module Combinatorics.Partitions ( pentagonalPowerSeries, numPartitions, partitionsInc, partitionsDec, allPartitionsInc, propInfProdLinearFactors, propPentagonalPowerSeries, propPentagonalsDifP, propPentagonalsDifN, propPartitions, propNumPartitions, ) where import qualified Data.List as List import qualified PowerSeries as PS import Data.Eq.HT (equating) {- a(n) denotes the number in how many ways n can be presented as a sum of positive integers: a(n) n 1 1 : 1 2 2 : 2, 1+1 3 3 : 3, 2+1, 1+1+1 5 4 : 4, 3+1, 2+2, 2+1+1, 1+1+1+1 7 5 : 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 Number of partitions: http://oeis.org/A000041 Pentagonal numbers: http://oeis.org/A001318 -} {- | Pentagonal numbers are used to simplify the infinite product \\prod_{i>0} (1-t^i) It is known that the coefficients of the power series are exclusively -1, 0 or 1. The following is a very simple but inefficient implementation, because of many multiplications with zero. -} prodLinearFactors :: Int -> PS.T Integer prodLinearFactors n = foldl PS.mul [1] $ take n $ map (1:) $ iterate (0:) [-1] infProdLinearFactors :: PS.T Integer infProdLinearFactors = zipWith (!!) (scanl (\prod i -> delayedSub prod i prod) [1] [1..]) [0..] propInfProdLinearFactors :: Int -> Bool propInfProdLinearFactors n = and $ take (n+1) $ zipWith (==) infProdLinearFactors (prodLinearFactors n) pentagonalsP, pentagonalsN, pentagonalsDifP, pentagonalsDifN :: [Int] pentagonalsP = map (\n -> div (n*(3*n-1)) 2) [0..] pentagonalsN = map (\n -> div (n*(3*n+1)) 2) [0..] {- (n+1)*(3*n+2) - n*(3*n-1) = 6*n+2 (n+1)*(3*n+4) - n*(3*n+1) = 6*n+4 -} pentagonalsDifP = map (\n -> 3*n+1) [0..] pentagonalsDifN = map (\n -> 3*n+2) [0..] propPentagonalsDifP :: Int -> Bool propPentagonalsDifP n = equating (take n) pentagonalsDifP (zipWith (-) (tail pentagonalsP) pentagonalsP) propPentagonalsDifN :: Int -> Bool propPentagonalsDifN n = equating (take n) pentagonalsDifN (zipWith (-) (tail pentagonalsN) pentagonalsN) {- delay y by del and subtract it from x -} delayedSub :: [Integer] -> Int -> [Integer] -> [Integer] delayedSub x del y = let (a,b) = splitAt del x in a ++ PS.sub b y {- p00 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 - p00 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 + p00 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 - p00 p01 p02 p03 p04 p05 ... - p00 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 + p00 p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 - p00 p01 p02 ... -} numPartitions :: [Integer] numPartitions = let accu = foldr (delayedSub numPartitions) (error "never evaluated") ps = accu (tail pentagonalsDifP) ns = accu (tail pentagonalsDifN) in 1 : zipWith (+) ps (0:ns) {- | This is a very efficient implementation of 'prodLinearFactors'. -} pentagonalPowerSeries :: [Integer] pentagonalPowerSeries = let make = concat . zipWith (\s n -> s : replicate (n-1) 0) (cycle [1,-1]) in flip PS.sub [1] $ PS.add (make pentagonalsDifP) (make pentagonalsDifN) propPentagonalPowerSeries :: Int -> Bool propPentagonalPowerSeries n = equating (take n) infProdLinearFactors pentagonalPowerSeries {- | Give all partitions of the natural number n with summands which are at least k. Not quite correct for k>n. -} partitionsInc :: (Integral a) => a -> a -> [[a]] partitionsInc k n = concatMap (\y -> map (y:) (partitionsInc y (n-y))) [k .. div n 2] ++ [[n]] partitionsDec :: (Integral a) => a -> a -> [[a]] partitionsDec 0 0 = [repeat 0] partitionsDec _ 0 = [] partitionsDec k n = (if k>=n then [[n]] else []) ++ concatMap (\y -> map (y:) (partitionsDec y (n-y))) (takeWhile (>0) (iterate pred (min n k))) _partitionsInc :: (Integral a) => a -> a -> [[a]] _partitionsInc k n = if k>n then [] else concatMap (\y -> map (y:) (_partitionsInc y (n-y))) [k..(n-1)] ++ [[n]] {- | it shall be k>0 && n>=0 ==> partitionsInc k n == allPartitionsInc !! k !! n type Int is needed because of list node indexing -} allPartitionsInc :: [[[[Int]]]] allPartitionsInc = let part :: Int -> Int -> [[Int]] part k n = concatMap (\y -> map (y:) (xs !! y !! (n-y))) [k .. div n 2] ++ [[n]] xs = repeat [[]] : map (\k -> map (part k) [0..]) [1..] in xs propPartitions :: Int -> Int -> Bool propPartitions k n = partitionsInc k n == allPartitionsInc !! k !! n propNumPartitions :: Int -> Bool propNumPartitions n = equating (take n) (map List.genericLength (allPartitionsInc !! 1)) numPartitions