{-| Copyright : (C) 2012-2016, University of Twente, 2021-2022, QBayLogic B.V. License : BSD2 (see the file LICENSE) Maintainer : QBayLogic B.V. Utility functions used by the normalisation transformations -} {-# LANGUAGE CPP #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TemplateHaskellQuotes #-} module Clash.Normalize.Util ( ConstantSpecInfo(..) , isConstantArg , shouldReduce , alreadyInlined , addNewInline , isRecursiveBndr , callGraph , collectCallGraphUniques , classifyFunction , isCheapFunction , isNonRecursiveGlobalVar , constantSpecInfo , normalizeTopLvlBndr , rewriteExpr , mkInlineTick , substWithTyEq , tvSubstWithTyEq ) where import Control.Lens ((&),(+~),(%=),(.=)) import qualified Control.Lens as Lens import Data.Bifunctor (bimap) import Data.Either (lefts,rights) import qualified Data.List as List import qualified Data.List.Extra as List import qualified Data.Map as Map import qualified Data.HashMap.Strict as HashMapS import qualified Data.HashSet as HashSet import Data.Text (Text) import qualified Data.Text as Text import qualified Data.Text.Extra as Text #if MIN_VERSION_ghc(9,0,0) import GHC.Builtin.Names (eqTyConKey) import GHC.Types.Unique (getKey) #else import PrelNames (eqTyConKey) import Unique (getKey) #endif import Clash.Annotations.Primitive (extractPrim) import Clash.Core.FreeVars (globalIds, globalIdOccursIn) import Clash.Core.HasFreeVars (isClosed) import Clash.Core.HasType import Clash.Core.Name (Name(nameOcc,nameUniq)) import Clash.Core.Pretty (showPpr) import Clash.Core.Subst (deShadowTerm, extendTvSubst, mkSubst, substTm, substTy, substId, extendIdSubst) import Clash.Core.Term import Clash.Core.Type (Type(ForAllTy,LitTy, VarTy), LitTy(SymTy), TypeView (..), tyView, splitTyConAppM, mkPolyFunTy) import Clash.Core.Util (isClockOrReset) import Clash.Core.Var (Id, TyVar, Var (..), isGlobalId) import Clash.Core.VarEnv (VarEnv, emptyInScopeSet, emptyVarEnv, extendVarEnv, extendVarEnvWith, lookupVarEnv, unionVarEnvWith, unitVarEnv, extendInScopeSetList, mkInScopeSet, mkVarSet) import Clash.Debug (traceIf) import Clash.Driver.Types (BindingMap, Binding(..), TransformationInfo(FinalTerm), hasTransformationInfo) import Clash.Normalize.Primitives (removedArg) import {-# SOURCE #-} Clash.Normalize.Strategy (normalization) import Clash.Normalize.Types import Clash.Primitives.Util (constantArgs) import Clash.Rewrite.Types (RewriteMonad, TransformContext(..), bindings, curFun, debugOpts, extra, tcCache, primitives) import Clash.Rewrite.Util (runRewrite, mkTmBinderFor, mkDerivedName) import Clash.Unique import Clash.Util (SrcSpan, makeCachedU) -- | Determine if argument should reduce to a constant given a primitive and -- an argument number. Caches results. isConstantArg :: Text -- ^ Primitive name -> Int -- ^ Argument number -> RewriteMonad NormalizeState Bool -- ^ Yields @DontCare@ for if given primitive name is not found, if the -- argument does not exist, or if the argument was not mentioned by the -- blackbox. isConstantArg "Clash.Explicit.SimIO.mealyIO" i = pure (i == 2 || i == 3) isConstantArg nm i = do argMap <- Lens.use (extra.primitiveArgs) case Map.lookup nm argMap of Nothing -> do -- Constant args not yet calculated, or primitive does not exist prims <- Lens.view primitives case extractPrim =<< HashMapS.lookup nm prims of Nothing -> -- Primitive does not exist: pure False Just p -> do -- Calculate constant arguments: let m = constantArgs nm p (extra.primitiveArgs) Lens.%= Map.insert nm m pure (i `elem` m) Just m -> -- Cached version found pure (i `elem` m) -- | Given a list of transformation contexts, determine if any of the contexts -- indicates that the current arg is to be reduced to a constant / literal. shouldReduce :: Context -- ^ ..in the current transformcontext -> RewriteMonad NormalizeState Bool shouldReduce = List.anyM isConstantArg' where isConstantArg' (AppArg (Just (nm, _, i))) = isConstantArg nm i isConstantArg' _ = pure False -- | Determine if a function is already inlined in the context of the 'NetlistMonad' alreadyInlined :: Id -- ^ Function we want to inline -> Id -- ^ Function in which we want to perform the inlining -> NormalizeMonad (Maybe Int) alreadyInlined f cf = do inlinedHM <- Lens.use inlineHistory case lookupVarEnv cf inlinedHM of Nothing -> return Nothing Just inlined' -> return (lookupVarEnv f inlined') -- | Record a new inlining in the `inlineHistory` addNewInline :: Id -- ^ Function we're inlining -> Id -- ^ Function in which we're inlining it -> NormalizeMonad () addNewInline f cf = inlineHistory %= extendVarEnvWith cf (unitVarEnv f 1) (\_ hm -> extendVarEnvWith f 1 (+) hm) -- | Test whether a given term represents a non-recursive global variable isNonRecursiveGlobalVar :: Term -> NormalizeSession Bool isNonRecursiveGlobalVar (collectArgs -> (Var i, _args)) = do let eIsGlobal = isGlobalId i eIsRec <- isRecursiveBndr i return (eIsGlobal && not eIsRec) isNonRecursiveGlobalVar _ = return False -- | Assert whether a name is a reference to a recursive binder. isRecursiveBndr :: Id -> NormalizeSession Bool isRecursiveBndr f = do cg <- Lens.use (extra.recursiveComponents) case lookupVarEnv f cg of Just isR -> return isR Nothing -> do fBodyM <- lookupVarEnv f <$> Lens.use bindings case fBodyM of Nothing -> return False Just b -> do -- There are no global mutually-recursive functions, only self-recursive -- ones, so checking whether 'f' is part of the free variables of the -- body of 'f' is sufficient. let isR = f `globalIdOccursIn` bindingTerm b (extra.recursiveComponents) %= extendVarEnv f isR return isR data ConstantSpecInfo = ConstantSpecInfo { csrNewBindings :: [(Id, Term)] -- ^ New let-bindings to be created for all the non-constants found , csrNewTerm :: !Term -- ^ A term where all the non-constant constructs are replaced by variable -- references (found in 'csrNewBindings') , csrFoundConstant :: !Bool -- ^ Whether the algorithm found a constant at all. (If it didn't, it's no -- use creating any new let-bindings!) } deriving (Show) -- | Indicate term is fully constant (don't bind anything) constantCsr :: Term -> ConstantSpecInfo constantCsr t = ConstantSpecInfo [] t True -- | Bind given term to a new variable and indicate that it's fully non-constant bindCsr :: TransformContext -> Term -> RewriteMonad NormalizeState ConstantSpecInfo bindCsr ctx@(TransformContext is0 _) oldTerm = do -- TODO: Seems like the need to put global ids in scope has been made obsolete -- TODO: by a recent change in Clash. Investigate whether this is true. tcm <- Lens.view tcCache newId <- mkTmBinderFor is0 tcm (mkDerivedName ctx "bindCsr") oldTerm pure (ConstantSpecInfo { csrNewBindings = [(newId, oldTerm)] , csrNewTerm = Var newId , csrFoundConstant = False }) mergeCsrs :: TransformContext -> [TickInfo] -- ^ Ticks to wrap around proposed new term -> Term -- ^ \"Old\" term -> ([Either Term Type] -> Term) -- ^ Proposed new term in case any constants were found -> [Either Term Type] -- ^ Subterms -> RewriteMonad NormalizeState ConstantSpecInfo mergeCsrs ctx ticks oldTerm proposedTerm subTerms = do subCsrs <- snd <$> List.mapAccumLM constantSpecInfoFolder ctx subTerms -- If any arguments are constant (and hence can be constant specced), a new -- term is created with these constants left in, but variable parts let-bound. -- There's one edge case: whenever a term has _no_ arguments. This happens for -- constructors without fields, or -depending on their WorkInfo- primitives -- without args. We still set 'csrFoundConstant', because we know the newly -- proposed term will be fully constant. let anyArgsOrResultConstant = null (lefts subCsrs) || any csrFoundConstant (lefts subCsrs) if anyArgsOrResultConstant then let newTerm = proposedTerm (bimap csrNewTerm id <$> subCsrs) in pure (ConstantSpecInfo { csrNewBindings = concatMap csrNewBindings (lefts subCsrs) , csrNewTerm = mkTicks newTerm ticks , csrFoundConstant = True }) else do -- No constructs were found to be constant, so we might as well refer to the -- whole thing with a new let-binding (instead of creating a number of -- "smaller" let-bindings) bindCsr ctx oldTerm where constantSpecInfoFolder :: TransformContext -> Either Term Type -> RewriteMonad NormalizeState (TransformContext, Either ConstantSpecInfo Type) constantSpecInfoFolder localCtx (Right typ) = pure (localCtx, Right typ) constantSpecInfoFolder localCtx@(TransformContext is0 tfCtx) (Left term) = do specInfo <- constantSpecInfo localCtx term let newIds = map fst (csrNewBindings specInfo) let is1 = extendInScopeSetList is0 newIds pure (TransformContext is1 tfCtx, Left specInfo) -- | Calculate constant spec info. The goal of this function is to analyze a -- given term and yield a new term that: -- -- * Leaves all the constant parts as they were. -- * Has all _variable_ parts replaced by a newly generated identifier. -- -- The result structure will additionally contain: -- -- * Whether the function found any constant parts at all -- * A list of let-bindings binding the aforementioned identifiers with -- the term they replaced. -- -- This can be used in functions wanting to constant specialize over -- partially constant data structures. constantSpecInfo :: TransformContext -> Term -> RewriteMonad NormalizeState ConstantSpecInfo constantSpecInfo ctx e = do tcm <- Lens.view tcCache -- Don't constant spec clocks or resets, they're either: -- -- * A simple wire (Var), therefore not interesting to spec -- * A clock/reset generator, and speccing a generator weirds out HDL simulators. -- -- I believe we can remove this special case in the future by looking at the -- primitive's workinfo. if isClockOrReset tcm (inferCoreTypeOf tcm e) then case collectArgs e of (Prim p, _) | primName p == Text.showt 'removedArg -> pure (constantCsr e) _ -> bindCsr ctx e else case collectArgsTicks e of (dc@(Data _), args, ticks) -> mergeCsrs ctx ticks e (mkApps dc) args -- TODO: Work with prim's WorkInfo? (prim@(Prim _), args, ticks) -> do csr <- mergeCsrs ctx ticks e (mkApps prim) args if null (csrNewBindings csr) then pure csr else bindCsr ctx e (Lam _ _, _, _ticks) -> if not (isClosed e) then bindCsr ctx e else pure (constantCsr e) (var@(Var f), args, ticks) -> do (curF, _) <- Lens.use curFun isNonRecGlobVar <- isNonRecursiveGlobalVar e if isNonRecGlobVar && f /= curF then do csr <- mergeCsrs ctx ticks e (mkApps var) args if null (csrNewBindings csr) then pure csr else bindCsr ctx e else bindCsr ctx e (Literal _,_, _ticks) -> pure (constantCsr e) _ -> bindCsr ctx e -- | A call graph counts the number of occurrences that a functions 'g' is used -- in 'f'. type CallGraph = VarEnv (VarEnv Word) -- | Collect all binders mentioned in CallGraph into a HashSet collectCallGraphUniques :: CallGraph -> HashSet.HashSet Unique collectCallGraphUniques cg = HashSet.fromList (us0 ++ us1) where us0 = keysUniqMap cg us1 = concatMap keysUniqMap (eltsUniqMap cg) -- | Create a call graph for a set of global binders, given a root callGraph :: BindingMap -> Id -> CallGraph callGraph bndrs rt = go emptyVarEnv (varUniq rt) where go cg root | Nothing <- lookupUniqMap root cg , Just rootTm <- lookupUniqMap root bndrs = let used = Lens.foldMapByOf globalIds (unionVarEnvWith (+)) emptyVarEnv (`unitUniqMap` 1) (bindingTerm rootTm) cg' = extendUniqMap root used cg in List.foldl' go cg' (keysUniqMap used) go cg _ = cg -- | Give a "performance/size" classification of a function in normal form. classifyFunction :: Term -> TermClassification classifyFunction = go (TermClassification 0 0 0) where go !c (Lam _ e) = go c e go !c (TyLam _ e) = go c e go !c (Letrec bs _) = List.foldl' go c (map snd bs) go !c e@(App {}) = case fst (collectArgs e) of Prim {} -> c & primitive +~ 1 Var {} -> c & function +~ 1 _ -> c go !c (Case _ _ alts) = case alts of (_:_:_) -> c & selection +~ 1 _ -> c go !c (Tick _ e) = go c e go c _ = c -- | Determine whether a function adds a lot of hardware or not. -- -- It is considered expensive when it has 2 or more of the following components: -- -- * functions -- * primitives -- * selections (multiplexers) isCheapFunction :: Term -> Bool isCheapFunction tm = case classifyFunction tm of TermClassification {..} | _function <= 1 -> _primitive <= 0 && _selection <= 0 | _primitive <= 1 -> _function <= 0 && _selection <= 0 | _selection <= 1 -> _function <= 0 && _primitive <= 0 | otherwise -> False normalizeTopLvlBndr :: Bool -> Id -> Binding Term -> NormalizeSession (Binding Term) normalizeTopLvlBndr isTop nm (Binding nm' sp inl pr tm _) = makeCachedU nm (extra.normalized) $ do tcm <- Lens.view tcCache let nmS = showPpr (varName nm) -- We deshadow the term because sometimes GHC gives us -- code where a local binder has the same unique as a -- global binder, sometimes causing the inliner to go -- into a loop. Deshadowing freshens all the bindings -- to avoid this. let tm1 = deShadowTerm emptyInScopeSet tm tm2 = if isTop then substWithTyEq tm1 else tm1 old <- Lens.use curFun tm3 <- rewriteExpr ("normalization",normalization) (nmS,tm2) (nm',sp) curFun .= old let ty' = inferCoreTypeOf tcm tm3 let r' = nm' `globalIdOccursIn` tm3 return (Binding nm'{varType = ty'} sp inl pr tm3 r') -- | Turn type equality constraints into substitutions and apply them. -- -- So given: -- -- > /\dom . \(eq : dom ~ "System") . \(eta : Signal dom Bool) . eta -- -- we create the substitution [dom := "System"] and apply it to create: -- -- > \(eq : "System" ~ "System") . \(eta : Signal "System" Bool) . eta -- -- __NB:__ Users of this function should ensure it's only applied to TopEntities substWithTyEq :: Term -> Term substWithTyEq e0 = go [] False e0 where go :: [Either Id TyVar] -> Bool -> Term -> Term go args changed (TyLam tv e) = go (Right tv : args) changed e go args changed (Lam v e) | TyConApp (nameUniq -> tcUniq) (tvFirst -> Just (tv, ty)) <- tyView (coreTypeOf v) , tcUniq == getKey eqTyConKey , Right tv `elem` args = let tvs = rights args subst0 = extendTvSubst (mkSubst $ mkInScopeSet $ mkVarSet tvs) tv ty removedTy = substTy subst0 $ coreTypeOf v subst1 = extendIdSubst subst0 v (TyApp (Prim removedArg) removedTy) in go (Left (substId subst0 v) : (args List.\\ [Right tv])) True (substTm "substWithTyEq e" subst1 e) | otherwise = go (Left v : args) changed e go args True e = mkAbstraction e (reverse args) go _ False _ = e0 -- Type equality (~) is symmetrical, so users could write: (dom ~ System) or (System ~ dom) tvFirst :: [Type] -> Maybe (TyVar, Type) tvFirst [_, VarTy tv, ty] = Just (tv, ty) tvFirst [_, ty, VarTy tv] = Just (tv, ty) tvFirst _ = Nothing -- | The type equivalent of 'substWithTyEq' tvSubstWithTyEq :: Type -> Type tvSubstWithTyEq ty0 = go [] False ty0 where go :: [Either TyVar Type] -> Bool -> Type -> Type go argsOut changed (ForAllTy tv ty) = go (Left tv:argsOut) changed ty go argsOut changed (tyView -> FunTy arg tyRes) | Just (tc,tcArgs) <- splitTyConAppM arg , nameUniq tc == getKey eqTyConKey , Just (tv,ty) <- tvFirst tcArgs = let argsOut2 = Right arg : (argsOut List.\\ [Left tv]) subst = extendTvSubst (mkSubst $ mkInScopeSet $ mkVarSet $ lefts argsOut2) tv ty in go argsOut2 True (substTy subst tyRes) | otherwise = go (Right arg : argsOut) changed tyRes go _ False _ = ty0 -- no eq constraints, returning original type go argsOut True tyRes = mkPolyFunTy tyRes (reverse argsOut) -- | Rewrite a term according to the provided transformation rewriteExpr :: (String,NormRewrite) -- ^ Transformation to apply -> (String,Term) -- ^ Term to transform -> (Id, SrcSpan) -- ^ Renew current function being rewritten -> NormalizeSession Term rewriteExpr (nrwS,nrw) (bndrS,expr) (nm, sp) = do curFun .= (nm, sp) opts <- Lens.view debugOpts let before = showPpr expr let expr' = traceIf (hasTransformationInfo FinalTerm opts) (bndrS ++ " before " ++ nrwS ++ ":\n\n" ++ before ++ "\n") expr rewritten <- runRewrite nrwS emptyInScopeSet nrw expr' let after = showPpr rewritten traceIf (hasTransformationInfo FinalTerm opts) (bndrS ++ " after " ++ nrwS ++ ":\n\n" ++ after ++ "\n") $ return rewritten -- | A tick to prefix an inlined expression with it's original name. -- For example, given -- -- foo = bar -- ... -- bar = baz -- ... -- baz = quuz -- ... -- -- if bar is inlined into foo, then the name of the component should contain -- the name of the inlined component. This tick ensures that the component in -- foo is called bar_baz instead of just baz. -- mkInlineTick :: Id -> TickInfo mkInlineTick n = NameMod PrefixName (LitTy . SymTy $ toStr n) where toStr = Text.unpack . snd . Text.breakOnEnd "." . nameOcc . varName