{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Safe #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} -- | Lattices & algebras module Data.Lattice ( -- * Semilattice Lattice, Semilattice (..), -- ** Meet Meet, (/\), top, -- ** Join Join, (\/), bottom, -- * Algebra Biheyting, Algebra (..), -- ** Heyting Heyting, (//), iff, neg, middle, heyting, booleanR, -- ** Coheyting Coheyting, (\\), equiv, non, boundary, coheyting, booleanL, -- ** Symmetric Symmetric (..), converseL, converseR, symmetricL, symmetricR, -- ** Boolean Boolean (..), ) where import safe Data.Bifunctor (bimap) import safe Data.Bool hiding (not) import safe Data.Connection.Class hiding ((/\), (\/)) import safe Data.Connection.Conn import safe Data.Either import safe Data.Int import safe qualified Data.IntMap as IntMap import safe qualified Data.IntSet as IntSet import safe qualified Data.Map as Map import safe Data.Order import safe Data.Order.Extended import safe Data.Order.Syntax import safe qualified Data.Set as Set import safe Data.Word import safe Prelude hiding (Eq (..), Ord (..), ceiling, floor, not) import safe qualified Prelude as P ------------------------------------------------------------------------------- -- Lattices ------------------------------------------------------------------------------- type Lattice a = (Join a, Meet a) -- | A convenience alias for a join semilattice type Join = Semilattice 'L -- | A convenience alias for a meet semilattice type Meet = Semilattice 'R -- | Bounded < https://ncatlab.org/nlab/show/lattice lattices >. -- -- A lattice is a partially ordered set in which every two elements have a unique join -- (least upper bound or supremum) and a unique meet (greatest lower bound or infimum). -- -- A bounded lattice adds unique elements 'top' and 'bottom', which serve as -- identities to '\/' and '/\', respectively. -- -- /Neutrality/: -- -- @ -- x '\/' 'bottom' = x -- x '/\' 'top' = x -- 'glb' 'bottom' x 'top' = x -- 'lub' 'bottom' x 'top' = x -- @ -- -- /Associativity/ -- -- @ -- x '\/' (y '\/' z) = (x '\/' y) '\/' z -- x '/\' (y '/\' z) = (x '/\' y) '/\' z -- @ -- -- /Commutativity/ -- -- @ -- x '\/' y = y '\/' x -- x '/\' y = y '/\' x -- @ -- -- /Idempotency/ -- -- @ -- x '\/' x = x -- x '/\' x = x -- @ -- -- /Absorption/ -- -- @ -- (x '\/' y) '/\' y = y -- (x '/\' y) '\/' y = y -- @ -- -- See < https://en.wikipedia.org/wiki/Absorption_law Absorption >. -- -- Note that distributivity is _not_ a requirement for a complete. -- However when /a/ is distributive we have: -- -- @ -- 'glb' x y z = 'lub' x y z -- @ -- -- See < https://en.wikipedia.org/wiki/Lattice_(order) >. class Order a => Semilattice (k :: Kan) a where -- | The defining connection of a bounded semilattice. -- -- 'bottom' and 'top' are defined by the left and right adjoints to /a -> ()/. bounded :: Conn k () a default bounded :: Connection k () a => Conn k () a bounded = conn -- | The defining connection of a semilattice. -- -- '\/' and '/\' are defined by the left and right adjoints to /a -> (a, a)/. semilattice :: Conn k (a, a) a default semilattice :: Connection k (a, a) a => Conn k (a, a) a semilattice = conn infixr 6 /\ -- comment for the parser -- | Lattice meet. -- -- > (/\) = curry $ floor semilattice (/\) :: Meet a => a -> a -> a (/\) = curry $ floor semilattice -- | The unique top element of a bounded lattice -- -- > x /\ top = x -- > x \/ top = top top :: Meet a => a top = floor bounded () infixr 5 \/ -- | Lattice join. -- -- > (\/) = curry $ lower semilattice (\/) :: Join a => a -> a -> a (\/) = curry $ ceiling semilattice -- | The unique bottom element of a bounded lattice -- -- > x /\ bottom = bottom -- > x \/ bottom = x bottom :: Join a => a bottom = ceiling bounded () ------------------------------------------------------------------------------- -- Heyting algebras ------------------------------------------------------------------------------- -- | A convenience alias for a Heyting algebra. type Heyting a = (Lattice a, Algebra 'R a) -- | A convenience alias for a < https://ncatlab.org/nlab/show/co-Heyting+algebra co-Heyting algebra >. type Coheyting a = (Lattice a, Algebra 'L a) -- | A < https://ncatlab.org/nlab/show/co-Heyting+algebra bi-Heyting algebra >. -- -- /Laws/: -- -- > neg x <= non x -- -- with equality occurring iff /a/ is a 'Boolean' algebra. type Biheyting a = (Coheyting a, Heyting a) -- | Heyting and co-Heyting algebras -- -- A Heyting algebra is a bounded, distributive lattice equipped with an -- implication operation. -- -- * The complete of closed subsets of a topological space is the primordial -- example of a /Coheyting/ (co-Algebra) algebra. -- -- * The dual complete of open subsets of a topological space is likewise -- the primordial example of a /Heyting/ algebra. -- -- /Coheyting/: -- -- Co-implication to /a/ is the lower adjoint of disjunction with /a/: -- -- > x \\ a <= y <=> x <= y \/ a -- -- Note that co-Heyting algebras needn't obey the law of non-contradiction: -- -- > EQ /\ non EQ = EQ /\ GT \\ EQ = EQ /\ GT = EQ /= LT -- -- See < https://ncatlab.org/nlab/show/co-Algebra+algebra > -- -- /Heyting/: -- -- Implication from /a/ is the upper adjoint of conjunction with /a/: -- -- > x <= a // y <=> a /\ x <= y -- -- Similarly, Heyting algebras needn't obey the law of the excluded middle: -- -- > EQ \/ neg EQ = EQ \/ EQ // LT = EQ \/ LT = EQ /= GT -- -- See < https://ncatlab.org/nlab/show/Heyting+algebra > class Semilattice k a => Algebra k a where -- | The defining connection of a (co-)Heyting algebra. -- -- > algebra @'L x = ConnL (\\ x) (\/ x) -- > algebra @'R x = ConnR (x /\) (x //) algebra :: a -> Conn k a a ------------------------------------------------------------------------------- -- Heyting ------------------------------------------------------------------------------- infixr 8 // -- same as ^ -- | Logical implication: -- -- \( a \Rightarrow b = \vee \{x \mid x \wedge a \leq b \} \) -- -- /Laws/: -- -- > x /\ y <= z <=> x <= y // z -- > x // y <= x // (y \/ z) -- > x <= y => z // x <= z // y -- > y <= x // (x /\ y) -- > x <= y <=> x // y = top -- > (x \/ z) // y <= x // y -- > (x /\ y) // z = x // y // z -- > x // (y /\ z) = x // y /\ x // z -- > x /\ x // y = x /\ y -- -- >>> False // False -- True -- >>> False // True -- True -- >>> True // False -- False -- >>> True // True -- True (//) :: Algebra 'R a => a -> a -> a (//) = floor . algebra -- | Intuitionistic equivalence. -- -- When @a@ is /Bool/ this is 'if-and-only-if'. iff :: Algebra 'R a => a -> a -> a iff x y = (x // y) /\ (y // x) -- | Logical negation. -- -- @ 'neg' x = x '//' 'bottom' @ -- -- /Laws/: -- -- > neg bottom = top -- > neg top = bottom -- > x <= neg (neg x) -- > neg (x \/ y) <= neg x -- > neg (x // y) = neg (neg x) /\ neg y -- > neg (x \/ y) = neg x /\ neg y -- > x /\ neg x = bottom -- > neg (neg (neg x)) = neg x -- > neg (neg (x \/ neg x)) = top -- -- Some logics may in addition obey < https://ncatlab.org/nlab/show/De+Morgan+Algebra+algebra De Morgan conditions >. neg :: Heyting a => a -> a neg x = x // bottom -- | The Algebra (< https://ncatlab.org/nlab/show/excluded+middle not necessarily excluded>) middle operator. middle :: Heyting a => a -> a middle x = x \/ neg x -- | Default constructor for a Algebra algebra. heyting :: Meet a => (a -> a -> a) -> a -> ConnR a a heyting f a = ConnR (a /\) (a `f`) -- | An adjunction between a Algebra algebra and its Boolean sub-algebra. -- -- Double negation is a meet-preserving monad. booleanR :: Heyting a => ConnR a a booleanR = let -- Check that /x/ is a regular element -- See https://ncatlab.org/nlab/show/regular+element inj x = if x ~~ (neg . neg) x then x else bottom in ConnR (neg . neg) inj ------------------------------------------------------------------------------- -- Coheyting ------------------------------------------------------------------------------- infixl 8 \\ -- | Logical co-implication: -- -- \( a \Rightarrow b = \wedge \{x \mid a \leq b \vee x \} \) -- -- /Laws/: -- -- > x \\ y <= z <=> x <= y \/ z -- > x \\ y >= (x /\ z) \\ y -- > x >= y => x \\ z >= y \\ z -- > x >= x \\ y -- > x >= y <=> y \\ x = bottom -- > x \\ (y /\ z) >= x \\ y -- > z \\ (x \/ y) = z \\ x \\ y -- > (y \/ z) \\ x = y \\ x \/ z \\ x -- > x \/ y \\ x = x \/ y -- -- >>> False \\ False -- False -- >>> False \\ True -- False -- >>> True \\ False -- True -- >>> True \\ True -- False -- -- For many collections (e.g. 'Data.Set.Set') '\\' coincides with the native 'Data.Set.\\' operator. -- -- >>> :set -XOverloadedLists -- >>> [GT,EQ] Set.\\ [LT] -- fromList [EQ,GT] -- >>> [GT,EQ] \\ [LT] -- fromList [EQ,GT] (\\) :: Algebra 'L a => a -> a -> a (\\) = flip $ ceiling . algebra -- | Intuitionistic co-equivalence. equiv :: Algebra 'L a => a -> a -> a equiv x y = (x \\ y) \/ (y \\ x) -- | Logical < https://ncatlab.org/nlab/show/co-Heyting+negation co-negation >. -- -- @ 'non' x = 'top' '\\' x @ -- -- /Laws/: -- -- > non bottom = top -- > non top = bottom -- > x >= non (non x) -- > non (x /\ y) >= non x -- > non (y \\ x) = non (non x) \/ non y -- > non (x /\ y) = non x \/ non y -- > x \/ non x = top -- > non (non (non x)) = non x -- > non (non (x /\ non x)) = bottom non :: Coheyting a => a -> a non x = top \\ x -- | The co-Heyting < https://ncatlab.org/nlab/show/co-Heyting+boundary boundary > operator. -- -- > x = boundary x \/ (non . non) x -- > boundary (x /\ y) = (boundary x /\ y) \/ (x /\ boundary y) -- (Leibniz rule) -- > boundary (x \/ y) \/ boundary (x /\ y) = boundary x \/ boundary y boundary :: Coheyting a => a -> a boundary x = x /\ non x -- | Default constructor for a co-Heyting algebra. coheyting :: Join a => (a -> a -> a) -> a -> ConnL a a coheyting f a = ConnL (`f` a) (\/ a) -- | An adjunction between a co-Heyting algebra and its Boolean sub-algebra. -- -- Double negation is a join-preserving comonad. booleanL :: Coheyting a => ConnL a a booleanL = let -- Check that /x/ is a regular element -- See https://ncatlab.org/nlab/show/regular+element inj x = if x ~~ (non . non) x then x else top in ConnL inj (non . non) ------------------------------------------------------------------------------- -- Symmetric ------------------------------------------------------------------------------- -- | Symmetric Heyting algebras -- -- A symmetric Heyting algebra is a -- bi-Algebra algebra with an idempotent, antitone negation operator. -- -- /Laws/: -- -- > x <= y => not y <= not x -- antitone -- > not . not = id -- idempotence -- > x \\ y = not (not y // not x) -- > x // y = not (not y \\ not x) -- -- and: -- -- > converseR x <= converseL x -- -- with equality occurring iff /a/ is a 'Boolean' algebra. class Biheyting a => Symmetric a where -- | Symmetric negation. -- -- > not . not = id -- > neg . neg = converseR . converseL -- > non . non = converseL . converseR -- > neg . non = converseR . converseR -- > non . neg = converseL . converseL -- -- > neg = converseR . not = not . converseL -- > non = not . converseR = converseL . not -- > x \\ y = not (not y // not x) -- > x // y = not (not y \\ not x) not :: a -> a infixl 4 `xor` -- | Exclusive or. -- -- > xor x y = (x \/ y) /\ (not x \/ not y) xor :: a -> a -> a xor x y = (x \/ y) /\ not (x /\ y) -- | Left converse operator. converseL :: Symmetric a => a -> a converseL x = top \\ not x -- | Right converse operator. converseR :: Symmetric a => a -> a converseR x = not x // bottom -- | Default constructor for a Heyting algebra. symmetricR :: Symmetric a => a -> ConnR a a symmetricR = heyting $ \x y -> not (not y \\ not x) -- | Default constructor for a co-Heyting algebra. symmetricL :: Symmetric a => a -> ConnL a a symmetricL = coheyting $ \x y -> not (not y // not x) ------------------------------------------------------------------------------- -- Boolean ------------------------------------------------------------------------------- -- | Boolean algebras. -- -- < https://ncatlab.org/nlab/show/Boolean+algebra Boolean algebras > are -- symmetric Algebra algebras that satisfy both the law of excluded middle -- and the law of law of non-contradiction: -- -- > x \/ neg x = top -- > x /\ non x = bottom -- -- If /a/ is Boolean we also have: -- -- > non = not = neg class Symmetric a => Boolean a where -- | A witness to the lawfulness of a boolean algebra. boolean :: Conn k a a boolean = Conn (converseR . converseL) id (converseL . converseR) ------------------------------------------------------------------------------- -- Instances ------------------------------------------------------------------------------- instance Semilattice k () instance Algebra 'L () where algebra = coheyting impliesL instance Algebra 'R () where algebra = heyting impliesR instance Symmetric () where not = id instance Boolean () instance Semilattice k Bool instance Algebra 'L Bool where algebra = coheyting impliesL instance Algebra 'R Bool where algebra = heyting impliesR instance Symmetric Bool where not = P.not instance Boolean Bool instance Semilattice k Ordering instance Algebra 'L Ordering where algebra = coheyting impliesL instance Algebra 'R Ordering where algebra = heyting impliesR instance Symmetric Ordering where not LT = GT not EQ = EQ not GT = LT instance Semilattice k Word8 instance Algebra 'L Word8 where algebra = coheyting impliesL instance Algebra 'R Word8 where algebra = heyting impliesR instance Semilattice k Word16 instance Algebra 'L Word16 where algebra = coheyting impliesL instance Algebra 'R Word16 where algebra = heyting impliesR instance Semilattice k Word32 instance Algebra 'L Word32 where algebra = coheyting impliesL instance Algebra 'R Word32 where algebra = heyting impliesR instance Semilattice k Word64 instance Algebra 'L Word64 where algebra = coheyting impliesL instance Algebra 'R Word64 where algebra = heyting impliesR instance Semilattice k Word instance Algebra 'L Word where algebra = coheyting impliesL instance Algebra 'R Word where algebra = heyting impliesR instance Semilattice k Int8 instance Algebra 'L Int8 where algebra = coheyting impliesL instance Algebra 'R Int8 where algebra = heyting impliesR instance Semilattice k Int16 instance Algebra 'L Int16 where algebra = coheyting impliesL instance Algebra 'R Int16 where algebra = heyting impliesR instance Semilattice k Int32 instance Algebra 'L Int32 where algebra = coheyting impliesL instance Algebra 'R Int32 where algebra = heyting impliesR instance Semilattice k Int64 instance Algebra 'L Int64 where algebra = coheyting impliesL instance Algebra 'R Int64 where algebra = heyting impliesR instance Semilattice k Int instance Algebra 'L Int where algebra = coheyting impliesL instance Algebra 'R Int where algebra = heyting impliesR ------------------------------------------------------------------------------- -- Instances: product types ------------------------------------------------------------------------------- instance (Lattice a, Lattice b) => Semilattice k (a, b) where bounded = Conn (const (bottom, bottom)) (const ()) (const (top, top)) semilattice = Conn (uncurry joinTuple) fork (uncurry meetTuple) instance (Heyting a, Heyting b) => Algebra 'R (a, b) where algebra (a, b) = algebra a `strong` algebra b instance (Coheyting a, Coheyting b) => Algebra 'L (a, b) where algebra (a, b) = algebra a `strong` algebra b instance (Symmetric a, Symmetric b) => Symmetric (a, b) where not = bimap not not instance (Boolean a, Boolean b) => Boolean (a, b) ------------------------------------------------------------------------------- -- Instances: sum types ------------------------------------------------------------------------------- instance Join a => Semilattice 'L (Maybe a) where bounded = ConnL (const Nothing) (const ()) semilattice = ConnL (uncurry joinMaybe) fork instance Meet a => Semilattice 'R (Maybe a) where bounded = ConnR (const ()) (const $ Just top) semilattice = ConnR fork (uncurry meetMaybe) instance Heyting a => Algebra 'R (Maybe a) where algebra = heyting f where f (Just a) (Just b) = Just (a // b) f Nothing _ = Just top f _ Nothing = Nothing instance Join a => Semilattice 'L (Extended a) where bounded = Conn (const Bottom) (const ()) (const Top) semilattice = ConnL (uncurry joinExtended) fork instance Meet a => Semilattice 'R (Extended a) where bounded = Conn (const Bottom) (const ()) (const Top) semilattice = ConnR fork (uncurry meetExtended) instance Heyting a => Algebra 'R (Extended a) where algebra = heyting f where Extended a `f` Extended b | a <~ b = Top | otherwise = Extended (a // b) Top `f` a = a _ `f` Top = Top Bottom `f` _ = Top _ `f` Bottom = Bottom -- | All minimal elements of the upper lattice cover all maximal elements of the lower lattice. instance (Join a, Join b) => Semilattice 'L (Either a b) where bounded = ConnL (const $ Left bottom) (const ()) semilattice = ConnL (uncurry joinEither) fork instance (Meet a, Meet b) => Semilattice 'R (Either a b) where bounded = ConnR (const ()) (const $ Right top) semilattice = ConnR fork (uncurry meetEither) -- | -- Subdirectly irreducible Algebra algebra. instance Heyting a => Algebra 'R (Lowered a) where algebra = heyting f where (Left a) `f` (Left b) | a <~ b = top | otherwise = Left (a // b) (Right _) `f` a = a _ `f` (Right _) = top instance Heyting a => Algebra 'R (Lifted a) where algebra = heyting f where f (Right a) (Right b) = Right (a // b) f (Left _) _ = Right top f _ (Left _) = bottom ------------------------------------------------------------------------------- -- Instances: collections ------------------------------------------------------------------------------- instance Total a => Semilattice 'L (Set.Set a) instance Total a => Algebra 'L (Set.Set a) where algebra = coheyting (Set.\\) --instance (Total a, U.Finite a) => Algebra 'R (Set.Set a) where -- algebra = symmetricR --instance (Total a, U.Finite a) => Symmetric (Set.Set a) where -- not = non --(U.universe Set.\\) --instance (Total a, U.Finite a) => Boolean (Set.Set a) where instance Semilattice 'L IntSet.IntSet instance Algebra 'L IntSet.IntSet where algebra = coheyting (IntSet.\\) {- instance Algebra 'R IntSet.IntSet where --heyting = heyting $ \x y -> non x \/ y algebra = symmetricR instance Symmetric IntSet.IntSet where not = non --(U.universe IntSet.\\) instance Boolean IntSet.IntSet where -} instance (Total k, Join a) => Semilattice 'L (Map.Map k a) where bounded = ConnL (const Map.empty) (const ()) semilattice = ConnL f fork where f = uncurry $ Map.unionWith (curry $ ceiling semilattice) instance (Total k, Join a) => Algebra 'L (Map.Map k a) where algebra = coheyting (Map.\\) instance (Join a) => Semilattice 'L (IntMap.IntMap a) where bounded = ConnL (const IntMap.empty) (const ()) semilattice = ConnL f fork where f = uncurry $ IntMap.unionWith (curry $ ceiling semilattice) instance (Join a) => Algebra 'L (IntMap.IntMap a) where algebra = coheyting (IntMap.\\) {- TODO pick an instance either key-aware or no instance (Total a, U.Finite a, Heyting b) => Algebra 'R (Map.Map a b) where algebra = heyting $ \a b -> let x = Map.merge Map.dropMissing -- drop if an element is missing in @b@ (Map.mapMissing (\_ _ -> true)) -- put @true@ if an element is missing in @a@ (Map.zipWithMatched (\_ -> (//) )) -- merge matching elements with @`implies`@ a b y = Map.fromList [(k, true) | k <- U.universeF, not (Map.member k a), not (Map.member k b) ] -- for elements which are not in a, nor in b add -- a @true@ key in Map.union x y -- TODO: compare performance impliesMap a b = Map.intersection (`implies`) a b `Map.union` Map.map (const true) (Map.difference b a) `Map.union` Map.fromList [(k, true) | k <- universeF, not (Map.member k a), not (Map.member k b)] -} {- -- A symmetric Heyting algebra -- -- λ> implies (False ... True) (False ... True) -- Interval True True -- λ> implies (False ... True) (singleton False) -- Interval False False -- λ> implies (singleton True) (False ... True) -- Interval False True -- -- λ> implies ([EQ,GT] ... [EQ,GT]) ([LT] ... [LT,EQ]) :: Interval (Set.Set Ordering) -- Interval (fromList [LT]) (fromList [LT,EQ]) -- -- TODO: may need /a/ to be boolean here. implies :: Symmetric a => Interval a -> Interval a -> Interval a implies i1 i2 = maybe iempty (uncurry (...)) $ liftA2 f (endpts i1) (endpts i2) where f (x1,x2) (y1,y2) = (x1 // y1 /\ x2 // y2, x2 // y2) --TODO: would this work for interval orders? f (x1,x2) (y1,y2) = (x1 // y1 /\ x2 // y2, x1 // y1 \/ x2 // y2) coimplies i1 i2 = not (not i1 `implies` not i2) -- The symmetry -- neg x = top \\ not x -- non x = not x // bottom -- λ> not ([LT] ... [LT,GT]) :: Interval (Set.Set Ordering) -- Interval (fromList [EQ]) (fromList [EQ,GT]) -- not :: Symmetric a => Interval a -> Interval a not = maybe iempty (\(x1, x2) -> neg x2 ... neg x1) . endpts -- λ> neg' (False ... True) -- Interval False False -- λ> (False ... True) `implies` (singleton False) -- Interval False False -- neg' x = (bottom ... top) `coimplies` (not x) -- λ> non' (False ... True) -- Interval False False -- λ> (singleton True) `coimplies` (False ... True) -- Interval False False -- non' x = not x `implies` (singleton bottom) -} -- Internal ------------------------- fork :: a -> (a, a) fork x = (x, x) impliesL :: (Total a, P.Bounded a) => a -> a -> a impliesL x y = if y < x then x else P.minBound impliesR :: (Total a, P.Bounded a) => a -> a -> a impliesR x y = if x > y then y else P.maxBound joinTuple :: (Semilattice 'L a, Semilattice 'L b) => (a, b) -> (a, b) -> (a, b) joinTuple (x1, y1) (x2, y2) = (x1 \/ x2, y1 \/ y2) meetTuple :: (Semilattice 'R a, Semilattice 'R b) => (a, b) -> (a, b) -> (a, b) meetTuple (x1, y1) (x2, y2) = (x1 /\ x2, y1 /\ y2) joinMaybe :: Join a => Maybe a -> Maybe a -> Maybe a joinMaybe (Just x) (Just y) = Just (x \/ y) joinMaybe u@(Just _) _ = u joinMaybe _ u@(Just _) = u joinMaybe Nothing Nothing = Nothing meetMaybe :: Meet a => Maybe a -> Maybe a -> Maybe a meetMaybe Nothing Nothing = Nothing meetMaybe Nothing _ = Nothing meetMaybe _ Nothing = Nothing meetMaybe (Just x) (Just y) = Just (x /\ y) joinExtended :: Join a => Extended a -> Extended a -> Extended a joinExtended Top _ = Top joinExtended _ Top = Top joinExtended (Extended x) (Extended y) = Extended (x \/ y) joinExtended Bottom y = y joinExtended x Bottom = x meetExtended :: Meet a => Extended a -> Extended a -> Extended a meetExtended Top y = y meetExtended x Top = x meetExtended (Extended x) (Extended y) = Extended (x /\ y) meetExtended Bottom _ = Bottom meetExtended _ Bottom = Bottom joinEither :: (Join a, Join b) => Either a b -> Either a b -> Either a b joinEither (Right x) (Right y) = Right (x \/ y) joinEither u@(Right _) _ = u joinEither _ u@(Right _) = u joinEither (Left x) (Left y) = Left (x \/ y) meetEither :: (Meet a, Meet b) => Either a b -> Either a b -> Either a b meetEither (Left x) (Left y) = Left (x /\ y) meetEither l@(Left _) _ = l meetEither _ l@(Left _) = l meetEither (Right x) (Right y) = Right (x /\ y)