module Data.Conduit.Algorithms
( uniqueOnC
, uniqueC
, removeRepeatsC
, mergeC
, mergeC2
) where
import qualified Data.Conduit as C
import qualified Data.Conduit.Internal as CI
import qualified Data.Set as S
import Data.List (sortBy, insertBy)
import Control.Monad.Trans.Class (lift)
import Data.Conduit.Algorithms.Utils (awaitJust)
uniqueOnC :: (Ord b, Monad m) => (a -> b) -> C.Conduit a m a
uniqueOnC f = checkU (S.empty :: S.Set b)
where
checkU cur = awaitJust $ \val ->
if f val `S.member` cur
then checkU cur
else do
C.yield val
checkU (S.insert (f val) cur)
uniqueC :: (Ord a, Monad m) => C.Conduit a m a
uniqueC = uniqueOnC id
removeRepeatsC :: (Eq a, Monad m) => C.Conduit a m a
removeRepeatsC = awaitJust removeRepeatsC'
where
removeRepeatsC' prev = C.await >>= \case
Nothing -> C.yield prev
Just next
| next == prev -> removeRepeatsC' prev
| otherwise -> do
C.yield prev
removeRepeatsC' next
mergeC :: (Ord a, Monad m) => [C.Source m a] -> C.Source m a
mergeC [a] = a
mergeC [a,b] = mergeC2 a b
mergeC cs = CI.ConduitT $ \rest -> let
go [] = rest ()
go (CI.HaveOutput c_next v:larger) =
CI.HaveOutput (norm1 c_next >>= go . insert1 larger) v
go _ = error "This situation should have been impossible (mergeC/go)"
insert1 larger CI.Done{} = larger
insert1 larger c = insertBy compareHO c larger
norm1 :: Monad m => CI.Pipe () i o () m () -> CI.Pipe () i o () m (CI.Pipe () i o () m ())
norm1 c@CI.HaveOutput{} = return c
norm1 c@CI.Done{} = return c
norm1 (CI.PipeM p) = lift p >>= norm1
norm1 (CI.NeedInput _ next) = norm1 (next ())
norm1 (CI.Leftover next ()) = norm1 next
isHO CI.HaveOutput{} = True
isHO _ = False
compareHO (CI.HaveOutput _ a) (CI.HaveOutput _ b) = compare a b
compareHO _ _ = error "This situation should have been impossible (mergeC/compareHO)"
in do
let st = map (($ CI.Done) . CI.unConduitT) cs
st' <- mapM norm1 st
go . sortBy compareHO . filter isHO $ st'
mergeC2 :: (Ord a, Monad m) => C.Source m a -> C.Source m a -> C.Source m a
mergeC2 (CI.ConduitT s1) (CI.ConduitT s2) = CI.ConduitT $ \rest -> let
go right@(CI.HaveOutput s1' v1) left@(CI.HaveOutput s2' v2)
| v1 <= v2 = CI.HaveOutput (go s1' left) v1
| otherwise = CI.HaveOutput (go right s2') v2
go right@CI.Done{} (CI.HaveOutput s v) = CI.HaveOutput (go right s) v
go (CI.HaveOutput s v) left@CI.Done{} = CI.HaveOutput (go s left) v
go CI.Done{} CI.Done{} = rest ()
go (CI.PipeM p) left = do
next <- lift p
go next left
go right (CI.PipeM p) = do
next <- lift p
go right next
go (CI.NeedInput _ next) left = go (next ()) left
go right (CI.NeedInput _ next) = go right (next ())
go (CI.Leftover next ()) left = go next left
go right (CI.Leftover next ()) = go right next
in go (s1 CI.Done) (s2 CI.Done)