{-| Copyright : (C) 2012-2016, University of Twente License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij Utility functions used by the normalisation transformations -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE ViewPatterns #-} module Clash.Normalize.Util ( isConstantArg , shouldReduce , alreadyInlined , addNewInline , specializeNorm , isRecursiveBndr , isClosed , callGraph , classifyFunction , isCheapFunction , isNonRecursiveGlobalVar , canConstantSpec , normalizeTopLvlBndr , rewriteExpr , removedTm ) where import Control.Lens ((&),(+~),(%=),(^.),_4,(.=)) import qualified Control.Lens as Lens import qualified Data.List as List import qualified Data.Map as Map import qualified Data.HashMap.Strict as HashMapS import Data.Text (Text) import BasicTypes (InlineSpec) import Clash.Annotations.Primitive (extractPrim) import Clash.Core.FreeVars (globalIds, hasLocalFreeVars, globalIdOccursIn) import Clash.Core.Pretty (showPpr) import Clash.Core.Subst (deShadowTerm) import Clash.Core.Term (Context, CoreContext(AppArg), PrimInfo (..), Term (..), WorkInfo (..), collectArgs) import Clash.Core.TyCon (TyConMap) import Clash.Core.Type (Type, undefinedTy) import Clash.Core.Util (isClockOrReset, isPolyFun, termType) import Clash.Core.Var (Id, Var (..), isGlobalId) import Clash.Core.VarEnv (VarEnv, emptyInScopeSet, emptyVarEnv, extendVarEnv, extendVarEnvWith, lookupVarEnv, unionVarEnvWith, unitVarEnv) import Clash.Driver.Types (BindingMap, DebugLevel (..)) import {-# SOURCE #-} Clash.Normalize.Strategy (normalization) import Clash.Normalize.Types import Clash.Primitives.Util (constantArgs) import Clash.Rewrite.Types (RewriteMonad, bindings, curFun, dbgLevel, extra, tcCache) import Clash.Rewrite.Util (runRewrite, specialise) import Clash.Unique import Clash.Util (SrcSpan, anyM, makeCachedU, traceIf) -- | Determine if argument should reduce to a constant given a primitive and -- an argument number. Caches results. isConstantArg :: Text -- ^ Primitive name -> Int -- ^ Argument number -> RewriteMonad NormalizeState Bool -- ^ Yields @DontCare@ for if given primitive name is not found, if the -- argument does not exist, or if the argument was not mentioned by the -- blackbox. isConstantArg nm i = do argMap <- Lens.use (extra.primitiveArgs) case Map.lookup nm argMap of Nothing -> do -- Constant args not yet calculated, or primitive does not exist prims <- Lens.use (extra.primitives) case extractPrim =<< HashMapS.lookup nm prims of Nothing -> -- Primitive does not exist: pure False Just p -> do -- Calculate constant arguments: let m = constantArgs nm p (extra.primitiveArgs) Lens.%= Map.insert nm m pure (i `elem` m) Just m -> -- Cached version found pure (i `elem` m) -- | Given a list of transformation contexts, determine if any of the contexts -- indicates that the current arg is to be reduced to a constant / literal. shouldReduce :: Context -- ^ ..in the current transformcontext -> RewriteMonad NormalizeState Bool shouldReduce = anyM isConstantArg' where isConstantArg' (AppArg (Just (nm, _, i))) = isConstantArg nm i isConstantArg' _ = pure False -- | Determine if a function is already inlined in the context of the 'NetlistMonad' alreadyInlined :: Id -- ^ Function we want to inline -> Id -- ^ Function in which we want to perform the inlining -> NormalizeMonad (Maybe Int) alreadyInlined f cf = do inlinedHM <- Lens.use inlineHistory case lookupVarEnv cf inlinedHM of Nothing -> return Nothing Just inlined' -> return (lookupVarEnv f inlined') addNewInline :: Id -- ^ Function we want to inline -> Id -- ^ Function in which we want to perform the inlining -> NormalizeMonad () addNewInline f cf = inlineHistory %= extendVarEnvWith cf (unitVarEnv f 1) (\_ hm -> extendVarEnvWith f 1 (+) hm) -- | Specialize under the Normalization Monad specializeNorm :: NormRewrite specializeNorm = specialise specialisationCache specialisationHistory specialisationLimit -- | Determine if a term is closed isClosed :: TyConMap -> Term -> Bool isClosed tcm = not . isPolyFun tcm -- | Test whether a given term represents a non-recursive global variable isNonRecursiveGlobalVar :: Term -> NormalizeSession Bool isNonRecursiveGlobalVar (collectArgs -> (Var i, _args)) = do let eIsGlobal = isGlobalId i eIsRec <- isRecursiveBndr i return (eIsGlobal && not eIsRec) isNonRecursiveGlobalVar _ = return False -- | Assert whether a name is a reference to a recursive binder. isRecursiveBndr :: Id -> NormalizeSession Bool isRecursiveBndr f = do cg <- Lens.use (extra.recursiveComponents) case lookupVarEnv f cg of Just isR -> return isR Nothing -> do fBodyM <- lookupVarEnv f <$> Lens.use bindings case fBodyM of Nothing -> return False Just (_,_,_,fBody) -> do -- There are no global mutually-recursive functions, only self-recursive -- ones, so checking whether 'f' is part of the free variables of the -- body of 'f' is sufficient. let isR = f `globalIdOccursIn` fBody (extra.recursiveComponents) %= extendVarEnv f isR return isR -- | Test if we can constant specialize current term in current function. The -- rules are, we can constant fold if: -- -- * Term does not carry a clock or reset -- * Term is constant is @isConstant@ sense, and additionally when term is a -- global, non-recursive variable -- canConstantSpec :: Term -> RewriteMonad NormalizeState Bool canConstantSpec e = do tcm <- Lens.view tcCache if isClockOrReset tcm (termType tcm e) then case collectArgs e of (Prim nm _, _) -> return (nm == "Clash.Transformations.removedArg") _ -> return False else case collectArgs e of (Data _, args) -> and <$> mapM (either canConstantSpec (const (pure True))) args (Prim _ _, args) -> and <$> mapM (either canConstantSpec (const (pure True))) args (Lam _ _, _) -> pure (not (hasLocalFreeVars e)) (Var f, args) -> do (curF, _) <- Lens.use curFun argsConst <- and <$> mapM (either canConstantSpec (const (pure True))) args isNonRecGlobVar <- isNonRecursiveGlobalVar e return (argsConst && isNonRecGlobVar && f /= curF) (Literal _,_) -> pure True _ -> pure False -- | A call graph counts the number of occurrences that a functions 'g' is used -- in 'f'. type CallGraph = VarEnv (VarEnv Word) -- | Create a call graph for a set of global binders, given a root callGraph :: BindingMap -> Id -> CallGraph callGraph bndrs rt = go emptyVarEnv (varUniq rt) where go cg root | Nothing <- lookupUniqMap root cg , Just rootTm <- lookupUniqMap root bndrs = let used = Lens.foldMapByOf globalIds (unionVarEnvWith (+)) emptyVarEnv (`unitUniqMap` 1) (rootTm ^. _4) cg' = extendUniqMap root used cg in List.foldl' go cg' (keysUniqMap used) go cg _ = cg -- | Give a "performance/size" classification of a function in normal form. classifyFunction :: Term -> TermClassification classifyFunction = go (TermClassification 0 0 0) where go !c (Lam _ e) = go c e go !c (TyLam _ e) = go c e go !c (Letrec bs _) = List.foldl' go c (map snd bs) go !c e@(App {}) = case fst (collectArgs e) of Prim {} -> c & primitive +~ 1 Var {} -> c & function +~ 1 _ -> c go !c (Case _ _ alts) = case alts of (_:_:_) -> c & selection +~ 1 _ -> c go !c (Tick _ e) = go c e go c _ = c -- | Determine whether a function adds a lot of hardware or not. -- -- It is considered expensive when it has 2 or more of the following components: -- -- * functions -- * primitives -- * selections (multiplexers) isCheapFunction :: Term -> Bool isCheapFunction tm = case classifyFunction tm of TermClassification {..} | _function <= 1 -> _primitive <= 0 && _selection <= 0 | _primitive <= 1 -> _function <= 0 && _selection <= 0 | _selection <= 1 -> _function <= 0 && _primitive <= 0 | otherwise -> False normalizeTopLvlBndr :: Id -> (Id, SrcSpan, InlineSpec, Term) -> NormalizeSession (Id, SrcSpan, InlineSpec, Term) normalizeTopLvlBndr nm (nm',sp,inl,tm) = makeCachedU nm (extra.normalized) $ do tcm <- Lens.view tcCache let nmS = showPpr (varName nm) -- We deshadow the term because sometimes GHC gives us -- code where a local binder has the same unique as a -- global binder, sometimes causing the inliner to go -- into a loop. Deshadowing freshens all the bindings -- to avoid this. -- -- Additionally, it allows for a much cheaper `appProp` -- transformation, see Note [AppProp no-shadow invariant] let tm1 = deShadowTerm emptyInScopeSet tm old <- Lens.use curFun tm2 <- rewriteExpr ("normalization",normalization) (nmS,tm1) (nm',sp) curFun .= old let ty' = termType tcm tm2 return (nm' {varType = ty'},sp,inl,tm2) -- | Rewrite a term according to the provided transformation rewriteExpr :: (String,NormRewrite) -- ^ Transformation to apply -> (String,Term) -- ^ Term to transform -> (Id, SrcSpan) -- ^ Renew current function being rewritten -> NormalizeSession Term rewriteExpr (nrwS,nrw) (bndrS,expr) (nm, sp) = do curFun .= (nm, sp) lvl <- Lens.view dbgLevel let before = showPpr expr let expr' = traceIf (lvl >= DebugFinal) (bndrS ++ " before " ++ nrwS ++ ":\n\n" ++ before ++ "\n") expr rewritten <- runRewrite nrwS emptyInScopeSet nrw expr' let after = showPpr rewritten traceIf (lvl >= DebugFinal) (bndrS ++ " after " ++ nrwS ++ ":\n\n" ++ after ++ "\n") $ return rewritten removedTm :: Type -> Term removedTm = TyApp (Prim "Clash.Transformations.removedArg" (PrimInfo undefinedTy WorkNever))