term
is the critical term, node in the test node, and the remaining terms specify
the escape set. When the operation kind is added strand, the instance’s role

18

(defskeleton ns

(vars (n1 n2 n2-0 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(defstrand resp 2 (n2 n2-0) (n1 n1) (b b) (a a))

(precedes ((0 0) (1 0)) ((1 1) (0 1)))

(non-orig (privk a) (privk b))

(uniq-orig n1)

(operation nonce-test (added-strand resp 2) n1 (0 1)

(enc n1 a (pubk b)))

(traces

((send (enc n1 a (pubk b))) (recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b))))

((recv (enc n1 a (pubk b)))

(send (enc n1 n2-0 (pubk a)))))

(label 1)

(parent 0)

(unrealized (0 1))

(comment "1 in cohort - 1 not yet seen"))

Figure 7: Annotated cpsa Output

19

name and height are provided. For kind added-listener, a term is provided.
For kind contracted, the substitution is provided. When a substitution refers
to a variable not in the skeleton, its name is unpredictable. For generaliza-
tion, the operation is recorded as (operation generalization method),
where method is one of deleted node, weakened node-pair, separated
term, or forgot term. Shapes can be collapsed leading to new shapes.
For shape collapsing, the operation is recorded as (operation collapsed

integer integer), where the two integers identify the strands merged.
The skeleton in Figure 7 was generated as a result of a nonce test, by

augmenting the starting skeleton with a responder strand of length two. The
critical term is n1, the test node is (0 1), and the escape set has one element.

When the operation kind is added strand, it is possible that the number
of strands in the skeleton and its parent are the same. In this case, cpsa
has found a way to produce a more concise representation of the skeleton by
merging two strands.

10.1 Needham-Schroeder Output

This section contains the verbatim output of the running example used
throughout this paper. A run starts by displaying the program’s version
number.

(comment "CPSA 2.1.1")

(comment "All input read")

An S-expression version of Figure 1 follows.

(defprotocol ns basic

(defrole init

(vars (a b name) (n1 n2 text))

(trace (send (enc n1 a (pubk b)))

(recv (enc n1 n2 (pubk a))) (send (enc n2 (pubk b)))))

(defrole resp

(vars (b a name) (n2 n1 text))

(trace (recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

(recv (enc n2 (pubk b))))))

20

The protocol is analyzed from the point of view of a complete run of one
instance of an initiator role.

(defskeleton ns

(vars (n1 n2 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(non-orig (privk a) (privk b))

(uniq-orig n1)

(traces

((send (enc n1 a (pubk b))) (recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b)))))

(label 0)

(unrealized (0 1))

(comment "1 in cohort - 1 not yet seen"))

A nonce test justifies adding an instance of part of a reponder role.

(defskeleton ns

(vars (n1 n2 n2-0 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(defstrand resp 2 (n2 n2-0) (n1 n1) (b b) (a a))

(precedes ((0 0) (1 0)) ((1 1) (0 1)))

(non-orig (privk a) (privk b))

(uniq-orig n1)

(operation nonce-test (added-strand resp 2) n1 (0 1)

(enc n1 a (pubk b)))

(traces

((send (enc n1 a (pubk b))) (recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b))))

((recv (enc n1 a (pubk b)))

(send (enc n1 n2-0 (pubk a)))))

(label 1)

(parent 0)

(unrealized (0 1))

(comment "1 in cohort - 1 not yet seen"))

A nonce test justifies a contraction that produces the one and only shape.
The shape is also displayed in Figure 8.

21

•

•

init

•

resp≺

�

{|N1, A|}KB
{|N1, A|}KB

{|N1, N2|}KA
{|N1, N2|}KA

{|N2|}KB

Figure 8: Needham-Schroeder Shape (Initiator Point of View)

(defskeleton ns

(vars (n1 n2 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(defstrand resp 2 (n2 n2) (n1 n1) (b b) (a a))

(precedes ((0 0) (1 0)) ((1 1) (0 1)))

(non-orig (privk a) (privk b))

(uniq-orig n1)

(operation nonce-test (contracted (n2-0 n2)) n1 (0 1)

(enc n1 n2 (pubk a)) (enc n1 a (pubk b)))

(traces

((send (enc n1 a (pubk b))) (recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b))))

((recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))))

(label 2)

(parent 1)

(unrealized)

(shape))

The following phrase means cpsa is finished with this problem—its ex-
hausted its to do list.

(comment "Nothing left to do")

11 Advice

This section contains advice derived from using cpsa. When specifying cpsa
input, one must decide when to specify terms as uniquely originating or non-
originating in a role, and when to specifying them in the initial skeleton. If a

22

flesh value is generated by all programs that implement a role in a protocol,
the term that represents the fresh value should be assumed to be uniquely
originating in the role. Otherwise, unique origination assumptions should be
specified in the initial skeleton.

Adding non-origination assumptions to a role can lead to an excessively
weak protocol analysis, i.e. an analysis relative to an unrealistically narrow
assumption. Placing non-origination assumptions in the initial skeleton is
preferred whenever possible.

The Basic Crypto Algebra has two text-like sorts, text and data. For
some protocols, message fields that carry uniquely originating data cannot
be carried by other text-like fields. To ensure cpsa does not explore skeletons
in which uniquely originating data is carried in fields with predictable values,
the convention is to use the sort data for uniquely originating data, and sort
text for the other fields.

Protocols that make use of hashing can be handled by encoding the results
of a hash function as an asymmetric encryption in which no participant has
access to the decryption key. To use this encoding in a role, encrypt the
term to be hashed with an otherwise unused asymmetric key, and declare its
inverse to be non-originating. Include an otherwise unused tag within the
encryption so as to ensure an encryption representing a hashed term cannot
be confused with an ordinary encryption. Carefully check each role using
this encoding and make sure the decryption key is never used.

When looking at the output, try extracting the shapes first. If the shapes
only version of the output does not answer your questions, try studying the
output that contains intermediate skeletons.

When cpsa generates an unexpected intermediate skeleton, study its
operation field (see Page 10). Usually, the unexpected intermediate skeletons
of interest have been generated as a result of an authentication test. Section 7
explains how to interpret an operation field for an authentication test.

When using cpsa for protocol design, focus on authentication tests. For
each iteration of the design, search for the most informative unexpected
intermediate skeleton. That skeleton is likely to suggest a missing origination
assumption, or the redesign of some message term included in the operation
field.

There are situations in which origination assumptions are not justified
for initial segments of runs of a protocol, but are required to show that
complete runs of the protocol have certain expected shapes. In this case, the
progressive refinement analysis technique is used. The initial segments of runs

23

are analyzed with only the origination assumptions justified initially. A shape
associated with a partial run may justify additional origination assumptions.
For example, a strand in a partial run may send its next message only after a
trust decision is made, and the implication of the decision is that the strand
infers that some key is uncompromised. In this case, the shape with the new
origination assumption and additional regular behavior is supplied as input
to cpsa, thereby refining the original problem.

As there is no guarantee that cpsa is bug free, you may come upon input
that causes non-termination. As a result, whenever you run the program
unattended, you should limit its memory usage. To get output that can be
visualized, specify a step count and/or a strand bound so that cpsa has the
chance to abort the run in a fashion that generates graphable output. Of
course, sending us input that causes erroneous behavior will help us improve
cpsa.

Acknowledgement

Jonathan K. Millen provided valuable feedback as our first cpsa user and on
a draft of this document.

A BCA Syntax Reference

The complete syntax for the analyzer using the Basic Crypto Algebra is
shown in Table 1. The start grammar symbol is file, and the terminal
grammar symbols are: (,), symbol, string, integer, and the constants
set in typewriter font.

The prot-alist, role-alist, and skel-alist productions are Lisp
style association lists, that is, lists of key-value pairs, where every key is
a symbol. Key-value pairs with unrecognized keys are ignored, and are avail-
able for use by other tools. On output, unrecognized key-value pairs are
preserved when printing protocols, but elided when printing skeletons.

The contents of a file can be interpreted as a sequence of S-expressions.
The S-expressions used are restricted so that most dialects of Lisp can read
them, and characters within symbols and strings never need quoting. Seven-
bit ascii is used to encode characters. Every list is proper. An S-expression
atom is either a symbol, an integer, or a string. The characters that

24

file ← form+
form ← comment | protocol | skeleton

comment ← (comment . . .)
protocol ← (defprotocol id alg role+ prot-alist)

id ← symbol
alg ← symbol

role ← (defrole id vars trace role-alist)
vars ← (vars decl∗)
decl ← (id+ sort)
sort ← text | data | name | skey | akey | mesg

trace ← (trace event+)
event ← (send term) | (recv term)
term ← id | (pubk id) | (privk id) | (invk id)

| (ltk id id) | string | (cat term+)
| (enc term+ term)

role-alist ← (non-orig ht-term∗) role-alist
| (uniq-orig term∗) role-alist | . . .

ht-term ← term | (integer term)
prot-alist ← . . .
skeleton ← (defskeleton id vars

strand+ skel-alist)
strand ← (defstrand id integer maplet∗)

| (deflistener term)
maplet ← (term term)

skel-alist ← (non-orig term∗) skel-alist
| (uniq-orig term∗) skel-alist
| (precedes node-pair∗) skel-alist | . . .

node-pair ← (node node)
node ← (integer integer)

Table 1: cpsa Syntax

25

make up a symbol are the letters, the digits, and the special characters in
“-*/<=>!?:$%_&~^+”. A symbol may not begin with a digit or a sign followed
by a digit. The characters that make up a string are the ascii printing
characters omitting double quote and backslash. Double quotes delimit a
string. A comment begins with a semicolon, or is an S-expression list at
top-level that starts with the comment symbol.

References

[1] Edsger W. Dijkstra. Why numbering should start at zero. http://www.
cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html,
August 1982.

[2] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. Search-
ing for shapes in cryptographic protocols. In Tools and Algorithms
for Construction and Analysis of Systems (TACAS), number 4424 in
LNCS, pages 523–538. Springer, March 2007. Extended version at
http://eprint.iacr.org/2006/435.

[3] Daniel Dolev and Andrew Yao. On the security of public-key protocols.
IEEE Transactions on Information Theory, 29:198–208, 1983.

[4] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra I: Equational
deduction for multiple inheritance, overloading, exceptions and partial
operations. Theoretical Computer Science, 105(2):217–273, 1992.

26

Index

acquired, 6
asymmetric relation, 7

carries, 4
cohort, 18
comments, 26
critical term, 13

encryption test, 13
environment, 6
escape set, 13

generalization, 14

hashing, 23
height, 6

inbound, 5
indexing, zero-based, 5
instance, 6

label, 18
listeners, 12

node, 7
non-origination, 9
nonce test, 13

operation, 18
operator, 3
origination, 6
outbound, 5
outbound predecessors, 13

penetrator, 8
position, 7
preskeleton, 15
protocol, 4

realized skeleton, 11
reception node, 7
refinement, 12
regular, 8
role, 4

shape, 14
skeleton, 9, 15
sort, 3
strand, 6
strand succession edges, 7

test node, 13
transitive reduction, 11
transmission node, 7

unique origination, 9

well-formed role, 16
well-formed skeleton, 16

zero-based indexing, 5

27

