{-| Copyright : (C) 2016, University of Twente 2022, QBayLogic B.V. License : BSD2 (see the file LICENSE) Maintainer : QBayLogic B.V. -} {-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE Trustworthy #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise -fplugin GHC.TypeLits.KnownNat.Solver #-} module Clash.Sized.RTree ( -- * 'RTree' data type RTree (LR, BR, RLeaf, RBranch) -- * Construction , treplicate , trepeat -- * Accessors , thead , tlast -- ** Indexing , indexTree , tindices -- * Modifying trees , replaceTree -- * Element-wise operations -- ** Mapping , tmap , tzipWith -- ** Zipping , tzip -- ** Unzipping , tunzip -- * Folding , tfold -- ** Specialised folds , tdfold -- ** Prefix sums (scans) -- $scans , scanlPar , tscanl , scanrPar , tscanr -- * Conversions , v2t , t2v -- * Misc , lazyT ) where #if !MIN_VERSION_base(4,18,0) import Control.Applicative (liftA2) #endif import Control.DeepSeq (NFData(..)) import qualified Control.Lens as Lens import Data.Default.Class (Default (..)) import Data.Either (isLeft) import Data.Foldable (toList) import Data.Kind (Type) import Data.Singletons (Apply, TyFun, type (@@)) import Data.Proxy (Proxy (..)) import GHC.TypeLits (KnownNat, Nat, type (+), type (^), type (*)) import Language.Haskell.TH.Syntax (Lift(..)) #if MIN_VERSION_template_haskell(2,16,0) import Language.Haskell.TH.Compat #endif import Prelude hiding ((++), (!!), map) import Test.QuickCheck (Arbitrary (..), CoArbitrary (..)) import Clash.Annotations.Primitive (hasBlackBox) import Clash.Class.BitPack (BitPack (..), packXWith) import Clash.Promoted.Nat (SNat (..), UNat (..), pow2SNat, snatToNum, subSNat, toUNat) import Clash.Promoted.Nat.Literals (d1) import Clash.Sized.Index (Index) import Clash.Sized.Vector (Vec (..), (!!), (++), dtfold, replace) import Clash.XException (ShowX (..), NFDataX (..), isX, showsX, showsPrecXWith) {- $setup >>> :set -XDataKinds >>> :set -XTypeFamilies >>> :set -XTypeOperators >>> :set -XTemplateHaskell >>> :set -XFlexibleContexts >>> :set -XTypeApplications >>> :set -fplugin GHC.TypeLits.Normalise >>> :set -XUndecidableInstances >>> import Clash.Prelude >>> import Data.Kind >>> import Data.Singletons (Apply, TyFun) >>> import Data.Proxy >>> data IIndex (f :: TyFun Nat Type) :: Type >>> type instance Apply IIndex l = Index ((2^l)+1) >>> :{ let populationCount' :: (KnownNat k, KnownNat (2^k)) => BitVector (2^k) -> Index ((2^k)+1) populationCount' bv = tdfold (Proxy @IIndex) fromIntegral (\_ x y -> add x y) (v2t (bv2v bv)) :} -} -- | Perfect depth binary tree. -- -- * Only has elements at the leaf of the tree -- * A tree of depth /d/ has /2^d/ elements. data RTree :: Nat -> Type -> Type where RLeaf :: a -> RTree 0 a RBranch :: RTree d a -> RTree d a -> RTree (d+1) a instance NFData a => NFData (RTree d a) where rnf (RLeaf x) = rnf x rnf (RBranch l r ) = rnf l `seq` rnf r textract :: RTree 0 a -> a textract (RLeaf x) = x #if __GLASGOW_HASKELL__ != 902 textract (RBranch _ _) = error $ "textract: nodes hold no values" #endif -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE textract #-} {-# ANN textract hasBlackBox #-} tsplit :: RTree (d+1) a -> (RTree d a,RTree d a) tsplit (RBranch l r) = (l,r) #if __GLASGOW_HASKELL__ != 902 tsplit (RLeaf _) = error $ "tsplit: leaf is atomic" #endif -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE tsplit #-} {-# ANN tsplit hasBlackBox #-} -- | RLeaf of a perfect depth tree -- -- >>> LR 1 -- 1 -- >>> let x = LR 1 -- >>> :t x -- x :: Num a => RTree 0 a -- -- Can be used as a pattern: -- -- >>> let f (LR a) (LR b) = a + b -- >>> :t f -- f :: Num a => RTree 0 a -> RTree 0 a -> a -- >>> f (LR 1) (LR 2) -- 3 pattern LR :: a -> RTree 0 a pattern LR x <- (textract -> x) where LR x = RLeaf x -- | RBranch of a perfect depth tree -- -- >>> BR (LR 1) (LR 2) -- <1,2> -- >>> let x = BR (LR 1) (LR 2) -- >>> :t x -- x :: Num a => RTree 1 a -- -- Case be used a pattern: -- -- >>> let f (BR (LR a) (LR b)) = LR (a + b) -- >>> :t f -- f :: Num a => RTree 1 a -> RTree 0 a -- >>> f (BR (LR 1) (LR 2)) -- 3 pattern BR :: RTree d a -> RTree d a -> RTree (d+1) a pattern BR l r <- ((\t -> (tsplit t)) -> (l,r)) where BR l r = RBranch l r instance (KnownNat d, Eq a) => Eq (RTree d a) where (==) t1 t2 = (==) (t2v t1) (t2v t2) instance (KnownNat d, Ord a) => Ord (RTree d a) where compare t1 t2 = compare (t2v t1) (t2v t2) instance Show a => Show (RTree n a) where showsPrec _ (RLeaf a) = shows a showsPrec _ (RBranch l r) = \s -> '<':shows l (',':shows r ('>':s)) instance ShowX a => ShowX (RTree n a) where showsPrecX = showsPrecXWith go where go :: Int -> RTree d a -> ShowS go _ (RLeaf a) = showsX a go _ (RBranch l r) = \s -> '<':showsX l (',':showsX r ('>':s)) instance KnownNat d => Functor (RTree d) where fmap = tmap instance KnownNat d => Applicative (RTree d) where pure = trepeat (<*>) = tzipWith ($) instance KnownNat d => Foldable (RTree d) where foldMap f = tfold f mappend data TraversableTree (g :: Type -> Type) (a :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (TraversableTree f a) d = f (RTree d a) instance KnownNat d => Traversable (RTree d) where traverse :: forall f a b . Applicative f => (a -> f b) -> RTree d a -> f (RTree d b) traverse f = tdfold (Proxy @(TraversableTree f b)) (fmap LR . f) (const (liftA2 BR)) instance (KnownNat d, BitPack a) => BitPack (RTree d a) where type BitSize (RTree d a) = (2^d) * (BitSize a) pack = packXWith (pack . t2v) unpack = v2t . unpack type instance Lens.Index (RTree d a) = Int type instance Lens.IxValue (RTree d a) = a instance KnownNat d => Lens.Ixed (RTree d a) where ix i f t = replaceTree i <$> f (indexTree t i) <*> pure t instance (KnownNat d, Default a) => Default (RTree d a) where def = trepeat def instance Lift a => Lift (RTree d a) where lift (RLeaf a) = [| RLeaf a |] lift (RBranch t1 t2) = [| RBranch $(lift t1) $(lift t2) |] #if MIN_VERSION_template_haskell(2,16,0) liftTyped = liftTypedFromUntyped #endif instance (KnownNat d, Arbitrary a) => Arbitrary (RTree d a) where arbitrary = sequenceA (trepeat arbitrary) shrink = sequenceA . fmap shrink instance (KnownNat d, CoArbitrary a) => CoArbitrary (RTree d a) where coarbitrary = coarbitrary . toList instance (KnownNat d, NFDataX a) => NFDataX (RTree d a) where deepErrorX x = pure (deepErrorX x) rnfX t = if isLeft (isX t) then () else go t where go :: RTree d a -> () go (RLeaf x) = rnfX x go (RBranch l r) = rnfX l `seq` rnfX r hasUndefined t = if isLeft (isX t) then True else go t where go :: RTree d a -> Bool go (RLeaf x) = hasUndefined x go (RBranch l r) = hasUndefined l || hasUndefined r ensureSpine = fmap ensureSpine . lazyT {- | A /dependently/ typed fold over trees. As an example of when you might want to use 'dtfold' we will build a population counter: a circuit that counts the number of bits set to '1' in a 'Clash.Sized.BitVector.BitVector'. Given a vector of /n/ bits, we only need we need a data type that can represent the number /n/: 'Index' @(n+1)@. 'Index' @k@ has a range of @[0 .. k-1]@ (using @ceil(log2(k))@ bits), hence we need 'Index' @n+1@. As an initial attempt we will use 'tfold', because it gives a nice (@log2(n)@) tree-structure of adders: @ populationCount :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1)) => BitVector (2^d) -> Index (2^d+1) populationCount = tfold (resize . bv2i . pack) (+) . v2t . bv2v @ The \"problem\" with this description is that all adders have the same bit-width, i.e. all adders are of the type: @ (+) :: 'Index' (2^d+1) -> 'Index' (2^d+1) -> 'Index' (2^d+1). @ This is a \"problem\" because we could have a more efficient structure: one where each layer of adders is /precisely/ wide enough to count the number of bits at that layer. That is, at height /d/ we want the adder to be of type: @ 'Index' ((2^d)+1) -> 'Index' ((2^d)+1) -> 'Index' ((2^(d+1))+1) @ We have such an adder in the form of the 'Clash.Class.Num.add' function, as defined in the instance 'Clash.Class.Num.ExtendingNum' instance of 'Index'. However, we cannot simply use 'Clash.Sized.Vector.fold' to create a tree-structure of 'Clash.Class.Num.add's: #if __GLASGOW_HASKELL__ >= 900 >>> :{ let populationCount' :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1)) => BitVector (2^d) -> Index (2^d+1) populationCount' = tfold (resize . bv2i . pack) add . v2t . bv2v :} :... • Couldn't match type: (((2 ^ d) + 1) + ((2 ^ d) + 1)) - 1 with: (2 ^ d) + 1 Expected: Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) Actual: Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) -> AResult (Index ((2 ^ d) + 1)) (Index ((2 ^ d) + 1)) • In the second argument of ‘tfold’, namely ‘add’ In the first argument of ‘(.)’, namely ‘tfold (resize . bv2i . pack) add’ In the expression: tfold (resize . bv2i . pack) add . v2t . bv2v • Relevant bindings include populationCount' :: BitVector (2 ^ d) -> Index ((2 ^ d) + 1) (bound at ...) #else >>> :{ let populationCount' :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1)) => BitVector (2^d) -> Index (2^d+1) populationCount' = tfold (resize . bv2i . pack) add . v2t . bv2v :} :... • Couldn't match type ‘(((2 ^ d) + 1) + ((2 ^ d) + 1)) - 1’ with ‘(2 ^ d) + 1’ Expected type: Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) Actual type: Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) -> AResult (Index ((2 ^ d) + 1)) (Index ((2 ^ d) + 1)) • In the second argument of ‘tfold’, namely ‘add’ In the first argument of ‘(.)’, namely ‘tfold (resize . bv2i . pack) add’ In the expression: tfold (resize . bv2i . pack) add . v2t . bv2v • Relevant bindings include populationCount' :: BitVector (2 ^ d) -> Index ((2 ^ d) + 1) (bound at ...) #endif because 'tfold' expects a function of type \"@b -> b -> b@\", i.e. a function where the arguments and result all have exactly the same type. In order to accommodate the type of our 'Clash.Class.Num.add', where the result is larger than the arguments, we must use a dependently typed fold in the form of 'dtfold': @ {\-\# LANGUAGE UndecidableInstances \#-\} import Data.Singletons data IIndex (f :: 'TyFun' Nat Type) :: Type type instance 'Apply' IIndex l = 'Index' ((2^l)+1) populationCount' :: (KnownNat k, KnownNat (2^k)) => BitVector (2^k) -> Index ((2^k)+1) populationCount' bv = 'tdfold' (Proxy @IIndex) (resize . bv2i . pack) (\\_ x y -> 'Clash.Class.Num.add' x y) ('v2t' ('Clash.Sized.Vector.bv2v' bv)) @ And we can test that it works: >>> :t populationCount' (7 :: BitVector 16) populationCount' (7 :: BitVector 16) :: Index 17 >>> populationCount' (7 :: BitVector 16) 3 -} tdfold :: forall p k a . KnownNat k => Proxy (p :: TyFun Nat Type -> Type) -- ^ The /motive/ -> (a -> (p @@ 0)) -- ^ Function to apply to the elements on the leafs -> (forall l . SNat l -> (p @@ l) -> (p @@ l) -> (p @@ (l+1))) -- ^ Function to fold the branches with. -- -- __NB:__ @SNat l@ is the depth of the two sub-branches. -> RTree k a -- ^ Tree to fold over. -> (p @@ k) tdfold _ f g = go SNat where go :: SNat m -> RTree m a -> (p @@ m) go _ (RLeaf a) = f a go sn (RBranch l r) = let sn' = sn `subSNat` d1 in g sn' (go sn' l) (go sn' r) -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE tdfold #-} {-# ANN tdfold hasBlackBox #-} data TfoldTree (a :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (TfoldTree a) d = a -- | Reduce a tree to a single element tfold :: forall d a b . KnownNat d => (a -> b) -- ^ Function to apply to the leaves -> (b -> b -> b) -- ^ Function to combine the results of the reduction -- of two branches -> RTree d a -- ^ Tree to fold reduce -> b tfold f g = tdfold (Proxy @(TfoldTree b)) f (const g) -- | \"'treplicate' @d a@\" returns a tree of depth /d/, and has /2^d/ copies -- of /a/. -- -- >>> treplicate (SNat :: SNat 3) 6 -- <<<6,6>,<6,6>>,<<6,6>,<6,6>>> -- >>> treplicate d3 6 -- <<<6,6>,<6,6>>,<<6,6>,<6,6>>> treplicate :: forall d a . SNat d -> a -> RTree d a treplicate sn a = go (toUNat sn) where go :: UNat n -> RTree n a go UZero = LR a go (USucc un) = BR (go un) (go un) -- See: https://github.com/clash-lang/clash-compiler/pull/2511 {-# CLASH_OPAQUE treplicate #-} {-# ANN treplicate hasBlackBox #-} -- | \"'trepeat' @a@\" creates a tree with as many copies of /a/ as demanded by -- the context. -- -- >>> trepeat 6 :: RTree 2 Int -- <<6,6>,<6,6>> trepeat :: KnownNat d => a -> RTree d a trepeat = treplicate SNat data MapTree (a :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (MapTree a) d = RTree d a -- | \"'tmap' @f t@\" is the tree obtained by apply /f/ to each element of /t/, -- i.e., -- -- > tmap f (BR (LR a) (LR b)) == BR (LR (f a)) (LR (f b)) tmap :: forall d a b . KnownNat d => (a -> b) -> RTree d a -> RTree d b tmap f = tdfold (Proxy @(MapTree b)) (LR . f) (\_ l r -> BR l r) -- | Generate a tree of indices, where the depth of the tree is determined by -- the context. -- -- >>> tindices :: RTree 3 (Index 8) -- <<<0,1>,<2,3>>,<<4,5>,<6,7>>> tindices :: forall d . KnownNat d => RTree d (Index (2^d)) tindices = tdfold (Proxy @(MapTree (Index (2^d)))) LR (\s@SNat l r -> BR l (tmap (+(snatToNum (pow2SNat s))) r)) (treplicate SNat 0) data V2TTree (a :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (V2TTree a) d = RTree d a -- | Convert a vector with /2^d/ elements to a tree of depth /d/. -- -- >>> v2t (1 :> 2 :> 3 :> 4:> Nil) -- <<1,2>,<3,4>> v2t :: forall d a . KnownNat d => Vec (2^d) a -> RTree d a v2t = dtfold (Proxy @(V2TTree a)) LR (const BR) data T2VTree (a :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (T2VTree a) d = Vec (2^d) a -- | Convert a tree of depth /d/ to a vector of /2^d/ elements -- -- >>> (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<1,2>,<3,4>> -- >>> t2v (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- 1 :> 2 :> 3 :> 4 :> Nil t2v :: forall d a . KnownNat d => RTree d a -> Vec (2^d) a t2v = tdfold (Proxy @(T2VTree a)) (:> Nil) (\_ l r -> l ++ r) -- | \"'indexTree' @t n@\" returns the /n/'th element of /t/. -- -- The bottom-left leaf had index /0/, and the bottom-right leaf has index -- /2^d-1/, where /d/ is the depth of the tree -- -- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 0 -- 1 -- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 2 -- 3 -- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 14 -- *** Exception: Clash.Sized.Vector.(!!): index 14 is larger than maximum index 3 -- ... indexTree :: (KnownNat d, Enum i) => RTree d a -> i -> a indexTree t i = (t2v t) !! i -- | \"'replaceTree' @n a t@\" returns the tree /t/ where the /n/'th element is -- replaced by /a/. -- -- The bottom-left leaf had index /0/, and the bottom-right leaf has index -- /2^d-1/, where /d/ is the depth of the tree -- -- >>> replaceTree 0 5 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<5,2>,<3,4>> -- >>> replaceTree 2 7 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<1,2>,<7,4>> -- >>> replaceTree 9 6 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<1,2>,<3,*** Exception: Clash.Sized.Vector.replace: index 9 is larger than maximum index 3 -- ... replaceTree :: (KnownNat d, Enum i) => i -> a -> RTree d a -> RTree d a replaceTree i a = v2t . replace i a . t2v data ZipWithTree (b :: Type) (c :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (ZipWithTree b c) d = RTree d b -> RTree d c -- | 'tzipWith' generalizes 'tzip' by zipping with the function given as the -- first argument, instead of a tupling function. For example, "tzipWith (+)" -- applied to two trees produces the tree of corresponding sums. -- -- > tzipWith f (BR (LR a1) (LR b1)) (BR (LR a2) (LR b2)) == BR (LR (f a1 a2)) (LR (f b1 b2)) tzipWith :: forall a b c d . KnownNat d => (a -> b -> c) -> RTree d a -> RTree d b -> RTree d c tzipWith f = tdfold (Proxy @(ZipWithTree b c)) lr br where lr :: a -> RTree 0 b -> RTree 0 c lr a t = LR (f a (textract t)) br :: SNat l -> (RTree l b -> RTree l c) -> (RTree l b -> RTree l c) -> RTree (l+1) b -> RTree (l+1) c br _ fl fr t = BR (fl l) (fr r) where (l,r) = tsplit t -- | 'tzip' takes two trees and returns a tree of corresponding pairs. tzip :: KnownNat d => RTree d a -> RTree d b -> RTree d (a,b) tzip = tzipWith (,) data UnzipTree (a :: Type) (b :: Type) (f :: TyFun Nat Type) :: Type type instance Apply (UnzipTree a b) d = (RTree d a, RTree d b) -- | 'tunzip' transforms a tree of pairs into a tree of first components and a -- tree of second components. tunzip :: forall d a b . KnownNat d => RTree d (a,b) -> (RTree d a,RTree d b) tunzip = tdfold (Proxy @(UnzipTree a b)) lr br where lr (a,b) = (LR a,LR b) br _ (l1,r1) (l2,r2) = (BR l1 l2, BR r1 r2) -- | Given a function @f@ that is strict in its /n/th 'RTree' argument, make it -- lazy by applying 'lazyT' to this argument: -- -- > f x0 x1 .. (lazyT xn) .. xn_plus_k lazyT :: KnownNat d => RTree d a -> RTree d a lazyT = tzipWith (flip const) (trepeat ()) -- | Extract the first element of a tree -- -- The first element is defined to be the bottom-left leaf. -- -- >>> thead $ BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)) -- 1 thead :: RTree n a -> a thead (RLeaf x) = x thead (RBranch x _) = thead x -- | Extract the last element of a tree -- -- The last element is defined to be the bottom-right leaf. -- -- >>> tlast $ BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)) -- 4 tlast :: RTree n a -> a tlast (RLeaf x) = x tlast (RBranch _ y) = tlast y {- $scans #scans# Scans (`Clash.Sized.Vector.scanl`, `Clash.Sized.Vector.scanr`) are similar to folds (`Clash.Sized.Vector.foldl`, `Clash.Sized.Vector.foldr`) but return a list of successive reduced values. When the binary reduction operator @f@ is associative, the scan functions in this module can be characterized as follows: > tscanl f [x1, x2, x3, ...] == [x1, x1 `f` x2, x1 `f` x2 `f` x3, ...] > tscanr f [..., xn2, xn1, xn] == [..., xn2 `f` xn1 `f` xn, xn1 `f` xn, xn] The scan functions in this module provide a different trade-off between circuit size and logic depth than the default `Clash.Sized.Vector.scanl` and `Clash.Sized.Vector.scanr` functions. When \(n\) is the number of elements, circuit size is \(\mathcal{O}(n \cdot \log n)\), but logic depth is \(\mathcal{O}(\log n)\). This means the resource usage will likely increase, but the maximum clock frequency also increases due to the reduced logic depth. The exact amount of instantiations of @f@ given a tree of depth /d/ is: > work 0 = 0 > work d = 2 ^ (d - 1) + 2 * work (d - 1) -} -- | `tscanl` applied to `Vec` -- -- >>> scanlPar (+) (1 :> 2 :> 3 :> 4 :> Nil) -- 1 :> 3 :> 6 :> 10 :> Nil scanlPar :: KnownNat n => -- | Must be associative (a -> a -> a) -> Vec (2^n) a -> Vec (2^n) a scanlPar op = t2v . tscanl op . v2t {-# INLINE scanlPar #-} -- | `tscanr` applied to `Vec` -- -- >>> scanrPar (+) (1 :> 2 :> 3 :> 4 :> Nil) -- 10 :> 9 :> 7 :> 4 :> Nil scanrPar :: KnownNat n => -- | Must be associative (a -> a -> a) -> Vec (2^n) a -> Vec (2^n) a scanrPar op = t2v . tscanr op . v2t {-# INLINE scanrPar #-} -- | Low-depth left scan -- -- `tscanl` is similar to `Clash.Sized.Vector.foldl`, but returns a tree of -- successive reduced values from the left: -- -- > tscanl f [x1, x2, x3, ...] == [x1, x1 `f` x2, x1 `f` x2 `f` x3, ...] -- -- >>> tscanl (+) (v2t (1 :> 2 :> 3 :> 4 :> Nil)) -- <<1,3>,<6,10>> -- -- <> tscanl :: forall a n. KnownNat n => -- | Must be associative (a -> a -> a) -> RTree n a -> RTree n a tscanl op tr = case tr of RLeaf x -> LR x RBranch x y -> let x' = tscanl op x y' = tscanl op y l = tlast x' in BR x' (fmap (l `op`) y') -- | Low-depth right scan -- -- `tscanr` is similar to `Clash.Sized.Vector.foldr`, but returns a tree of -- successive reduced values from the left: -- -- > tscanr f [..., xn2, xn1, xn] == [..., xn2 `f` xn1 `f` xn, xn1 `f` xn, xn] -- -- >>> tscanr (+) (v2t (1 :> 2 :> 3 :> 4 :> Nil)) -- <<10,9>,<7,4>> tscanr :: forall a n. KnownNat n => (a -> a -> a) -> RTree n a -> RTree n a tscanr op tr = case tr of RLeaf x -> LR x RBranch x y -> let x' = tscanr op x y' = tscanr op y l = thead y' in BR (fmap (l `op`) x') y'