computational-algebra-0.0.1.1: Well-kinded computational algebra library, currently supporting Groebner basis.

Safe HaskellNone

Algebra.Algorithms.Groebner

Synopsis

Documentation

divModPolynomial :: (IsMonomialOrder order, IsPolynomial r n, Field r) => OrderedPolynomial r order n -> [OrderedPolynomial r order n] -> ([(OrderedPolynomial r order n, OrderedPolynomial r order n)], OrderedPolynomial r order n)Source

divPolynomial :: (IsPolynomial r n, Field r, IsMonomialOrder order) => OrderedPolynomial r order n -> [OrderedPolynomial r order n] -> [(OrderedPolynomial r order n, OrderedPolynomial r order n)]Source

thEliminationIdeal :: (IsMonomialOrder ord, Field k, IsPolynomial k m, IsPolynomial k (n :+: m)) => SNat n -> Ideal (OrderedPolynomial k ord (n :+: m)) -> Ideal (OrderedPolynomial k Lex m)Source

intersection :: forall r k n ord. (IsMonomialOrder ord, Field r, IsPolynomial r k, IsPolynomial r n, IsPolynomial r (k :+: n)) => Vector (Ideal (OrderedPolynomial r ord n)) k -> Ideal (OrderedPolynomial r Lex n)Source

An intersection ideal of given ideals.

quotByPrincipalIdeal :: (Field k, IsPolynomial k n, IsMonomialOrder ord) => Ideal (OrderedPolynomial k ord n) -> OrderedPolynomial k ord n -> Ideal (OrderedPolynomial k Lex n)Source

Ideal quotient by a principal ideals.

quotIdeal :: forall k ord n. (IsPolynomial k n, Field k, IsMonomialOrder ord) => Ideal (OrderedPolynomial k ord n) -> Ideal (OrderedPolynomial k ord n) -> Ideal (OrderedPolynomial k Lex n)Source

saturationByPrincipalIdeal :: (Field k, IsPolynomial k n, IsMonomialOrder ord) => Ideal (OrderedPolynomial k ord n) -> OrderedPolynomial k ord n -> Ideal (OrderedPolynomial k Lex n)Source

Saturation by a principal ideal.