{-# LANGUAGE CPP #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
module Clash.Signal.Bundle.Internal (deriveBundleTuples, idPrimitive) where
import Control.Monad.Extra (concatMapM)
import Clash.Annotations.Primitive (Primitive(InlineYamlPrimitive))
import Clash.CPP (maxTupleSize)
import Clash.Signal.Internal (Signal((:-)))
import Clash.XException (seqX)
#if !MIN_VERSION_base(4,20,0)
import Data.List (foldl')
#endif
import Data.List (uncons)
import Data.String.Interpolate (__i)
import qualified Language.Haskell.TH.Syntax as TH
import Language.Haskell.TH
import Language.Haskell.TH.Compat
idPrimitive :: TH.Name -> DecQ
idPrimitive nm =
PragmaD . AnnP (ValueAnnotation nm) <$> TH.liftData ip
where
ip = InlineYamlPrimitive [minBound..] [__i|
Primitive:
name: #{nm}
primType: Function
|]
deriveBundleTuples
:: Name
-> Name
-> Name
-> Name
-> DecsQ
deriveBundleTuples bundleTyName unbundledTyName bundleName unbundleName = do
let bundleTy = ConT bundleTyName
signal = ConT ''Signal
aNamesAll = map (\i -> mkName ('a':show i)) [1..maxTupleSize::Int]
aPrimeNamesAll = map (\i -> mkName ('a':show i++"'")) [1..maxTupleSize::Int]
asNamesAll = map (\i -> mkName ("as" <> show i)) [1..maxTupleSize::Int]
tNm = mkName "t"
sTailNm = mkName "sTail"
sNm = mkName "s"
flip concatMapM [2..maxTupleSize] $ \tupleNum ->
let aNames = take tupleNum aNamesAll
aPrimeNames = take tupleNum aPrimeNamesAll
asNames = take tupleNum asNamesAll
vars = fmap VarT aNames
bundlePrimName = mkName ("bundle" ++ show tupleNum ++ "#")
unbundlePrimName = mkName ("unbundle" ++ show tupleNum ++ "#")
qualBundleNm = mkName ("Clash.Signal.Bundle.bundle" ++ show tupleNum ++ "#")
qualUnbundlePrimName = mkName ("Clash.Signal.Bundle.unbundle" ++ show tupleNum ++ "#")
mkTupleT = foldl' AppT (TupleT tupleNum)
instTy = AppT bundleTy $ mkTupleT vars
#if MIN_VERSION_template_haskell(2,15,0)
unbundledTypeEq =
TySynEqn Nothing
((ConT unbundledTyName `AppT`
VarT tNm ) `AppT` mkTupleT vars )
$ mkTupleT $ map (AppT (signal `AppT` VarT tNm)) vars
unbundledType = TySynInstD unbundledTypeEq
#else
unbundledTypeEq =
TySynEqn
[ VarT tNm, mkTupleT vars ]
$ mkTupleT $ map (AppT (signal `AppT` VarT tNm)) vars
unbundledType = TySynInstD unbundledTyName unbundledTypeEq
#endif
mkFunD nm alias = FunD nm [Clause [] (NormalB (VarE alias)) []]
bundleD = mkFunD bundleName bundlePrimName
unbundleD = mkFunD unbundleName unbundlePrimName
sigType t = ConT ''Signal `AppT` VarT (mkName "dom") `AppT` t
unbundleNoInlineAnn = PragmaD (InlineP unbundlePrimName NoInline FunLike AllPhases)
unbundleSig = SigD unbundlePrimName (
mkFunTys
[mkTupleT (map sigType (map VarT aNames))]
(sigType (mkTupleT (map VarT aNames)))
)
seqE nm res = UInfixE (VarE nm) (VarE 'seq) res
seqXE nm res = UInfixE (VarE nm) (VarE 'seqX) res
unbundleFBody =
LetE
[ ValD
(TupP (map VarP asNames))
(NormalB (
tNm `seqXE` (sNm `seqE` (VarE unbundlePrimName `AppE` VarE sTailNm)))) []]
(mkTupE
(zipWith
(\a as -> UInfixE (VarE a) (ConE '(:-)) (VarE as))
aNames
asNames))
unbundleF =
FunD
unbundlePrimName
[Clause
[AsP sNm (TildeP (UInfixP
(AsP tNm (TildeP (TupP (map VarP aNames))))
'(:-)
(VarP sTailNm)))]
(NormalB unbundleFBody)
[] ]
bundleNoInlineAnn = PragmaD (InlineP bundlePrimName NoInline FunLike AllPhases)
bundleSig = SigD bundlePrimName (
mkFunTys
[sigType (mkTupleT (map VarT aNames))]
(mkTupleT (map sigType (map VarT aNames)))
)
bundleFmap =
UInfixE
(LamE (map VarP aPrimeNames) (mkTupE (map VarE aPrimeNames)))
(VarE '(<$>))
(VarE (maybe (error "impossible") fst (uncons aNames)))
bundleFBody =
foldl'
(\e n -> UInfixE e (VarE '(<*>)) (VarE n))
bundleFmap
(drop 1 aNames)
bundleF =
FunD
bundlePrimName
[Clause
[TupP (map VarP aNames)]
(NormalB bundleFBody)
[] ]
in do
unbundlePrimAnn <- idPrimitive qualUnbundlePrimName
bundlePrimAnn <- idPrimitive qualBundleNm
pure [
InstanceD Nothing [] instTy [unbundledType, bundleD, unbundleD]
, bundleSig, bundleF, bundlePrimAnn, bundleNoInlineAnn
, unbundleSig, unbundleF, unbundlePrimAnn, unbundleNoInlineAnn
]
mkFunTys :: Foldable t => t TH.Type -> TH.Type -> TH.Type
mkFunTys args res= foldl' go res args
where
go l r = AppT (AppT ArrowT l) r