{-| Copyright : (C) 2013-2016, University of Twente, 2016-2017, Myrtle Software Ltd, 2017 , QBayLogic, Google Inc. License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ViewPatterns #-} module Clash.GHC.Evaluator where import Control.Applicative (liftA2) import Control.Concurrent.Supply (Supply,freshId) import Control.DeepSeq (force) import Control.Exception (ArithException(..), Exception, tryJust, evaluate) import Control.Monad (ap) import Control.Monad.Trans.Except (runExcept) import Data.Bits import Data.Char (chr,ord) import qualified Data.Either as Either import qualified Data.IntMap as IntMap import Data.Maybe (fromMaybe, mapMaybe, catMaybes) import qualified Data.List as List import qualified Data.Primitive.ByteArray as ByteArray import Data.Proxy (Proxy) import Data.Reflection (reifyNat) import Data.Text (Text) import qualified Data.Text as Text import qualified Data.Vector.Primitive as Vector import Debug.Trace (trace) import GHC.Float import GHC.Int import GHC.Integer (decodeDoubleInteger,encodeDoubleInteger,compareInteger,orInteger,andInteger, xorInteger,complementInteger,absInteger,signumInteger) import GHC.Natural import GHC.Prim import GHC.Real (Ratio (..)) import GHC.Stack (HasCallStack) import GHC.TypeLits (KnownNat) import GHC.Types (IO (..)) import GHC.Word import System.IO.Unsafe (unsafeDupablePerformIO) import BasicTypes (Boxity (..)) import Name (getSrcSpan, nameOccName, occNameString) import PrelNames (typeNatAddTyFamNameKey, typeNatMulTyFamNameKey, typeNatSubTyFamNameKey) import SrcLoc (wiredInSrcSpan) import qualified TyCon import TysWiredIn (tupleTyCon) import Unique (getKey) import Clash.Class.BitPack (pack,unpack) import Clash.Core.DataCon (DataCon (..)) import Clash.Core.Evaluator (Heap (..), PrimEvaluator, Stack, Value (..), valToTerm, whnf, integerLiteral, naturalLiteral) import Clash.Core.Literal (Literal (..)) import Clash.Core.Name (Name (..), NameSort (..), mkUnsafeSystemName) import Clash.Core.Pretty (showPpr) import Clash.Core.Term (Pat (..), PrimInfo (..), Term (..), WorkInfo (..)) import Clash.Core.Type (Type (..), ConstTy (..), LitTy (..), TypeView (..), mkFunTy, mkTyConApp, splitFunForallTy, tyView) import Clash.Core.TyCon (TyConMap, TyConName, tyConDataCons) import Clash.Core.TysPrim import Clash.Core.Util (mkApps,mkRTree,mkVec,piResultTys,tyNatSize,dataConInstArgTys,primCo, undefinedTm) import Clash.Core.Var (mkLocalId, mkTyVar) import Clash.GHC.GHC2Core (modNameM) import Clash.Rewrite.Util (mkSelectorCase) import Clash.Unique (lookupUniqMap) import Clash.Util (MonadUnique (..), clogBase, flogBase, curLoc) import Clash.Promoted.Nat.Unsafe (unsafeSNat) import qualified Clash.Sized.Internal.BitVector as BitVector import qualified Clash.Sized.Internal.Signed as Signed import qualified Clash.Sized.Internal.Unsigned as Unsigned import Clash.Sized.Internal.BitVector(BitVector(..), Bit(..)) import Clash.Sized.Internal.Signed (Signed (..)) import Clash.Sized.Internal.Unsigned (Unsigned (..)) import Clash.XException (isX) newtype PrimEvalMonad a = PEM { runPEM :: Supply -> (a,Supply) } instance Functor PrimEvalMonad where fmap f m = PEM (\s -> case runPEM m s of (a,s') -> (f a, s')) instance Applicative PrimEvalMonad where pure = return (<*>) = ap instance Monad PrimEvalMonad where return a = PEM (\s -> (a,s)) m >>= k = PEM (\s -> case runPEM m s of (a,s') -> runPEM (k a) s') instance MonadUnique PrimEvalMonad where getUniqueM = PEM (\s -> case freshId s of (!i,!s') -> (i,s')) reduceConstant :: PrimEvaluator reduceConstant isSubj tcm h k nm pInfo tys args = case nm of ----------------- -- GHC.Prim.Char# ----------------- "GHC.Prim.gtChar#" | Just (i,j) <- charLiterals args -> reduce (boolToIntLiteral (i > j)) "GHC.Prim.geChar#" | Just (i,j) <- charLiterals args -> reduce (boolToIntLiteral (i >= j)) "GHC.Prim.eqChar#" | Just (i,j) <- charLiterals args -> reduce (boolToIntLiteral (i == j)) "GHC.Prim.neChar#" | Just (i,j) <- charLiterals args -> reduce (boolToIntLiteral (i /= j)) "GHC.Prim.ltChar#" | Just (i,j) <- charLiterals args -> reduce (boolToIntLiteral (i < j)) "GHC.Prim.leChar#" | Just (i,j) <- charLiterals args -> reduce (boolToIntLiteral (i <= j)) "GHC.Prim.ord#" | [i] <- charLiterals' args -> reduce (integerToIntLiteral (toInteger $ ord i)) ---------------- -- GHC.Prim.Int# ---------------- "GHC.Prim.+#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i+j)) "GHC.Prim.-#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i-j)) "GHC.Prim.*#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i*j)) "GHC.Prim.mulIntMayOflo#" | Just (i,j) <- intLiterals args -> let !(I# a) = fromInteger i !(I# b) = fromInteger j c :: Int# c = mulIntMayOflo# a b in reduce (integerToIntLiteral (toInteger $ I# c)) "GHC.Prim.quotInt#" | Just (i,j) <- intLiterals args -> reduce $ catchDivByZero (integerToIntLiteral (i `quot` j)) "GHC.Prim.remInt#" | Just (i,j) <- intLiterals args -> reduce $ catchDivByZero (integerToIntLiteral (i `rem` j)) "GHC.Prim.quotRemInt#" | Just (i,j) <- intLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc (q,r) = quotRem i j ret = mkApps (Data tupDc) (map Right tyArgs ++ [Left $ catchDivByZero (integerToIntLiteral q) ,Left $ catchDivByZero (integerToIntLiteral r)]) in reduce ret "GHC.Prim.andI#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i .&. j)) "GHC.Prim.orI#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i .|. j)) "GHC.Prim.xorI#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i `xor` j)) "GHC.Prim.notI#" | [i] <- intLiterals' args -> reduce (integerToIntLiteral (complement i)) "GHC.Prim.negateInt#" | [Lit (IntLiteral i)] <- args -> reduce (integerToIntLiteral (negate i)) "GHC.Prim.addIntC#" | Just (i,j) <- intLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(I# a) = fromInteger i !(I# b) = fromInteger j !(# d, c #) = addIntC# a b in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . IntLiteral . toInteger $ I# d) , Left (Literal . IntLiteral . toInteger $ I# c)]) "GHC.Prim.subIntC#" | Just (i,j) <- intLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(I# a) = fromInteger i !(I# b) = fromInteger j !(# d, c #) = subIntC# a b in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . IntLiteral . toInteger $ I# d) , Left (Literal . IntLiteral . toInteger $ I# c)]) "GHC.Prim.>#" | Just (i,j) <- intLiterals args -> reduce (boolToIntLiteral (i > j)) "GHC.Prim.>=#" | Just (i,j) <- intLiterals args -> reduce (boolToIntLiteral (i >= j)) "GHC.Prim.==#" | Just (i,j) <- intLiterals args -> reduce (boolToIntLiteral (i == j)) "GHC.Prim./=#" | Just (i,j) <- intLiterals args -> reduce (boolToIntLiteral (i /= j)) "GHC.Prim.<#" | Just (i,j) <- intLiterals args -> reduce (boolToIntLiteral (i < j)) "GHC.Prim.<=#" | Just (i,j) <- intLiterals args -> reduce (boolToIntLiteral (i <= j)) "GHC.Prim.chr#" | [i] <- intLiterals' args -> reduce (charToCharLiteral (chr $ fromInteger i)) "GHC.Prim.int2Word#" | [Lit (IntLiteral i)] <- args -> reduce . Literal . WordLiteral . toInteger $ (fromInteger :: Integer -> Word) i -- for overflow behavior "GHC.Prim.int2Float#" | [Lit (IntLiteral i)] <- args -> reduce . Literal . FloatLiteral . toRational $ (fromInteger i :: Float) "GHC.Prim.int2Double#" | [Lit (IntLiteral i)] <- args -> reduce . Literal . DoubleLiteral . toRational $ (fromInteger i :: Double) "GHC.Prim.word2Float#" | [Lit (WordLiteral i)] <- args -> reduce . Literal . FloatLiteral . toRational $ (fromInteger i :: Float) "GHC.Prim.word2Double#" | [Lit (WordLiteral i)] <- args -> reduce . Literal . DoubleLiteral . toRational $ (fromInteger i :: Double) "GHC.Prim.uncheckedIShiftL#" | [ Lit (IntLiteral i) , Lit (IntLiteral s) ] <- args -> reduce (integerToIntLiteral (i `shiftL` fromInteger s)) "GHC.Prim.uncheckedIShiftRA#" | [ Lit (IntLiteral i) , Lit (IntLiteral s) ] <- args -> reduce (integerToIntLiteral (i `shiftR` fromInteger s)) "GHC.Prim.uncheckedIShiftRL#" | Just (i,j) <- intLiterals args -> let !(I# a) = fromInteger i !(I# b) = fromInteger j c :: Int# c = uncheckedIShiftRL# a b in reduce (integerToIntLiteral (toInteger $ I# c)) ----------------- -- GHC.Prim.Word# ----------------- "GHC.Prim.plusWord#" | Just (i,j) <- wordLiterals args -> reduce (integerToWordLiteral (i+j)) "GHC.Prim.subWordC#" | Just (i,j) <- wordLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(W# a) = fromInteger i !(W# b) = fromInteger j !(# d, c #) = subWordC# a b in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . WordLiteral . toInteger $ W# d) , Left (Literal . IntLiteral . toInteger $ I# c)]) "GHC.Prim.plusWord2#" | Just (i,j) <- wordLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(W# a) = fromInteger i !(W# b) = fromInteger j !(# h', l #) = plusWord2# a b in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . WordLiteral . toInteger $ W# h') , Left (Literal . WordLiteral . toInteger $ W# l)]) "GHC.Prim.minusWord#" | Just (i,j) <- wordLiterals args -> reduce (integerToWordLiteral (i-j)) "GHC.Prim.timesWord#" | Just (i,j) <- wordLiterals args -> reduce (integerToWordLiteral (i*j)) "GHC.Prim.timesWord2#" | Just (i,j) <- wordLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(W# a) = fromInteger i !(W# b) = fromInteger j !(# h', l #) = timesWord2# a b in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . WordLiteral . toInteger $ W# h') , Left (Literal . WordLiteral . toInteger $ W# l)]) "GHC.Prim.quotWord#" | Just (i,j) <- wordLiterals args -> reduce $ catchDivByZero (integerToWordLiteral (i `quot` j)) "GHC.Prim.remWord#" | Just (i,j) <- wordLiterals args -> reduce $ catchDivByZero (integerToWordLiteral (i `rem` j)) "GHC.Prim.quotRemWord#" | Just (i,j) <- wordLiterals args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc (q,r) = quotRem i j ret = mkApps (Data tupDc) (map Right tyArgs ++ [Left $ catchDivByZero (integerToWordLiteral q) ,Left $ catchDivByZero (integerToWordLiteral r)]) in reduce ret "GHC.Prim.quotRemWord2#" | [i,j,k'] <- wordLiterals' args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(W# a) = fromInteger i !(W# b) = fromInteger j !(W# c) = fromInteger k' !(# x, y #) = quotRemWord2# a b c in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left $ catchDivByZero (Literal . WordLiteral . toInteger $ W# x) , Left $ catchDivByZero (Literal . WordLiteral . toInteger $ W# y)]) "GHC.Prim.and#" | Just (i,j) <- wordLiterals args -> reduce (integerToWordLiteral (i .&. j)) "GHC.Prim.or#" | Just (i,j) <- wordLiterals args -> reduce (integerToWordLiteral (i .|. j)) "GHC.Prim.xor#" | Just (i,j) <- wordLiterals args -> reduce (integerToWordLiteral (i `xor` j)) "GHC.Prim.not#" | [i] <- wordLiterals' args -> reduce (integerToWordLiteral (complement i)) "GHC.Prim.uncheckedShiftL#" | [ Lit (WordLiteral w) , Lit (IntLiteral i) ] <- args -> reduce (Literal (WordLiteral (w `shiftL` fromInteger i))) "GHC.Prim.uncheckedShiftRL#" | [ Lit (WordLiteral w) , Lit (IntLiteral i) ] <- args -> reduce (Literal (WordLiteral (w `shiftR` fromInteger i))) "GHC.Prim.word2Int#" | [Lit (WordLiteral i)] <- args -> reduce . Literal . IntLiteral . toInteger $ (fromInteger :: Integer -> Int) i -- for overflow behavior "GHC.Prim.gtWord#" | Just (i,j) <- wordLiterals args -> reduce (boolToIntLiteral (i > j)) "GHC.Prim.geWord#" | Just (i,j) <- wordLiterals args -> reduce (boolToIntLiteral (i >= j)) "GHC.Prim.eqWord#" | Just (i,j) <- wordLiterals args -> reduce (boolToIntLiteral (i == j)) "GHC.Prim.neWord#" | Just (i,j) <- wordLiterals args -> reduce (boolToIntLiteral (i /= j)) "GHC.Prim.ltWord#" | Just (i,j) <- wordLiterals args -> reduce (boolToIntLiteral (i < j)) "GHC.Prim.leWord#" | Just (i,j) <- wordLiterals args -> reduce (boolToIntLiteral (i <= j)) "GHC.Prim.popCnt8#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word8) $ i "GHC.Prim.popCnt16#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word16) $ i "GHC.Prim.popCnt32#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word32) $ i "GHC.Prim.popCnt64#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word64) $ i "GHC.Prim.popCnt#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word) $ i "GHC.Prim.clz8#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word8) $ i "GHC.Prim.clz16#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word16) $ i "GHC.Prim.clz32#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word32) $ i "GHC.Prim.clz64#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word64) $ i "GHC.Prim.clz#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word) $ i "GHC.Prim.ctz8#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 8 - 1) "GHC.Prim.ctz16#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 16 - 1) "GHC.Prim.ctz32#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 32 - 1) "GHC.Prim.ctz64#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word64) $ i .&. (bit 64 - 1) "GHC.Prim.ctz#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i "GHC.Prim.byteSwap16#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . byteSwap16 . (fromInteger :: Integer -> Word16) $ i "GHC.Prim.byteSwap32#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . byteSwap32 . (fromInteger :: Integer -> Word32) $ i "GHC.Prim.byteSwap64#" | [i] <- wordLiterals' args -> reduce . integerToWordLiteral . toInteger . byteSwap64 . (fromInteger :: Integer -> Word64) $ i "GHC.Prim.byteSwap#" | [i] <- wordLiterals' args -- assume 64bits -> reduce . integerToWordLiteral . toInteger . byteSwap64 . (fromInteger :: Integer -> Word64) $ i ------------ -- Narrowing ------------ "GHC.Prim.narrow8Int#" | [i] <- intLiterals' args -> let !(I# a) = fromInteger i b = narrow8Int# a in reduce . Literal . IntLiteral . toInteger $ I# b "GHC.Prim.narrow16Int#" | [i] <- intLiterals' args -> let !(I# a) = fromInteger i b = narrow16Int# a in reduce . Literal . IntLiteral . toInteger $ I# b "GHC.Prim.narrow32Int#" | [i] <- intLiterals' args -> let !(I# a) = fromInteger i b = narrow32Int# a in reduce . Literal . IntLiteral . toInteger $ I# b "GHC.Prim.narrow8Word#" | [i] <- wordLiterals' args -> let !(W# a) = fromInteger i b = narrow8Word# a in reduce . Literal . WordLiteral . toInteger $ W# b "GHC.Prim.narrow16Word#" | [i] <- wordLiterals' args -> let !(W# a) = fromInteger i b = narrow16Word# a in reduce . Literal . WordLiteral . toInteger $ W# b "GHC.Prim.narrow32Word#" | [i] <- wordLiterals' args -> let !(W# a) = fromInteger i b = narrow32Word# a in reduce . Literal . WordLiteral . toInteger $ W# b ---------- -- Double# ---------- "GHC.Prim.>##" | Just r <- liftDDI (>##) args -> reduce r "GHC.Prim.>=##" | Just r <- liftDDI (>=##) args -> reduce r "GHC.Prim.==##" | Just r <- liftDDI (==##) args -> reduce r "GHC.Prim./=##" | Just r <- liftDDI (/=##) args -> reduce r "GHC.Prim.<##" | Just r <- liftDDI (<##) args -> reduce r "GHC.Prim.<=##" | Just r <- liftDDI (<=##) args -> reduce r "GHC.Prim.+##" | Just r <- liftDDD (+##) args -> reduce r "GHC.Prim.-##" | Just r <- liftDDD (-##) args -> reduce r "GHC.Prim.*##" | Just r <- liftDDD (*##) args -> reduce r "GHC.Prim./##" | Just r <- liftDDD (/##) args -> reduce r "GHC.Prim.negateDouble#" | Just r <- liftDD negateDouble# args -> reduce r "GHC.Prim.fabsDouble#" | Just r <- liftDD fabsDouble# args -> reduce r "GHC.Prim.double2Int#" | [i] <- doubleLiterals' args -> let !(D# a) = fromRational i r = double2Int# a in reduce . Literal . IntLiteral . toInteger $ I# r "GHC.Prim.double2Float#" | [Lit (DoubleLiteral d)] <- args -> reduce (Literal (FloatLiteral (toRational (fromRational d :: Float)))) "GHC.Prim.expDouble#" | Just r <- liftDD expDouble# args -> reduce r "GHC.Prim.logDouble#" | Just r <- liftDD logDouble# args -> reduce r "GHC.Prim.sqrtDouble#" | Just r <- liftDD sqrtDouble# args -> reduce r "GHC.Prim.sinDouble#" | Just r <- liftDD sinDouble# args -> reduce r "GHC.Prim.cosDouble#" | Just r <- liftDD cosDouble# args -> reduce r "GHC.Prim.tanDouble#" | Just r <- liftDD tanDouble# args -> reduce r "GHC.Prim.asinDouble#" | Just r <- liftDD asinDouble# args -> reduce r "GHC.Prim.acosDouble#" | Just r <- liftDD acosDouble# args -> reduce r "GHC.Prim.atanDouble#" | Just r <- liftDD atanDouble# args -> reduce r "GHC.Prim.sinhDouble#" | Just r <- liftDD sinhDouble# args -> reduce r "GHC.Prim.coshDouble#" | Just r <- liftDD coshDouble# args -> reduce r "GHC.Prim.tanhDouble#" | Just r <- liftDD tanhDouble# args -> reduce r #if MIN_VERSION_ghc(8,7,0) "GHC.Prim.asinhDouble#" | Just r <- liftDD asinhDouble# args -> reduce r "GHC.Prim.acoshDouble#" | Just r <- liftDD acoshDouble# args -> reduce r "GHC.Prim.atanhDouble#" | Just r <- liftDD atanhDouble# args -> reduce r #endif "GHC.Prim.**##" | Just r <- liftDDD (**##) args -> reduce r -- decodeDouble_2Int# :: Double# -> (#Int#, Word#, Word#, Int##) "GHC.Prim.decodeDouble_2Int#" | [i] <- doubleLiterals' args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(D# a) = fromRational i !(# p, q, r, s #) = decodeDouble_2Int# a in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . IntLiteral . toInteger $ I# p) , Left (Literal . WordLiteral . toInteger $ W# q) , Left (Literal . WordLiteral . toInteger $ W# r) , Left (Literal . IntLiteral . toInteger $ I# s)]) -- decodeDouble_Int64# :: Double# -> (# Int64#, Int# #) "GHC.Prim.decodeDouble_Int64#" | [i] <- doubleLiterals' args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(D# a) = fromRational i !(# p, q #) = decodeDouble_Int64# a in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . IntLiteral . toInteger $ I64# p) , Left (Literal . IntLiteral . toInteger $ I# q)]) -------- -- Float -------- "GHC.Prim.gtFloat#" | Just r <- liftFFI gtFloat# args -> reduce r "GHC.Prim.geFloat#" | Just r <- liftFFI geFloat# args -> reduce r "GHC.Prim.eqFloat#" | Just r <- liftFFI eqFloat# args -> reduce r "GHC.Prim.neFloat#" | Just r <- liftFFI neFloat# args -> reduce r "GHC.Prim.ltFloat#" | Just r <- liftFFI ltFloat# args -> reduce r "GHC.Prim.leFloat#" | Just r <- liftFFI leFloat# args -> reduce r "GHC.Prim.plusFloat#" | Just r <- liftFFF plusFloat# args -> reduce r "GHC.Prim.minusFloat#" | Just r <- liftFFF minusFloat# args -> reduce r "GHC.Prim.timesFloat#" | Just r <- liftFFF timesFloat# args -> reduce r "GHC.Prim.divideFloat#" | Just r <- liftFFF divideFloat# args -> reduce r "GHC.Prim.negateFloat#" | Just r <- liftFF negateFloat# args -> reduce r "GHC.Prim.fabsFloat#" | Just r <- liftFF fabsFloat# args -> reduce r "GHC.Prim.float2Int#" | [i] <- floatLiterals' args -> let !(F# a) = fromRational i r = float2Int# a in reduce . Literal . IntLiteral . toInteger $ I# r "GHC.Prim.expFloat#" | Just r <- liftFF expFloat# args -> reduce r "GHC.Prim.logFloat#" | Just r <- liftFF logFloat# args -> reduce r "GHC.Prim.sqrtFloat#" | Just r <- liftFF sqrtFloat# args -> reduce r "GHC.Prim.sinFloat#" | Just r <- liftFF sinFloat# args -> reduce r "GHC.Prim.cosFloat#" | Just r <- liftFF cosFloat# args -> reduce r "GHC.Prim.tanFloat#" | Just r <- liftFF tanFloat# args -> reduce r "GHC.Prim.asinFloat#" | Just r <- liftFF asinFloat# args -> reduce r "GHC.Prim.acosFloat#" | Just r <- liftFF acosFloat# args -> reduce r "GHC.Prim.atanFloat#" | Just r <- liftFF atanFloat# args -> reduce r "GHC.Prim.sinhFloat#" | Just r <- liftFF sinhFloat# args -> reduce r "GHC.Prim.coshFloat#" | Just r <- liftFF coshFloat# args -> reduce r "GHC.Prim.tanhFloat#" | Just r <- liftFF tanhFloat# args -> reduce r "GHC.Prim.powerFloat#" | Just r <- liftFFF powerFloat# args -> reduce r #if MIN_VERSION_base(4,12,0) -- GHC.Float.asinh -- XXX: Very fragile -- $w$casinh is the Double specialisation of asinh -- $w$casinh1 is the Float specialisation of asinh "GHC.Float.$w$casinh" | Just r <- liftDD go args -> reduce r where go f = case asinh (D# f) of D# f' -> f' "GHC.Float.$w$casinh1" | Just r <- liftFF go args -> reduce r where go f = case asinh (F# f) of F# f' -> f' #endif #if MIN_VERSION_ghc(8,7,0) "GHC.Prim.asinhFloat#" | Just r <- liftFF asinhFloat# args -> reduce r "GHC.Prim.acoshFloat#" | Just r <- liftFF acoshFloat# args -> reduce r "GHC.Prim.atanhFloat#" | Just r <- liftFF atanhFloat# args -> reduce r #endif "GHC.Prim.float2Double#" | [i] <- floatLiterals' args -> let !(F# a) = fromRational i r = float2Double# a in reduce . Literal . DoubleLiteral . toRational $ D# r "GHC.Prim.newByteArray#" | [iV,PrimVal rwNm rwTy _ _] <- args , [i] <- intLiterals' [iV] -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc Heap (gh,p) gbl ph ids is0 = h lit = Literal (ByteArrayLiteral (Vector.replicate (fromInteger i) 0)) h' = Heap (IntMap.insert p lit gh,p+1) gbl ph ids is0 mbaTy = mkFunTy intPrimTy (last tyArgs) newE = mkApps (Data tupDc) (map Right tyArgs ++ [Left (Prim rwNm rwTy) ,Left (mkApps (Prim "GHC.Prim.MutableByteArray#" (PrimInfo mbaTy WorkNever)) [Left (Literal . IntLiteral $ toInteger p)]) ]) in Just (h',k,newE) "GHC.Prim.setByteArray#" | [PrimVal _mbaNm _mbaTy _ [baV] ,offV,lenV,cV ,PrimVal rwNm rwTy _ _ ] <- args , [ba,off,len,c] <- intLiterals' [baV,offV,lenV,cV] -> let Heap (gh,p) gbl ph ids is0 = h Just (Literal (ByteArrayLiteral (Vector.Vector voff vlen ba1))) = IntMap.lookup (fromInteger ba) gh !(I# off') = fromInteger off !(I# len') = fromInteger len !(I# c') = fromInteger c ba2 = unsafeDupablePerformIO $ do ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1 svoid (setByteArray# mba off' len' c') ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray mba) ba3 = Literal (ByteArrayLiteral (Vector.Vector voff vlen ba2)) h' = Heap (IntMap.insert (fromInteger ba) ba3 gh,p) gbl ph ids is0 in Just (h',k,Prim rwNm rwTy) "GHC.Prim.writeWordArray#" | [PrimVal _mbaNm _mbaTy _ [baV] ,iV,wV ,PrimVal rwNm rwTy _ _ ] <- args , [ba,i] <- intLiterals' [baV,iV] , [w] <- wordLiterals' [wV] -> let Heap (gh,p) gbl ph ids is0 = h Just (Literal (ByteArrayLiteral (Vector.Vector off len ba1))) = IntMap.lookup (fromInteger ba) gh !(I# i') = fromInteger i !(W# w') = fromIntegral w ba2 = unsafeDupablePerformIO $ do ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1 svoid (writeWordArray# mba i' w') ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray mba) ba3 = Literal (ByteArrayLiteral (Vector.Vector off len ba2)) h' = Heap (IntMap.insert (fromInteger ba) ba3 gh,p) gbl ph ids is0 in Just (h',k,Prim rwNm rwTy) "GHC.Prim.unsafeFreezeByteArray#" | [PrimVal _mbaNm _mbaTy _ [baV] ,PrimVal rwNm rwTy _ _ ] <- args , [ba] <- intLiterals' [baV] -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc Heap (gh,_) _ _ _ _ = h Just ba' = IntMap.lookup (fromInteger ba) gh in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [Left (Prim rwNm rwTy) ,Left ba']) "GHC.Prim.sizeofByteArray#" | [Lit (ByteArrayLiteral ba)] <- args -> reduce (Literal (IntLiteral (toInteger (Vector.length ba)))) "GHC.Prim.indexWordArray#" | [Lit (ByteArrayLiteral (Vector.Vector _ _ (ByteArray.ByteArray ba))),iV] <- args , [i] <- intLiterals' [iV] -> let !(I# i') = fromInteger i !w = indexWordArray# ba i' in reduce (Literal (WordLiteral (toInteger (W# w)))) "GHC.Prim.getSizeofMutBigNat#" | [PrimVal _mbaNm _mbaTy _ [baV] ,PrimVal rwNm rwTy _ _ ] <- args , [ba] <- intLiterals' [baV] -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc Heap (gh,_) _ _ _ _ = h Just (Literal (ByteArrayLiteral ba')) = IntMap.lookup (fromInteger ba) gh lit = Literal (IntLiteral (toInteger (Vector.length ba'))) in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [Left (Prim rwNm rwTy) ,Left lit]) "GHC.Prim.resizeMutableByteArray#" | [PrimVal mbaNm mbaTy _ [baV] ,iV ,PrimVal rwNm rwTy _ _ ] <- args , [ba,i] <- intLiterals' [baV,iV] -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc Heap (gh,p) gbl ph ids is0 = h Just (Literal (ByteArrayLiteral (Vector.Vector 0 _ ba1))) = IntMap.lookup (fromInteger ba) gh !(I# i') = fromInteger i ba2 = unsafeDupablePerformIO $ do ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1 mba' <- IO (\s -> case resizeMutableByteArray# mba i' s of (# s', mba' #) -> (# s', ByteArray.MutableByteArray mba' #)) ByteArray.unsafeFreezeByteArray mba' ba3 = Literal (ByteArrayLiteral (Vector.Vector 0 (I# i') ba2)) h' = Heap (IntMap.insert p ba3 gh,p+1) gbl ph ids is0 newE = mkApps (Data tupDc) (map Right tyArgs ++ [Left (Prim rwNm rwTy) ,Left (mkApps (Prim mbaNm mbaTy) [Left (Literal . IntLiteral $ toInteger p)]) ]) in Just (h',k,newE) "GHC.Prim.shrinkMutableByteArray#" | [PrimVal _mbaNm _mbaTy _ [baV] ,lenV ,PrimVal rwNm rwTy _ _ ] <- args , [ba,len] <- intLiterals' [baV,lenV] -> let Heap (gh,p) gbl ph ids is0 = h Just (Literal (ByteArrayLiteral (Vector.Vector voff vlen ba1))) = IntMap.lookup (fromInteger ba) gh !(I# len') = fromInteger len ba2 = unsafeDupablePerformIO $ do ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1 svoid (shrinkMutableByteArray# mba len') ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray mba) ba3 = Literal (ByteArrayLiteral (Vector.Vector voff vlen ba2)) h' = Heap (IntMap.insert (fromInteger ba) ba3 gh,p) gbl ph ids is0 in Just (h',k,Prim rwNm rwTy) "GHC.Prim.copyByteArray#" | [Lit (ByteArrayLiteral (Vector.Vector _ _ (ByteArray.ByteArray src_ba))) ,src_offV ,PrimVal _mbaNm _mbaTy _ [dst_mbaV] ,dst_offV, nV ,PrimVal rwNm rwTy _ _ ] <- args , [src_off,dst_mba,dst_off,n] <- intLiterals' [src_offV,dst_mbaV,dst_offV,nV] -> let Heap (gh,p) gbl ph ids is0 = h Just (Literal (ByteArrayLiteral (Vector.Vector voff vlen dst_ba))) = IntMap.lookup (fromInteger dst_mba) gh !(I# src_off') = fromInteger src_off !(I# dst_off') = fromInteger dst_off !(I# n') = fromInteger n ba2 = unsafeDupablePerformIO $ do ByteArray.MutableByteArray dst_mba1 <- ByteArray.unsafeThawByteArray dst_ba svoid (copyByteArray# src_ba src_off' dst_mba1 dst_off' n') ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray dst_mba1) ba3 = Literal (ByteArrayLiteral (Vector.Vector voff vlen ba2)) h' = Heap (IntMap.insert (fromInteger dst_mba) ba3 gh,p) gbl ph ids is0 in Just (h',k,Prim rwNm rwTy) "GHC.Prim.readWordArray#" | [PrimVal _mbaNm _mbaTy _ [baV] ,offV ,PrimVal rwNm rwTy _ _ ] <- args , [ba,off] <- intLiterals' [baV,offV] -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc Heap (gh,_) _ _ _ _ = h Just (Literal (ByteArrayLiteral (Vector.Vector _ _ ba1))) = IntMap.lookup (fromInteger ba) gh !(I# off') = fromInteger off w = unsafeDupablePerformIO $ do ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1 IO (\s -> case readWordArray# mba off' s of (# s', w' #) -> (# s', W# w' #)) newE = mkApps (Data tupDc) (map Right tyArgs ++ [Left (Prim rwNm rwTy) ,Left (Literal (WordLiteral (toInteger w))) ]) in reduce newE -- decodeFloat_Int# :: Float# -> (#Int#, Int##) "GHC.Prim.decodeFloat_Int#" | [i] <- floatLiterals' args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(F# a) = fromRational i !(# p, q #) = decodeFloat_Int# a in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (Literal . IntLiteral . toInteger $ I# p) , Left (Literal . IntLiteral . toInteger $ I# q)]) "GHC.Prim.tagToEnum#" | [ConstTy (TyCon tcN)] <- tys , [Lit (IntLiteral i)] <- args -> let dc = do { tc <- lookupUniqMap tcN tcm ; let dcs = tyConDataCons tc ; List.find ((== (i+1)) . toInteger . dcTag) dcs } in ((h,k,) . Data) <$> dc "GHC.Classes.geInt" | Just (i,j) <- intCLiterals args -> reduce (boolToBoolLiteral tcm ty (i >= j)) "GHC.Classes.&&" | [DC lCon _ ,DC rCon _] <- args -> reduce $ boolToBoolLiteral tcm ty ((nameOcc (dcName lCon) == "GHC.Types.True") && (nameOcc (dcName rCon) == "GHC.Types.True")) "GHC.Classes.||" | [DC lCon _ ,DC rCon _] <- args -> reduce $ boolToBoolLiteral tcm ty ((nameOcc (dcName lCon) == "GHC.Types.True") || (nameOcc (dcName rCon) == "GHC.Types.True")) "GHC.Classes.divInt#" | Just (i,j) <- intLiterals args -> reduce (integerToIntLiteral (i `div` j)) -- modInt# :: Int# -> Int# -> Int# "GHC.Classes.modInt#" | [dividend, divisor] <- intLiterals' args -> if divisor == 0 then let iTy = snd (splitFunForallTy ty) in reduce (undefinedTm iTy) else reduce (Literal (IntLiteral (dividend `mod` divisor))) "GHC.Classes.not" | [DC bCon _] <- args -> reduce (boolToBoolLiteral tcm ty (nameOcc (dcName bCon) == "GHC.Types.False")) "GHC.Integer.Logarithms.integerLogBase#" | Just (a,b) <- integerLiterals args , Just c <- flogBase a b -> (reduce . Literal . IntLiteral . toInteger) c "GHC.Integer.Type.smallInteger" | [Lit (IntLiteral i)] <- args -> reduce (Literal (IntegerLiteral i)) "GHC.Integer.Type.integerToInt" | [i] <- integerLiterals' args -> reduce (integerToIntLiteral i) "GHC.Integer.Type.decodeDoubleInteger" -- :: Double# -> (#Integer, Int##) | [Lit (DoubleLiteral i)] <- args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc !(D# a) = fromRational i !(# b, c #) = decodeDoubleInteger a in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (integerToIntegerLiteral b) , Left (integerToIntLiteral . toInteger $ I# c)]) "GHC.Integer.Type.encodeDoubleInteger" -- :: Integer -> Int# -> Double# | [iV, Lit (IntLiteral j)] <- args , [i] <- integerLiterals' [iV] -> let !(I# k') = fromInteger j r = encodeDoubleInteger i k' in reduce . Literal . DoubleLiteral . toRational $ D# r "GHC.Integer.Type.quotRemInteger" -- :: Integer -> Integer -> (#Integer, Integer#) | [i, j] <- integerLiterals' args -> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc (q,r) = quotRem i j in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left $ catchDivByZero (integerToIntegerLiteral q) , Left $ catchDivByZero (integerToIntegerLiteral r)]) "GHC.Integer.Type.plusInteger" | Just (i,j) <- integerLiterals args -> reduce (integerToIntegerLiteral (i+j)) "GHC.Integer.Type.minusInteger" | Just (i,j) <- integerLiterals args -> reduce (integerToIntegerLiteral (i-j)) "GHC.Integer.Type.timesInteger" | Just (i,j) <- integerLiterals args -> reduce (integerToIntegerLiteral (i*j)) "GHC.Integer.Type.negateInteger" | [i] <- integerLiterals' args -> reduce (integerToIntegerLiteral (negate i)) "GHC.Integer.Type.divInteger" | Just (i,j) <- integerLiterals args -> reduce $ catchDivByZero (integerToIntegerLiteral (i `div` j)) "GHC.Integer.Type.modInteger" | Just (i,j) <- integerLiterals args -> reduce $ catchDivByZero (integerToIntegerLiteral (i `mod` j)) "GHC.Integer.Type.quotInteger" | Just (i,j) <- integerLiterals args -> reduce $ catchDivByZero (integerToIntegerLiteral (i `quot` j)) "GHC.Integer.Type.remInteger" | Just (i,j) <- integerLiterals args -> reduce $ catchDivByZero (integerToIntegerLiteral (i `rem` j)) "GHC.Integer.Type.divModInteger" | Just (i,j) <- integerLiterals args -> let (_,tyView -> TyConApp ubTupTcNm [liftedKi,_,intTy,_]) = splitFunForallTy ty (Just ubTupTc) = lookupUniqMap ubTupTcNm tcm [ubTupDc] = tyConDataCons ubTupTc (d,m) = divMod i j in reduce $ mkApps (Data ubTupDc) [ Right liftedKi, Right liftedKi , Right intTy, Right intTy , Left $ catchDivByZero (Literal (IntegerLiteral d)) , Left $ catchDivByZero (Literal (IntegerLiteral m)) ] "GHC.Integer.Type.gtInteger" | Just (i,j) <- integerLiterals args -> reduce (boolToBoolLiteral tcm ty (i > j)) "GHC.Integer.Type.geInteger" | Just (i,j) <- integerLiterals args -> reduce (boolToBoolLiteral tcm ty (i >= j)) "GHC.Integer.Type.eqInteger" | Just (i,j) <- integerLiterals args -> reduce (boolToBoolLiteral tcm ty (i == j)) "GHC.Integer.Type.neqInteger" | Just (i,j) <- integerLiterals args -> reduce (boolToBoolLiteral tcm ty (i /= j)) "GHC.Integer.Type.ltInteger" | Just (i,j) <- integerLiterals args -> reduce (boolToBoolLiteral tcm ty (i < j)) "GHC.Integer.Type.leInteger" | Just (i,j) <- integerLiterals args -> reduce (boolToBoolLiteral tcm ty (i <= j)) "GHC.Integer.Type.gtInteger#" | Just (i,j) <- integerLiterals args -> reduce (boolToIntLiteral (i > j)) "GHC.Integer.Type.geInteger#" | Just (i,j) <- integerLiterals args -> reduce (boolToIntLiteral (i >= j)) "GHC.Integer.Type.eqInteger#" | Just (i,j) <- integerLiterals args -> reduce (boolToIntLiteral (i == j)) "GHC.Integer.Type.neqInteger#" | Just (i,j) <- integerLiterals args -> reduce (boolToIntLiteral (i /= j)) "GHC.Integer.Type.ltInteger#" | Just (i,j) <- integerLiterals args -> reduce (boolToIntLiteral (i < j)) "GHC.Integer.Type.leInteger#" | Just (i,j) <- integerLiterals args -> reduce (boolToIntLiteral (i <= j)) "GHC.Integer.Type.compareInteger" -- :: Integer -> Integer -> Ordering | [i, j] <- integerLiterals' args -> let -- Get the required result type (viewed as an applied type constructor name) (_,tyView -> TyConApp tupTcNm []) = splitFunForallTy ty -- Find the type constructor from the name (Just tupTc) = lookupUniqMap tupTcNm tcm -- Get the data constructors of that type -- The type is 'Ordering', so they are: 'LT', 'EQ', 'GT' [ltDc, eqDc, gtDc] = tyConDataCons tupTc -- Do the actual compile-time evaluation ordVal = compareInteger i j in reduce $ case ordVal of LT -> Data ltDc EQ -> Data eqDc GT -> Data gtDc "GHC.Integer.Type.shiftRInteger" | [iV, Lit (IntLiteral j)] <- args , [i] <- integerLiterals' [iV] -> reduce (integerToIntegerLiteral (i `shiftR` fromInteger j)) "GHC.Integer.Type.shiftLInteger" | [iV, Lit (IntLiteral j)] <- args , [i] <- integerLiterals' [iV] -> reduce (integerToIntegerLiteral (i `shiftL` fromInteger j)) "GHC.Integer.Type.wordToInteger" | [Lit (WordLiteral w)] <- args -> reduce (Literal (IntegerLiteral w)) "GHC.Integer.Type.integerToWord" | [i] <- integerLiterals' args -> reduce (integerToWordLiteral i) "GHC.Integer.Type.testBitInteger" -- :: Integer -> Int# -> Bool | [Lit (IntegerLiteral i), Lit (IntLiteral j)] <- args -> reduce (boolToBoolLiteral tcm ty (testBit i (fromInteger j))) "GHC.Natural.NatS#" | [Lit (WordLiteral w)] <- args -> reduce (Literal (NaturalLiteral w)) "GHC.Natural.naturalToInteger" | [i] <- naturalLiterals' args -> reduce (Literal (IntegerLiteral (toInteger i))) "GHC.Natural.naturalFromInteger" | [i] <- integerLiterals' args -> let nTy = snd (splitFunForallTy ty) in reduce (checkNaturalRange1 nTy i id) -- GHC.shiftLNatural --- XXX: Fragile worker of GHC.shiflLNatural "GHC.Natural.$wshiftLNatural" | [nV,iV] <- args , [n] <- naturalLiterals' [nV] , [i] <- fromInteger <$> intLiterals' [iV] -> let nTy = snd (splitFunForallTy ty) in reduce (checkNaturalRange1 nTy n ((flip shiftL) i)) "GHC.Natural.plusNatural" | Just (i,j) <- naturalLiterals args -> let nTy = snd (splitFunForallTy ty) in reduce (checkNaturalRange2 nTy i j (+)) "GHC.Natural.timesNatural" | Just (i,j) <- naturalLiterals args -> let nTy = snd (splitFunForallTy ty) in reduce (checkNaturalRange2 nTy i j (*)) "GHC.Natural.minusNatural" | Just (i,j) <- naturalLiterals args -> let nTy = snd (splitFunForallTy ty) in reduce (checkNaturalRange nTy [i, j] (\[i', j'] -> case minusNaturalMaybe i' j' of Nothing -> checkNaturalRange1 nTy (-1) id Just n -> naturalToNaturalLiteral n)) "GHC.Natural.wordToNatural#" | [Lit (WordLiteral w)] <- args -> let nTy = snd (splitFunForallTy ty) in reduce (checkNaturalRange1 nTy w id) -- GHC.Real.^ -- XXX: Very fragile -- ^_f, $wf, $wf1 are specialisations of the internal function f in the implementation of (^) in GHC.Real "GHC.Real.^_f" -- :: Integer -> Integer -> Integer | [i,j] <- integerLiterals' args -> reduce (integerToIntegerLiteral $ i ^ j) "GHC.Real.$wf" -- :: Integer -> Int# -> Integer | [iV, Lit (IntLiteral j)] <- args , [i] <- integerLiterals' [iV] -> reduce (integerToIntegerLiteral $ i ^ j) "GHC.Real.$wf1" -- :: Int# -> Int# -> Int# | [Lit (IntLiteral i), Lit (IntLiteral j)] <- args -> reduce (integerToIntLiteral $ i ^ j) -- XXX: Very fragile. /$s^_f/ is a specialized version of ^_f. That means that -- it is type applied to some specific type. "Data.Singletons.TypeLits.Internal.$s^_f" | Just (i,j) <- naturalLiterals args -> reduce (Literal (NaturalLiteral (i ^ j))) "GHC.TypeLits.natVal" | [Lit (NaturalLiteral n), _] <- args -> reduce (integerToIntegerLiteral n) "GHC.TypeNats.natVal" | [Lit (NaturalLiteral n), _] <- args -> reduce (Literal (NaturalLiteral n)) "GHC.Types.C#" | isSubj , [Lit (CharLiteral c)] <- args -> let (_,tyView -> TyConApp charTcNm []) = splitFunForallTy ty (Just charTc) = lookupUniqMap charTcNm tcm [charDc] = tyConDataCons charTc in reduce (mkApps (Data charDc) [Left (Literal (CharLiteral c))]) "GHC.Types.I#" | isSubj , [Lit (IntLiteral i)] <- args -> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intDc] = tyConDataCons intTc in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))]) "GHC.Int.I8#" | isSubj , [Lit (IntLiteral i)] <- args -> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intDc] = tyConDataCons intTc in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))]) "GHC.Int.I16#" | isSubj , [Lit (IntLiteral i)] <- args -> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intDc] = tyConDataCons intTc in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))]) "GHC.Int.I32#" | isSubj , [Lit (IntLiteral i)] <- args -> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intDc] = tyConDataCons intTc in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))]) "GHC.Int.I64#" | isSubj , [Lit (IntLiteral i)] <- args -> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intDc] = tyConDataCons intTc in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))]) "GHC.Types.W#" | isSubj , [Lit (WordLiteral c)] <- args -> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty (Just wordTc) = lookupUniqMap wordTcNm tcm [wordDc] = tyConDataCons wordTc in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))]) "GHC.Word.W8#" | isSubj , [Lit (WordLiteral c)] <- args -> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty (Just wordTc) = lookupUniqMap wordTcNm tcm [wordDc] = tyConDataCons wordTc in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))]) "GHC.Word.W16#" | isSubj , [Lit (WordLiteral c)] <- args -> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty (Just wordTc) = lookupUniqMap wordTcNm tcm [wordDc] = tyConDataCons wordTc in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))]) "GHC.Word.W32#" | isSubj , [Lit (WordLiteral c)] <- args -> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty (Just wordTc) = lookupUniqMap wordTcNm tcm [wordDc] = tyConDataCons wordTc in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))]) "GHC.Word.W64#" | [Lit (WordLiteral c)] <- args -> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty (Just wordTc) = lookupUniqMap wordTcNm tcm [wordDc] = tyConDataCons wordTc in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))]) "GHC.Float.$w$sfromRat''" -- XXX: Very fragile | [Lit (IntLiteral _minEx) ,Lit (IntLiteral matDigs) ,nV ,dV] <- args , [n,d] <- integerLiterals' [nV,dV] -> case fromInteger matDigs of matDigs' | matDigs' == floatDigits (undefined :: Float) -> reduce (Literal (FloatLiteral (toRational (fromRational (n :% d) :: Float)))) | matDigs' == floatDigits (undefined :: Double) -> reduce (Literal (DoubleLiteral (toRational (fromRational (n :% d) :: Double)))) _ -> error $ $(curLoc) ++ "GHC.Float.$w$sfromRat'': Not a Float or Double" "GHC.Float.$w$sfromRat''1" -- XXX: Very fragile | [Lit (IntLiteral _minEx) ,Lit (IntLiteral matDigs) ,nV ,dV] <- args , [n,d] <- integerLiterals' [nV,dV] -> case fromInteger matDigs of matDigs' | matDigs' == floatDigits (undefined :: Float) -> reduce (Literal (FloatLiteral (toRational (fromRational (n :% d) :: Float)))) | matDigs' == floatDigits (undefined :: Double) -> reduce (Literal (DoubleLiteral (toRational (fromRational (n :% d) :: Double)))) _ -> error $ $(curLoc) ++ "GHC.Float.$w$sfromRat'': Not a Float or Double" "GHC.Integer.Type.$wsignumInteger" -- XXX: Not super-fragile, but still.. | [i] <- integerLiterals' args -> reduce (Literal (IntLiteral (signum i))) "GHC.Integer.Type.signumInteger" | [i] <- integerLiterals' args -> reduce (Literal (IntegerLiteral (signumInteger i))) "GHC.Integer.Type.absInteger" | [i] <- integerLiterals' args -> reduce (Literal (IntegerLiteral (absInteger i))) "GHC.Integer.Type.bitInteger" | [i] <- intLiterals' args -> reduce (Literal (IntegerLiteral (bit (fromInteger i)))) "GHC.Integer.Type.complementInteger" | [i] <- integerLiterals' args -> reduce (Literal (IntegerLiteral (complementInteger i))) "GHC.Integer.Type.orInteger" | [i, j] <- integerLiterals' args -> reduce (Literal (IntegerLiteral (orInteger i j))) "GHC.Integer.Type.xorInteger" | [i, j] <- integerLiterals' args -> reduce (Literal (IntegerLiteral (xorInteger i j))) "GHC.Integer.Type.andInteger" | [i, j] <- integerLiterals' args -> reduce (Literal (IntegerLiteral (andInteger i j))) "GHC.Integer.Type.doubleFromInteger" | [i] <- integerLiterals' args -> reduce (Literal (DoubleLiteral (toRational (fromInteger i :: Double)))) "GHC.Base.eqString" | [PrimVal _ _ _ [Lit (StringLiteral s1)] ,PrimVal _ _ _ [Lit (StringLiteral s2)] ] <- args -> reduce (boolToBoolLiteral tcm ty (s1 == s2)) | otherwise -> error (show args) "Clash.Class.BitPack.packDouble#" -- :: Double -> BitVector 64 | [DC _ [Left arg]] <- args , (h2,[],Literal (DoubleLiteral i)) <- whnf reduceConstant tcm True (h,[],arg) -> let resTyInfo = extractTySizeInfo tcm ty tys in Just (h2,k,mkBitVectorLit' resTyInfo 0 (BitVector.unsafeToInteger $ (pack :: Double -> BitVector 64) $ fromRational i)) "Clash.Class.BitPack.packFloat#" -- :: Float -> BitVector 32 | [DC _ [Left arg]] <- args , (h2,[],Literal (FloatLiteral i)) <- whnf reduceConstant tcm True (h,[],arg) -> let resTyInfo = extractTySizeInfo tcm ty tys in Just (h2,k,mkBitVectorLit' resTyInfo 0 (BitVector.unsafeToInteger $ (pack :: Float -> BitVector 32) $ fromRational i)) "Clash.Class.BitPack.unpackFloat#" | [i] <- bitVectorLiterals' args -> reduce (Literal (FloatLiteral (toRational $ (unpack :: BitVector 32 -> Float) (toBV i)))) "Clash.Class.BitPack.unpackDouble#" | [i] <- bitVectorLiterals' args -> reduce (Literal (DoubleLiteral (toRational $ (unpack :: BitVector 64 -> Double) (toBV i)))) -- expIndex# -- :: KnownNat m -- => Index m -- -> SNat n -- -> Index (n^m) "Clash.Class.Exp.expIndex#" | [b] <- indexLiterals' args , [(_mTy, km), (_, e)] <- extractKnownNats tcm tys -> reduce (mkIndexLit ty (LitTy (NumTy (km^e))) (km^e) (b^e)) -- expSigned# -- :: KnownNat m -- => Signed m -- -> SNat n -- -> Signed (n*m) "Clash.Class.Exp.expSigned#" | [b] <- signedLiterals' args , [(_mTy, km), (_, e)] <- extractKnownNats tcm tys -> reduce (mkSignedLit ty (LitTy (NumTy (km*e))) (km*e) (b^e)) -- expUnsigned# -- :: KnownNat m -- => Unsigned m -- -> SNat n -- -> Unsigned m "Clash.Class.Exp.expUnsigned#" | [b] <- unsignedLiterals' args , [(_mTy, km), (_, e)] <- extractKnownNats tcm tys -> reduce (mkUnsignedLit ty (LitTy (NumTy (km*e))) (km*e) (b^e)) "Clash.Promoted.Nat.powSNat" | [Right a, Right b] <- map (runExcept . tyNatSize tcm) tys -> let c = case a of 2 -> 1 `shiftL` (fromInteger b) _ -> a ^ b (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty (Just snatTc) = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc in reduce $ mkApps (Data snatDc) [ Right (LitTy (NumTy c)) , Left (Literal (NaturalLiteral c))] "Clash.Promoted.Nat.flogBaseSNat" | [_,_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys , Just c <- flogBase a b , let c' = toInteger c -> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty (Just snatTc) = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc in reduce $ mkApps (Data snatDc) [ Right (LitTy (NumTy c')) , Left (Literal (NaturalLiteral c'))] "Clash.Promoted.Nat.clogBaseSNat" | [_,_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys , Just c <- clogBase a b , let c' = toInteger c -> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty (Just snatTc) = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc in reduce $ mkApps (Data snatDc) [ Right (LitTy (NumTy c')) , Left (Literal (NaturalLiteral c'))] "Clash.Promoted.Nat.logBaseSNat" | [_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys , Just c <- flogBase a b , let c' = toInteger c -> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty (Just snatTc) = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc in reduce $ mkApps (Data snatDc) [ Right (LitTy (NumTy c')) , Left (Literal (NaturalLiteral c'))] ------------ -- BitVector ------------ -- Constructor "Clash.Sized.Internal.BitVector.BV" | [Right _] <- map (runExcept . tyNatSize tcm) tys , Just (m,i) <- integerLiterals args -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo m i) "Clash.Sized.Internal.BitVector.Bit" | Just (m,i) <- integerLiterals args -> reduce (mkBitLit ty m i) -- Initialisation "Clash.Sized.Internal.BitVector.size#" | Just (_, kn) <- extractKnownNat tcm tys -> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intCon] = tyConDataCons intTc in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))]) "Clash.Sized.Internal.BitVector.maxIndex#" | Just (_, kn) <- extractKnownNat tcm tys -> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intCon] = tyConDataCons intTc in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (kn-1)))]) -- Construction "Clash.Sized.Internal.BitVector.high" -> reduce (mkBitLit ty 0 1) "Clash.Sized.Internal.BitVector.low" -> reduce (mkBitLit ty 0 0) -- Eq "Clash.Sized.Internal.BitVector.eq##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (boolToBoolLiteral tcm ty (i == j)) "Clash.Sized.Internal.BitVector.neq##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (boolToBoolLiteral tcm ty (i /= j)) -- Ord "Clash.Sized.Internal.BitVector.lt##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (boolToBoolLiteral tcm ty (i < j)) "Clash.Sized.Internal.BitVector.ge##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (boolToBoolLiteral tcm ty (i >= j)) "Clash.Sized.Internal.BitVector.gt##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (boolToBoolLiteral tcm ty (i > j)) "Clash.Sized.Internal.BitVector.le##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (boolToBoolLiteral tcm ty (i <= j)) -- Bits "Clash.Sized.Internal.BitVector.and##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (mkBitLit ty 0 (i .&. j)) "Clash.Sized.Internal.BitVector.or##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (mkBitLit ty 0 (i .|. j)) "Clash.Sized.Internal.BitVector.xor##" | [(0,i),(0,j)] <- bitLiterals args -> reduce (mkBitLit ty 0 (i `xor` j)) "Clash.Sized.Internal.BitVector.complement##" | [(0,i)] <- bitLiterals args -> reduce (mkBitLit ty 0 (complement i)) -- Pack "Clash.Sized.Internal.BitVector.pack#" | [(msk,i)] <- bitLiterals args -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo msk i) "Clash.Sized.Internal.BitVector.unpack#" | [(msk,i)] <- bitVectorLiterals' args -> reduce (mkBitLit ty msk i) -- Concatenation "Clash.Sized.Internal.BitVector.++#" -- :: KnownNat m => BitVector n -> BitVector m -> BitVector (n + m) | Just (_,m) <- extractKnownNat tcm tys , [(mski,i),(mskj,j)] <- bitVectorLiterals' args -> let val = i `shiftL` fromInteger m .|. j msk = mski `shiftL` fromInteger m .|. mskj resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo msk val) -- Reduction "Clash.Sized.Internal.BitVector.reduceAnd#" -- :: KnownNat n => BitVector n -> Bit | [i] <- bitVectorLiterals' args , Just (_, kn) <- extractKnownNat tcm tys -> let resTy = getResultTy tcm ty tys val = reifyNat kn (op (toBV i)) in reduce (mkBitLit resTy 0 val) where op :: KnownNat n => BitVector n -> Proxy n -> Integer op u _ = toInteger (BitVector.reduceAnd# u) "Clash.Sized.Internal.BitVector.reduceOr#" -- :: KnownNat n => BitVector n -> Bit | [i] <- bitVectorLiterals' args , Just (_, kn) <- extractKnownNat tcm tys -> let resTy = getResultTy tcm ty tys val = reifyNat kn (op (toBV i)) in reduce (mkBitLit resTy 0 val) where op :: KnownNat n => BitVector n -> Proxy n -> Integer op u _ = toInteger (BitVector.reduceOr# u) "Clash.Sized.Internal.BitVector.reduceXor#" -- :: KnownNat n => BitVector n -> Bit | [i] <- bitVectorLiterals' args , Just (_, kn) <- extractKnownNat tcm tys -> let resTy = getResultTy tcm ty tys val = reifyNat kn (op (toBV i)) in reduce (mkBitLit resTy 0 val) where op :: KnownNat n => BitVector n -> Proxy n -> Integer op u _ = toInteger (BitVector.reduceXor# u) -- Indexing "Clash.Sized.Internal.BitVector.index#" -- :: KnownNat n => BitVector n -> Int -> Bit | Just (_,kn,i,j) <- bitVectorLitIntLit tcm tys args -> let resTy = getResultTy tcm ty tys (msk,val) = reifyNat kn (op (toBV i) (fromInteger j)) in reduce (mkBitLit resTy msk val) where op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer) op u i _ = (m, v) where Bit m v = (BitVector.index# u i) "Clash.Sized.Internal.BitVector.replaceBit#" -- :: :: KnownNat n => BitVector n -> Int -> Bit -> BitVector n | Just (_, n) <- extractKnownNat tcm tys , [ _ , PrimVal bvNm _ _ [_, Lit (IntegerLiteral mskBv), Lit (IntegerLiteral bv)] , valArgs -> Just [Literal (IntLiteral i)] , PrimVal bNm _ _ [Lit (IntegerLiteral mskB), Lit (IntegerLiteral b)] ] <- args , bvNm == "Clash.Sized.Internal.BitVector.fromInteger#" , bNm == "Clash.Sized.Internal.BitVector.fromInteger##" -> let resTyInfo = extractTySizeInfo tcm ty tys (mskVal,val) = reifyNat n (op (BV mskBv bv) (fromInteger i) (Bit mskB b)) in reduce (mkBitVectorLit' resTyInfo mskVal val) where op :: KnownNat n => BitVector n -> Int -> Bit -> Proxy n -> (Integer,Integer) -- op bv i b _ = (BitVector.unsafeMask res, BitVector.unsafeToInteger res) op bv i b _ = splitBV (BitVector.replaceBit# bv i b) "Clash.Sized.Internal.BitVector.setSlice#" -- :: BitVector (m + 1 + i) -> SNat m -> SNat n -> BitVector (m + 1 - n) -> BitVector (m + 1 + i) | mTy : _ : nTy : _ <- tys , Right m <- runExcept (tyNatSize tcm mTy) , Right n <- runExcept (tyNatSize tcm nTy) , [i,j] <- bitVectorLiterals' args -> let BV msk val = BitVector.setSlice# (toBV i) (unsafeSNat m) (unsafeSNat n) (toBV j) resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo msk val) "Clash.Sized.Internal.BitVector.slice#" -- :: BitVector (m + 1 + i) -> SNat m -> SNat n -> BitVector (m + 1 - n) | mTy : _ : nTy : _ <- tys , Right m <- runExcept (tyNatSize tcm mTy) , Right n <- runExcept (tyNatSize tcm nTy) , [i] <- bitVectorLiterals' args -> let BV msk val = BitVector.slice# (toBV i) (unsafeSNat m) (unsafeSNat n) resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo msk val) "Clash.Sized.Internal.BitVector.split#" -- :: forall n m. KnownNat n => BitVector (m + n) -> (BitVector m, BitVector n) | nTy : mTy : _ <- tys , Right n <- runExcept (tyNatSize tcm nTy) , Right m <- runExcept (tyNatSize tcm mTy) , [(mski,i)] <- bitVectorLiterals' args -> let ty' = piResultTys tcm ty tys (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty' (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc bvTy : _ = tyArgs valM = i `shiftR` fromInteger n mskM = mski `shiftR` fromInteger n valN = i .&. mask mskN = mski .&. mask mask = bit (fromInteger n) - 1 in reduce $ mkApps (Data tupDc) (map Right tyArgs ++ [ Left (mkBitVectorLit bvTy mTy m mskM valM) , Left (mkBitVectorLit bvTy nTy n mskN valN)]) "Clash.Sized.Internal.BitVector.msb#" -- :: forall n. KnownNat n => BitVector n -> Bit | [i] <- bitVectorLiterals' args , Just (_, kn) <- extractKnownNat tcm tys -> let resTy = getResultTy tcm ty tys (msk,val) = reifyNat kn (op (toBV i)) in reduce (mkBitLit resTy msk val) where op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer) op u _ = (unsafeMask# res, BitVector.unsafeToInteger# res) where res = BitVector.msb# u "Clash.Sized.Internal.BitVector.lsb#" -- :: BitVector n -> Bit | [i] <- bitVectorLiterals' args -> let resTy = getResultTy tcm ty tys Bit msk val = BitVector.lsb# (toBV i) in reduce (mkBitLit resTy msk val) -- Eq -- eq#, neq# :: KnownNat n => BitVector n -> BitVector n -> Bool "Clash.Sized.Internal.BitVector.eq#" | nTy : _ <- tys , Right 0 <- runExcept (tyNatSize tcm nTy) -> reduce (boolToBoolLiteral tcm ty True) | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2Bool BitVector.eq# ty tcm args) -> reduce val "Clash.Sized.Internal.BitVector.neq#" | nTy : _ <- tys , Right 0 <- runExcept (tyNatSize tcm nTy) -> reduce (boolToBoolLiteral tcm ty False) | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2Bool BitVector.neq# ty tcm args) -> reduce val -- Ord -- lt#,ge#,gt#,le# :: KnownNat n => BitVector n -> BitVector n -> Bool "Clash.Sized.Internal.BitVector.lt#" | nTy : _ <- tys , Right 0 <- runExcept (tyNatSize tcm nTy) -> reduce (boolToBoolLiteral tcm ty False) | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2Bool BitVector.lt# ty tcm args) -> reduce val "Clash.Sized.Internal.BitVector.ge#" | nTy : _ <- tys , Right 0 <- runExcept (tyNatSize tcm nTy) -> reduce (boolToBoolLiteral tcm ty True) | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2Bool BitVector.ge# ty tcm args) -> reduce val "Clash.Sized.Internal.BitVector.gt#" | nTy : _ <- tys , Right 0 <- runExcept (tyNatSize tcm nTy) -> reduce (boolToBoolLiteral tcm ty False) | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2Bool BitVector.gt# ty tcm args) -> reduce val "Clash.Sized.Internal.BitVector.le#" | nTy : _ <- tys , Right 0 <- runExcept (tyNatSize tcm nTy) -> reduce (boolToBoolLiteral tcm ty True) | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2Bool BitVector.le# ty tcm args) -> reduce val -- Bounded "Clash.Sized.Internal.BitVector.minBound#" | Just (nTy,len) <- extractKnownNat tcm tys -> reduce (mkBitVectorLit ty nTy len 0 0) "Clash.Sized.Internal.BitVector.maxBound#" | Just (litTy,mb) <- extractKnownNat tcm tys -> let maxB = (2 ^ mb) - 1 in reduce (mkBitVectorLit ty litTy mb 0 maxB) -- Num "Clash.Sized.Internal.BitVector.+#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2 (BitVector.+#) ty tcm tys args) -> reduce val "Clash.Sized.Internal.BitVector.-#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2 (BitVector.-#) ty tcm tys args) -> reduce val "Clash.Sized.Internal.BitVector.*#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2 (BitVector.*#) ty tcm tys args) -> reduce val "Clash.Sized.Internal.BitVector.negate#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- bitVectorLiterals' args -> let (msk,val) = reifyNat kn (op (toBV i)) in reduce (mkBitVectorLit ty nTy kn msk val) where op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer) op u _ = splitBV (BitVector.negate# u) -- ExtendingNum "Clash.Sized.Internal.BitVector.plus#" -- :: (KnownNat n, KnownNat m) => BitVector m -> BitVector n -> BitVector (Max m n + 1) | [(0,i),(0,j)] <- bitVectorLiterals' args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkBitVectorLit resTy resSizeTy resSizeInt 0 (i+j)) "Clash.Sized.Internal.BitVector.minus#" | [(0,i),(0,j)] <- bitVectorLiterals' args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) val = reifyNat resSizeInt (runSizedF (BitVector.-#) i j) in reduce (mkBitVectorLit resTy resSizeTy resSizeInt 0 val) "Clash.Sized.Internal.BitVector.times#" | [(0,i),(0,j)] <- bitVectorLiterals' args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkBitVectorLit resTy resSizeTy resSizeInt 0 (i*j)) -- Integral "Clash.Sized.Internal.BitVector.quot#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2 (BitVector.quot#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.BitVector.rem#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftBitVector2 (BitVector.rem#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.BitVector.toInteger#" | Just (_, kn) <- extractKnownNat tcm tys , [i] <- bitVectorLiterals' args -> let val = reifyNat kn (op (toBV i)) in reduce (integerToIntegerLiteral val) where op :: KnownNat n => BitVector n -> Proxy n -> Integer op u _ = BitVector.toInteger# u -- Bits "Clash.Sized.Internal.BitVector.and#" | Just (i,j) <- bitVectorLiterals args , Just (nTy, kn) <- extractKnownNat tcm tys -> let BV msk val = BitVector.and# (toBV i) (toBV j) in reduce (mkBitVectorLit ty nTy kn msk val) "Clash.Sized.Internal.BitVector.or#" | Just (i,j) <- bitVectorLiterals args , Just (nTy, kn) <- extractKnownNat tcm tys -> let BV msk val = BitVector.or# (toBV i) (toBV j) in reduce (mkBitVectorLit ty nTy kn msk val) "Clash.Sized.Internal.BitVector.xor#" | Just (i,j) <- bitVectorLiterals args , Just (nTy, kn) <- extractKnownNat tcm tys -> let BV msk val = BitVector.xor# (toBV i) (toBV j) in reduce (mkBitVectorLit ty nTy kn msk val) "Clash.Sized.Internal.BitVector.complement#" | [i] <- bitVectorLiterals' args , Just (nTy, kn) <- extractKnownNat tcm tys -> let (msk,val) = reifyNat kn (op (toBV i)) in reduce (mkBitVectorLit ty nTy kn msk val) where op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer) op u _ = splitBV $ BitVector.complement# u "Clash.Sized.Internal.BitVector.shiftL#" | Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args -> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j)) in reduce (mkBitVectorLit ty nTy kn msk val) where op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer) op u i _ = splitBV (BitVector.shiftL# u i) "Clash.Sized.Internal.BitVector.shiftR#" | Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args -> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j)) in reduce (mkBitVectorLit ty nTy kn msk val) where op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer) op u i _ = splitBV (BitVector.shiftR# u i) "Clash.Sized.Internal.BitVector.rotateL#" | Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args -> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j)) in reduce (mkBitVectorLit ty nTy kn msk val) where op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer) op u i _ = splitBV (BitVector.rotateL# u i) "Clash.Sized.Internal.BitVector.rotateR#" | Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args -> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j)) in reduce (mkBitVectorLit ty nTy kn msk val) where op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer) op u i _ = splitBV (BitVector.rotateR# u i) -- truncateB "Clash.Sized.Internal.BitVector.truncateB#" -- forall a b . KnownNat a => BitVector (a + b) -> BitVector a | aTy : _ <- tys , Right ka <- runExcept (tyNatSize tcm aTy) , [(mski,i)] <- bitVectorLiterals' args -> let bitsKeep = (bit (fromInteger ka)) - 1 val = i .&. bitsKeep msk = mski .&. bitsKeep in reduce (mkBitVectorLit ty aTy ka msk val) -------- -- Index -------- -- BitPack "Clash.Sized.Internal.Index.pack#" | nTy : _ <- tys , Right _ <- runExcept (tyNatSize tcm nTy) , [i] <- indexLiterals' args -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo 0 i) "Clash.Sized.Internal.Index.unpack#" | Just (nTy,kn) <- extractKnownNat tcm tys , [(0,i)] <- bitVectorLiterals' args -> reduce (mkIndexLit ty nTy kn i) -- Eq "Clash.Sized.Internal.Index.eq#" | Just (i,j) <- indexLiterals args -> reduce (boolToBoolLiteral tcm ty (i == j)) "Clash.Sized.Internal.Index.neq#" | Just (i,j) <- indexLiterals args -> reduce (boolToBoolLiteral tcm ty (i /= j)) -- Ord "Clash.Sized.Internal.Index.lt#" | Just (i,j) <- indexLiterals args -> reduce (boolToBoolLiteral tcm ty (i < j)) "Clash.Sized.Internal.Index.ge#" | Just (i,j) <- indexLiterals args -> reduce (boolToBoolLiteral tcm ty (i >= j)) "Clash.Sized.Internal.Index.gt#" | Just (i,j) <- indexLiterals args -> reduce (boolToBoolLiteral tcm ty (i > j)) "Clash.Sized.Internal.Index.le#" | Just (i,j) <- indexLiterals args -> reduce (boolToBoolLiteral tcm ty (i <= j)) -- Bounded "Clash.Sized.Internal.Index.maxBound#" | Just (nTy,mb) <- extractKnownNat tcm tys -> reduce (mkIndexLit ty nTy mb (mb - 1)) -- Num "Clash.Sized.Internal.Index.+#" | Just (nTy,kn) <- extractKnownNat tcm tys , [i,j] <- indexLiterals' args -> reduce (mkIndexLit ty nTy kn (i + j)) "Clash.Sized.Internal.Index.-#" | Just (nTy,kn) <- extractKnownNat tcm tys , [i,j] <- indexLiterals' args -> reduce (mkIndexLit ty nTy kn (i - j)) "Clash.Sized.Internal.Index.*#" | Just (nTy,kn) <- extractKnownNat tcm tys , [i,j] <- indexLiterals' args -> reduce (mkIndexLit ty nTy kn (i * j)) -- ExtendingNum "Clash.Sized.Internal.Index.plus#" | mTy : nTy : _ <- tys , Right _ <- runExcept (tyNatSize tcm mTy) , Right _ <- runExcept (tyNatSize tcm nTy) , Just (i,j) <- indexLiterals args -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkIndexLit' resTyInfo (i + j)) "Clash.Sized.Internal.Index.minus#" | mTy : nTy : _ <- tys , Right _ <- runExcept (tyNatSize tcm mTy) , Right _ <- runExcept (tyNatSize tcm nTy) , Just (i,j) <- indexLiterals args -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkIndexLit' resTyInfo (i - j)) "Clash.Sized.Internal.Index.times#" | mTy : nTy : _ <- tys , Right _ <- runExcept (tyNatSize tcm mTy) , Right _ <- runExcept (tyNatSize tcm nTy) , Just (i,j) <- indexLiterals args -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkIndexLit' resTyInfo (i * j)) -- Integral "Clash.Sized.Internal.Index.quot#" | Just (nTy,kn) <- extractKnownNat tcm tys , Just (i,j) <- indexLiterals args -> reduce $ catchDivByZero (mkIndexLit ty nTy kn (i `quot` j)) "Clash.Sized.Internal.Index.rem#" | Just (nTy,kn) <- extractKnownNat tcm tys , Just (i,j) <- indexLiterals args -> reduce $ catchDivByZero (mkIndexLit ty nTy kn (i `rem` j)) "Clash.Sized.Internal.Index.toInteger#" | [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args , nm' == "Clash.Sized.Internal.Index.fromInteger#" -> reduce (integerToIntegerLiteral i) -- Resize "Clash.Sized.Internal.Index.resize#" | Just (mTy,m) <- extractKnownNat tcm tys , [i] <- indexLiterals' args -> reduce (mkIndexLit ty mTy m i) --------- -- Signed --------- "Clash.Sized.Internal.Signed.size#" | Just (_, kn) <- extractKnownNat tcm tys -> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intCon] = tyConDataCons intTc in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))]) -- BitPack "Clash.Sized.Internal.Signed.pack#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- signedLiterals' args -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkBitVectorLit ty nTy kn 0 val) where op :: KnownNat n => Signed n -> Proxy n -> Integer op s _ = toInteger (Signed.pack# s) "Clash.Sized.Internal.Signed.unpack#" | Just (nTy, kn) <- extractKnownNat tcm tys , [(0,i)] <- bitVectorLiterals' args -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => BitVector n -> Proxy n -> Integer op s _ = toInteger (Signed.unpack# s) -- Eq "Clash.Sized.Internal.Signed.eq#" | Just (i,j) <- signedLiterals args -> reduce (boolToBoolLiteral tcm ty (i == j)) "Clash.Sized.Internal.Signed.neq#" | Just (i,j) <- signedLiterals args -> reduce (boolToBoolLiteral tcm ty (i /= j)) -- Ord "Clash.Sized.Internal.Signed.lt#" | Just (i,j) <- signedLiterals args -> reduce (boolToBoolLiteral tcm ty (i < j)) "Clash.Sized.Internal.Signed.ge#" | Just (i,j) <- signedLiterals args -> reduce (boolToBoolLiteral tcm ty (i >= j)) "Clash.Sized.Internal.Signed.gt#" | Just (i,j) <- signedLiterals args -> reduce (boolToBoolLiteral tcm ty (i > j)) "Clash.Sized.Internal.Signed.le#" | Just (i,j) <- signedLiterals args -> reduce (boolToBoolLiteral tcm ty (i <= j)) -- Bounded "Clash.Sized.Internal.Signed.minBound#" | Just (litTy,mb) <- extractKnownNat tcm tys -> let minB = negate (2 ^ (mb - 1)) in reduce (mkSignedLit ty litTy mb minB) "Clash.Sized.Internal.Signed.maxBound#" | Just (litTy,mb) <- extractKnownNat tcm tys -> let maxB = (2 ^ (mb - 1)) - 1 in reduce (mkSignedLit ty litTy mb maxB) -- Num "Clash.Sized.Internal.Signed.+#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.+#) ty tcm tys args) -> reduce (val) "Clash.Sized.Internal.Signed.-#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.-#) ty tcm tys args) -> reduce (val) "Clash.Sized.Internal.Signed.*#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.*#) ty tcm tys args) -> reduce (val) "Clash.Sized.Internal.Signed.negate#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- signedLiterals' args -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Proxy n -> Integer op s _ = toInteger (Signed.negate# s) "Clash.Sized.Internal.Signed.abs#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- signedLiterals' args -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Proxy n -> Integer op s _ = toInteger (Signed.abs# s) -- ExtendingNum "Clash.Sized.Internal.Signed.plus#" | Just (i,j) <- signedLiterals args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkSignedLit resTy resSizeTy resSizeInt (i+j)) "Clash.Sized.Internal.Signed.minus#" | Just (i,j) <- signedLiterals args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkSignedLit resTy resSizeTy resSizeInt (i-j)) "Clash.Sized.Internal.Signed.times#" | Just (i,j) <- signedLiterals args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkSignedLit resTy resSizeTy resSizeInt (i*j)) -- Integral "Clash.Sized.Internal.Signed.quot#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.quot#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.Signed.rem#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.rem#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.Signed.div#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.div#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.Signed.mod#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftSigned2 (Signed.mod#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.Signed.toInteger#" | [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args , nm' == "Clash.Sized.Internal.Signed.fromInteger#" -> reduce (integerToIntegerLiteral i) -- Bits "Clash.Sized.Internal.Signed.and#" | [i,j] <- signedLiterals' args , Just (nTy, kn) <- extractKnownNat tcm tys -> reduce (mkSignedLit ty nTy kn (i .&. j)) "Clash.Sized.Internal.Signed.or#" | [i,j] <- signedLiterals' args , Just (nTy, kn) <- extractKnownNat tcm tys -> reduce (mkSignedLit ty nTy kn (i .|. j)) "Clash.Sized.Internal.Signed.xor#" | [i,j] <- signedLiterals' args , Just (nTy, kn) <- extractKnownNat tcm tys -> reduce (mkSignedLit ty nTy kn (i `xor` j)) "Clash.Sized.Internal.Signed.complement#" | [i] <- signedLiterals' args , Just (nTy, kn) <- extractKnownNat tcm tys -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Proxy n -> Integer op u _ = toInteger (Signed.complement# u) "Clash.Sized.Internal.Signed.shiftL#" | Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer op u i _ = toInteger (Signed.shiftL# u i) "Clash.Sized.Internal.Signed.shiftR#" | Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer op u i _ = toInteger (Signed.shiftR# u i) "Clash.Sized.Internal.Signed.rotateL#" | Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer op u i _ = toInteger (Signed.rotateL# u i) "Clash.Sized.Internal.Signed.rotateR#" | Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkSignedLit ty nTy kn val) where op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer op u i _ = toInteger (Signed.rotateR# u i) -- Resize "Clash.Sized.Internal.Signed.resize#" -- forall m n. (KnownNat n, KnownNat m) => Signed n -> Signed m | mTy : nTy : _ <- tys , Right mInt <- runExcept (tyNatSize tcm mTy) , Right nInt <- runExcept (tyNatSize tcm nTy) , [i] <- signedLiterals' args -> let val | nInt <= mInt = extended | otherwise = truncated extended = i mask = 1 `shiftL` fromInteger (mInt - 1) i' = i `mod` mask truncated = if testBit i (fromInteger nInt - 1) then (i' - mask) else i' in reduce (mkSignedLit ty mTy mInt val) "Clash.Sized.Internal.Signed.truncateB#" -- KnownNat m => Signed (m + n) -> Signed m | Just (mTy, km) <- extractKnownNat tcm tys , [i] <- signedLiterals' args -> let bitsKeep = (bit (fromInteger km)) - 1 val = i .&. bitsKeep in reduce (mkSignedLit ty mTy km val) -- SaturatingNum -- No need to manually evaluate Clash.Sized.Internal.Signed.minBoundSym# -- It is just implemented in terms of other primitives. ----------- -- Unsigned ----------- "Clash.Sized.Internal.Unsigned.size#" | Just (_, kn) <- extractKnownNat tcm tys -> let (_,ty') = splitFunForallTy ty (TyConApp intTcNm _) = tyView ty' (Just intTc) = lookupUniqMap intTcNm tcm [intCon] = tyConDataCons intTc in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))]) -- BitPack "Clash.Sized.Internal.Unsigned.pack#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- unsignedLiterals' args -> reduce (mkBitVectorLit ty nTy kn 0 i) "Clash.Sized.Internal.Unsigned.unpack#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- bitVectorLiterals' args -> let val = reifyNat kn (op (toBV i)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => BitVector n -> Proxy n -> Integer op u _ = toInteger (Unsigned.unpack# u) -- Eq "Clash.Sized.Internal.Unsigned.eq#" | Just (i,j) <- unsignedLiterals args -> reduce (boolToBoolLiteral tcm ty (i == j)) "Clash.Sized.Internal.Unsigned.neq#" | Just (i,j) <- unsignedLiterals args -> reduce (boolToBoolLiteral tcm ty (i /= j)) -- Ord "Clash.Sized.Internal.Unsigned.lt#" | Just (i,j) <- unsignedLiterals args -> reduce (boolToBoolLiteral tcm ty (i < j)) "Clash.Sized.Internal.Unsigned.ge#" | Just (i,j) <- unsignedLiterals args -> reduce (boolToBoolLiteral tcm ty (i >= j)) "Clash.Sized.Internal.Unsigned.gt#" | Just (i,j) <- unsignedLiterals args -> reduce (boolToBoolLiteral tcm ty (i > j)) "Clash.Sized.Internal.Unsigned.le#" | Just (i,j) <- unsignedLiterals args -> reduce (boolToBoolLiteral tcm ty (i <= j)) -- Bounded "Clash.Sized.Internal.Unsigned.minBound#" | Just (nTy,len) <- extractKnownNat tcm tys -> reduce (mkUnsignedLit ty nTy len 0) "Clash.Sized.Internal.Unsigned.maxBound#" | Just (litTy,mb) <- extractKnownNat tcm tys -> let maxB = (2 ^ mb) - 1 in reduce (mkUnsignedLit ty litTy mb maxB) -- Num "Clash.Sized.Internal.Unsigned.+#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftUnsigned2 (Unsigned.+#) ty tcm tys args) -> reduce val "Clash.Sized.Internal.Unsigned.-#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftUnsigned2 (Unsigned.-#) ty tcm tys args) -> reduce val "Clash.Sized.Internal.Unsigned.*#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftUnsigned2 (Unsigned.*#) ty tcm tys args) -> reduce val "Clash.Sized.Internal.Unsigned.negate#" | Just (nTy, kn) <- extractKnownNat tcm tys , [i] <- unsignedLiterals' args -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => Unsigned n -> Proxy n -> Integer op u _ = toInteger (Unsigned.negate# u) -- ExtendingNum "Clash.Sized.Internal.Unsigned.plus#" -- :: Unsigned m -> Unsigned n -> Unsigned (Max m n + 1) | Just (i,j) <- unsignedLiterals args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkUnsignedLit resTy resSizeTy resSizeInt (i+j)) "Clash.Sized.Internal.Unsigned.minus#" | [i,j] <- unsignedLiterals' args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) val = reifyNat resSizeInt (runSizedF (Unsigned.-#) i j) in reduce (mkUnsignedLit resTy resSizeTy resSizeInt val) "Clash.Sized.Internal.Unsigned.times#" | Just (i,j) <- unsignedLiterals args -> let ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' (TyConApp _ [resSizeTy]) = tyView resTy Right resSizeInt = runExcept (tyNatSize tcm resSizeTy) in reduce (mkUnsignedLit resTy resSizeTy resSizeInt (i*j)) -- Integral "Clash.Sized.Internal.Unsigned.quot#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftUnsigned2 (Unsigned.quot#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.Unsigned.rem#" | Just (_, kn) <- extractKnownNat tcm tys , Just val <- reifyNat kn (liftUnsigned2 (Unsigned.rem#) ty tcm tys args) -> reduce $ catchDivByZero val "Clash.Sized.Internal.Unsigned.toInteger#" | [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args , nm' == "Clash.Sized.Internal.Unsigned.fromInteger#" -> reduce (integerToIntegerLiteral i) -- Bits "Clash.Sized.Internal.Unsigned.and#" | Just (i,j) <- unsignedLiterals args , Just (nTy, kn) <- extractKnownNat tcm tys -> reduce (mkUnsignedLit ty nTy kn (i .&. j)) "Clash.Sized.Internal.Unsigned.or#" | Just (i,j) <- unsignedLiterals args , Just (nTy, kn) <- extractKnownNat tcm tys -> reduce (mkUnsignedLit ty nTy kn (i .|. j)) "Clash.Sized.Internal.Unsigned.xor#" | Just (i,j) <- unsignedLiterals args , Just (nTy, kn) <- extractKnownNat tcm tys -> reduce (mkUnsignedLit ty nTy kn (i `xor` j)) "Clash.Sized.Internal.Unsigned.complement#" | [i] <- unsignedLiterals' args , Just (nTy, kn) <- extractKnownNat tcm tys -> let val = reifyNat kn (op (fromInteger i)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => Unsigned n -> Proxy n -> Integer op u _ = toInteger (Unsigned.complement# u) "Clash.Sized.Internal.Unsigned.shiftL#" -- :: forall n. KnownNat n => Unsigned n -> Int -> Unsigned n | Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer op u i _ = toInteger (Unsigned.shiftL# u i) "Clash.Sized.Internal.Unsigned.shiftR#" -- :: forall n. KnownNat n => Unsigned n -> Int -> Unsigned n | Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer op u i _ = toInteger (Unsigned.shiftR# u i) "Clash.Sized.Internal.Unsigned.rotateL#" -- :: forall n. KnownNat n => Unsigned n -> Int -> Unsigned n | Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer op u i _ = toInteger (Unsigned.rotateL# u i) "Clash.Sized.Internal.Unsigned.rotateR#" -- :: forall n. KnownNat n => Unsigned n -> Int -> Unsigned n | Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args -> let val = reifyNat kn (op (fromInteger i) (fromInteger j)) in reduce (mkUnsignedLit ty nTy kn val) where op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer op u i _ = toInteger (Unsigned.rotateR# u i) -- Resize "Clash.Sized.Internal.Unsigned.resize#" -- forall n m . KnownNat m => Unsigned n -> Unsigned m | _ : mTy : _ <- tys , Right km <- runExcept (tyNatSize tcm mTy) , [i] <- unsignedLiterals' args -> let bitsKeep = (bit (fromInteger km)) - 1 val = i .&. bitsKeep in reduce (mkUnsignedLit ty mTy km val) "Clash.Annotations.BitRepresentation.Deriving.dontApplyInHDL" | isSubj , f : a : _ <- args -> reduceWHNF (mkApps (valToTerm f) [Left (valToTerm a)]) -------- -- RTree -------- "Clash.Sized.RTree.textract" | isSubj , [DC _ tArgs] <- args -> reduceWHNF (Either.lefts tArgs !! 1) "Clash.Sized.RTree.tsplit" | isSubj , dTy : aTy : _ <- tys , [DC _ tArgs] <- args , (tyArgs,tyView -> TyConApp tupTcNm _) <- splitFunForallTy ty , TyConApp treeTcNm _ <- tyView (Either.rights tyArgs !! 0) -> let (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc in reduce $ mkApps (Data tupDc) [Right (mkTyConApp treeTcNm [dTy,aTy]) ,Right (mkTyConApp treeTcNm [dTy,aTy]) ,Left (Either.lefts tArgs !! 1) ,Left (Either.lefts tArgs !! 2) ] "Clash.Sized.RTree.tdfold" | isSubj , pTy : kTy : aTy : _ <- tys , _ : p : f : g : ts : _ <- args , DC _ tArgs <- ts , Right k' <- runExcept (tyNatSize tcm kTy) -> case k' of 0 -> reduceWHNF (mkApps (valToTerm f) [Left (Either.lefts tArgs !! 1)]) _ -> let k'ty = LitTy (NumTy (k'-1)) (tyArgs,_) = splitFunForallTy ty (tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 3) TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0) Just snatTc = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc in reduceWHNF $ mkApps (valToTerm g) [Right k'ty ,Left (mkApps (Data snatDc) [Right k'ty ,Left (Literal (NaturalLiteral (k'-1)))]) ,Left (mkApps (Prim nm pInfo) [Right pTy ,Right k'ty ,Right aTy ,Left (Literal (NaturalLiteral (k'-1))) ,Left (valToTerm p) ,Left (valToTerm f) ,Left (valToTerm g) ,Left (Either.lefts tArgs !! 1) ]) ,Left (mkApps (Prim nm pInfo) [Right pTy ,Right k'ty ,Right aTy ,Left (Literal (NaturalLiteral (k'-1))) ,Left (valToTerm p) ,Left (valToTerm f) ,Left (valToTerm g) ,Left (Either.lefts tArgs !! 2) ]) ] "Clash.Sized.RTree.treplicate" | isSubj , let ty' = piResultTys tcm ty tys , (_,tyView -> TyConApp treeTcNm [lenTy,argTy]) <- splitFunForallTy ty' , Right len <- runExcept (tyNatSize tcm lenTy) -> let (Just treeTc) = lookupUniqMap treeTcNm tcm [lrCon,brCon] = tyConDataCons treeTc in reduce (mkRTree lrCon brCon argTy len (replicate (2^len) (valToTerm (last args)))) --------- -- Vector --------- "Clash.Sized.Vector.length" -- :: KnownNat n => Vec n a -> Int | isSubj , [nTy, _] <- tys , Right n <-runExcept (tyNatSize tcm nTy) -> let (_, tyView -> TyConApp intTcNm _) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intCon] = tyConDataCons intTc in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (toInteger n)))]) "Clash.Sized.Vector.maxIndex" | isSubj , [nTy, _] <- tys , Right n <- runExcept (tyNatSize tcm nTy) -> let (_, tyView -> TyConApp intTcNm _) = splitFunForallTy ty (Just intTc) = lookupUniqMap intTcNm tcm [intCon] = tyConDataCons intTc in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (toInteger (n - 1))))]) -- Indexing "Clash.Sized.Vector.index_int" -- :: KnownNat n => Vec n a -> Int | nTy : aTy : _ <- tys , _ : xs : i : _ <- args , DC intDc [Left (Literal (IntLiteral i'))] <- i -> if i' < 0 then Nothing else case xs of DC _ vArgs -> case runExcept (tyNatSize tcm nTy) of Right 0 -> Nothing Right n' -> if i' == 0 then reduceWHNF (Either.lefts vArgs !! 1) else reduceWHNF $ mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n'-1))) ,Right aTy ,Left (Literal (NaturalLiteral (n'-1))) ,Left (Either.lefts vArgs !! 2) ,Left (mkApps (Data intDc) [Left (Literal (IntLiteral (i'-1)))]) ] _ -> Nothing _ -> Nothing "Clash.Sized.Vector.head" -- :: Vec (n+1) a -> a | isSubj , [DC _ vArgs] <- args -> reduceWHNF (Either.lefts vArgs !! 1) "Clash.Sized.Vector.last" -- :: Vec (n+1) a -> a | isSubj , [DC _ vArgs] <- args , (Right _ : Right aTy : Right nTy : _) <- vArgs , Right n <- runExcept (tyNatSize tcm nTy) -> if n == 0 then reduceWHNF (Either.lefts vArgs !! 1) else reduceWHNF (mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n-1))) ,Right aTy ,Left (Either.lefts vArgs !! 2) ]) -- - Sub-vectors "Clash.Sized.Vector.tail" -- :: Vec (n+1) a -> Vec n a | isSubj , [DC _ vArgs] <- args -> reduceWHNF (Either.lefts vArgs !! 2) "Clash.Sized.Vector.init" -- :: Vec (n+1) a -> Vec n a | isSubj , [DC consCon vArgs] <- args , (Right _ : Right aTy : Right nTy : _) <- vArgs , Right n <- runExcept (tyNatSize tcm nTy) -> if n == 0 then reduceWHNF (Either.lefts vArgs !! 2) else reduce $ mkVecCons consCon aTy n (Either.lefts vArgs !! 1) (mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n-1))) ,Right aTy ,Left (Either.lefts vArgs !! 2)]) "Clash.Sized.Vector.select" -- :: (CmpNat (i+s) (s*n) ~ GT) => SNat f -> SNat s -> SNat n -> Vec (f + i) a -> Vec n a | isSubj , iTy : sTy : nTy : fTy : aTy : _ <- tys , eq : f : s : n : xs : _ <- args , Right n' <- runExcept (tyNatSize tcm nTy) , Right f' <- runExcept (tyNatSize tcm fTy) , Right i' <- runExcept (tyNatSize tcm iTy) , Right s' <- runExcept (tyNatSize tcm sTy) , DC _ vArgs <- xs -> case n' of 0 -> reduce (mkVecNil nilCon aTy) _ -> case f' of 0 -> let splitAtCall = mkApps (splitAtPrim snatTcNm vecTcNm) [Right sTy ,Right (LitTy (NumTy (i'-s'))) ,Right aTy ,Left (valToTerm s) ,Left (valToTerm xs) ] fVecTy = mkTyConApp vecTcNm [sTy,aTy] iVecTy = mkTyConApp vecTcNm [LitTy (NumTy (i'-s')),aTy] -- Guaranteed no capture, so okay to use unsafe name generation fNm = mkUnsafeSystemName "fxs" 0 iNm = mkUnsafeSystemName "ixs" 1 fId = mkLocalId fVecTy fNm iId = mkLocalId iVecTy iNm tupPat = DataPat tupDc [] [fId,iId] iAlt = (tupPat, (Var iId)) in reduce $ mkVecCons consCon aTy n' (Either.lefts vArgs !! 1) $ mkApps (Prim nm pInfo) [Right (LitTy (NumTy (i'-s'))) ,Right sTy ,Right (LitTy (NumTy (n'-1))) ,Right (LitTy (NumTy 0)) ,Right aTy ,Left (valToTerm eq) ,Left (Literal (NaturalLiteral 0)) ,Left (valToTerm s) ,Left (Literal (NaturalLiteral (n'-1))) ,Left (Case splitAtCall iVecTy [iAlt]) ] _ -> let splitAtCall = mkApps (splitAtPrim snatTcNm vecTcNm) [Right fTy ,Right iTy ,Right aTy ,Left (valToTerm f) ,Left (valToTerm xs) ] fVecTy = mkTyConApp vecTcNm [fTy,aTy] iVecTy = mkTyConApp vecTcNm [iTy,aTy] -- Guaranteed no capture, so okay to use unsafe name generation fNm = mkUnsafeSystemName "fxs" 0 iNm = mkUnsafeSystemName "ixs" 1 fId = mkLocalId fVecTy fNm iId = mkLocalId iVecTy iNm tupPat = DataPat tupDc [] [fId,iId] iAlt = (tupPat, (Var iId)) in reduceWHNF $ mkApps (Prim nm pInfo) [Right iTy ,Right sTy ,Right nTy ,Right (LitTy (NumTy 0)) ,Right aTy ,Left (valToTerm eq) ,Left (Literal (NaturalLiteral 0)) ,Left (valToTerm s) ,Left (valToTerm n) ,Left (Case splitAtCall iVecTy [iAlt]) ] where (tyArgs,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty Just vecTc = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc TyConApp snatTcNm _ = tyView (Either.rights tyArgs !! 1) tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2) (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc -- - Splitting "Clash.Sized.Vector.splitAt" -- :: SNat m -> Vec (m + n) a -> (Vec m a, Vec n a) | isSubj , DC snatDc (Right mTy:_) <- head args , Right m <- runExcept (tyNatSize tcm mTy) -> let _:nTy:aTy:_ = tys -- Get the tuple data-constructor ty1 = piResultTys tcm ty tys (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty1 (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc -- Get the vector data-constructors TyConApp vecTcNm _ = tyView (head tyArgs) Just vecTc = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc -- Recursive call to @splitAt@ splitAtRec v = mkApps (Prim nm pInfo) [Right (LitTy (NumTy (m-1))) ,Right nTy ,Right aTy ,Left (mkApps (Data snatDc) [ Right (LitTy (NumTy (m-1))) , Left (Literal (NaturalLiteral (m-1)))]) ,Left v ] -- Projection either the first or second field of the recursive -- call to @splitAt@ splitAtSelR v = Case (splitAtRec v) m1VecTy = mkTyConApp vecTcNm [LitTy (NumTy (m-1)),aTy] nVecTy = mkTyConApp vecTcNm [nTy,aTy] -- Guaranteed no capture, so okay to use unsafe name generation lNm = mkUnsafeSystemName "l" 0 rNm = mkUnsafeSystemName "r" 1 lId = mkLocalId m1VecTy lNm rId = mkLocalId nVecTy rNm tupPat = DataPat tupDc [] [lId,rId] lAlt = (tupPat, (Var lId)) rAlt = (tupPat, (Var rId)) in case m of -- (Nil,v) 0 -> reduce $ mkApps (Data tupDc) $ (map Right tyArgs) ++ [ Left (mkVecNil nilCon aTy) , Left (valToTerm (last args)) ] -- (x:xs) <- v m' | DC _ vArgs <- last args -- (x:fst (splitAt (m-1) xs),snd (splitAt (m-1) xs)) -> reduce $ mkApps (Data tupDc) $ (map Right tyArgs) ++ [ Left (mkVecCons consCon aTy m' (Either.lefts vArgs !! 1) (splitAtSelR (Either.lefts vArgs !! 2) m1VecTy [lAlt])) , Left (splitAtSelR (Either.lefts vArgs !! 2) nVecTy [rAlt]) ] -- v doesn't reduce to a data-constructor _ -> Nothing "Clash.Sized.Vector.unconcat" -- :: KnownNat n => SNamt m -> Vec (n * m) a -> Vec n (Vec m a) | isSubj , kn : snat : v : _ <- args , nTy : mTy : aTy :_ <- tys , Lit (NaturalLiteral n) <- kn -> let ( Either.rights -> argTys, tyView -> TyConApp vecTcNm _) = splitFunForallTy ty Just vecTc = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2) (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc TyConApp snatTcNm _ = tyView (argTys !! 1) n1mTy = mkTyConApp typeNatMul [mkTyConApp typeNatSub [nTy,LitTy (NumTy 1)] ,mTy] splitAtCall = mkApps (splitAtPrim snatTcNm vecTcNm) [Right mTy ,Right n1mTy ,Right aTy ,Left (valToTerm snat) ,Left (valToTerm v) ] mVecTy = mkTyConApp vecTcNm [mTy,aTy] n1mVecTy = mkTyConApp vecTcNm [n1mTy,aTy] -- Guaranteed no capture, so okay to use unsafe name generation asNm = mkUnsafeSystemName "as" 0 bsNm = mkUnsafeSystemName "bs" 1 asId = mkLocalId mVecTy asNm bsId = mkLocalId n1mVecTy bsNm tupPat = DataPat tupDc [] [asId,bsId] asAlt = (tupPat, (Var asId)) bsAlt = (tupPat, (Var bsId)) in case n of 0 -> reduce (mkVecNil nilCon mVecTy) _ -> reduce $ mkVecCons consCon mVecTy n (Case splitAtCall mVecTy [asAlt]) (mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n-1))) ,Right mTy ,Right aTy ,Left (Literal (NaturalLiteral (n-1))) ,Left (valToTerm snat) ,Left (Case splitAtCall n1mVecTy [bsAlt])]) -- Construction -- - initialisation "Clash.Sized.Vector.replicate" -- :: SNat n -> a -> Vec n a | isSubj , let ty' = piResultTys tcm ty tys , let (_,resTy) = splitFunForallTy ty' , (TyConApp vecTcNm [lenTy,argTy]) <- tyView resTy , Right len <- runExcept (tyNatSize tcm lenTy) -> let (Just vecTc) = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc in reduce $ mkVec nilCon consCon argTy len (replicate (fromInteger len) (valToTerm (last args))) -- - Concatenation "Clash.Sized.Vector.++" -- :: Vec n a -> Vec m a -> Vec (n + m) a | isSubj , DC dc vArgs <- head args , Right nTy : Right aTy : _ <- vArgs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (valToTerm (last args)) n' | (_ : _ : mTy : _) <- tys , Right m <- runExcept (tyNatSize tcm mTy) -> -- x : (xs ++ ys) reduce $ mkVecCons dc aTy (n' + m) (Either.lefts vArgs !! 1) (mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n'-1))) ,Right aTy ,Right mTy ,Left (Either.lefts vArgs !! 2) ,Left (valToTerm (last args)) ]) _ -> Nothing "Clash.Sized.Vector.concat" -- :: Vec n (Vec m a) -> Vec (n * m) a | isSubj , (nTy : mTy : aTy : _) <- tys , (xs : _) <- args , DC dc vArgs <- xs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (mkVecNil dc aTy) _ | _ : h' : t : _ <- Either.lefts vArgs , (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty -> reduceWHNF $ mkApps (vecAppendPrim vecTcNm) [Right mTy ,Right aTy ,Right $ mkTyConApp typeNatMul [mkTyConApp typeNatSub [nTy,LitTy (NumTy 1)], mTy] ,Left h' ,Left $ mkApps (Prim nm pInfo) [ Right (LitTy (NumTy (n-1))) , Right mTy , Right aTy , Left t ] ] _ -> Nothing -- Modifying vectors "Clash.Sized.Vector.replace_int" -- :: KnownNat n => Vec n a -> Int -> a -> Vec n a | nTy : aTy : _ <- tys , _ : xs : i : a : _ <- args , DC intDc [Left (Literal (IntLiteral i'))] <- i -> if i' < 0 then Nothing else case xs of DC vecTcNm vArgs -> case runExcept (tyNatSize tcm nTy) of Right 0 -> Nothing Right n' -> if i' == 0 then reduce (mkVecCons vecTcNm aTy n' (valToTerm a) (Either.lefts vArgs !! 2)) else reduce $ mkVecCons vecTcNm aTy n' (Either.lefts vArgs !! 1) (mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n'-1))) ,Right aTy ,Left (Literal (NaturalLiteral (n'-1))) ,Left (Either.lefts vArgs !! 2) ,Left (mkApps (Data intDc) [Left (Literal (IntLiteral (i'-1)))]) ,Left (valToTerm a) ]) _ -> Nothing _ -> Nothing "Clash.Transformations.eqInt" | [ DC _ [Left (Literal (IntLiteral i))] , DC _ [Left (Literal (IntLiteral j))] ] <- args -> reduce (boolToBoolLiteral tcm ty (i == j)) -- - specialized permutations "Clash.Sized.Vector.reverse" -- :: Vec n a -> Vec n a | isSubj , nTy : aTy : _ <- tys , [DC vecDc vArgs] <- args -> case runExcept (tyNatSize tcm nTy) of Right 0 -> reduce (mkVecNil vecDc aTy) Right n | (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty , let (Just vecTc) = lookupUniqMap vecTcNm tcm , let [nilCon,consCon] = tyConDataCons vecTc -> reduceWHNF $ mkApps (vecAppendPrim vecTcNm) [Right (LitTy (NumTy (n-1))) ,Right aTy ,Right (LitTy (NumTy 1)) ,Left (mkApps (Prim nm pInfo) [Right (LitTy (NumTy (n-1))) ,Right aTy ,Left (Either.lefts vArgs !! 2) ]) ,Left (mkVec nilCon consCon aTy 1 [Either.lefts vArgs !! 1]) ] _ -> Nothing "Clash.Sized.Vector.transpose" -- :: KnownNat n => Vec m (Vec n a) -> Vec n (Vec m a) | isSubj , nTy : mTy : aTy : _ <- tys , kn : xss : _ <- args , (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty , DC _ vArgs <- xss , Right n <- runExcept (tyNatSize tcm nTy) , Right m <- runExcept (tyNatSize tcm mTy) -> case m of 0 -> let (Just vecTc) = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc in reduce $ mkVec nilCon consCon (mkTyConApp vecTcNm [mTy,aTy]) n (replicate (fromInteger n) (mkVec nilCon consCon aTy 0 [])) m' -> let (Just vecTc) = lookupUniqMap vecTcNm tcm [_,consCon] = tyConDataCons vecTc Just (consCoTy : _) = dataConInstArgTys consCon [mTy,aTy,LitTy (NumTy (m'-1))] in reduceWHNF $ mkApps (vecZipWithPrim vecTcNm) [ Right aTy , Right (mkTyConApp vecTcNm [LitTy (NumTy (m'-1)),aTy]) , Right (mkTyConApp vecTcNm [mTy,aTy]) , Right nTy , Left (mkApps (Data consCon) [Right mTy ,Right aTy ,Right (LitTy (NumTy (m'-1))) ,Left (primCo consCoTy) ]) , Left (Either.lefts vArgs !! 1) , Left (mkApps (Prim nm pInfo) [ Right nTy , Right (LitTy (NumTy (m'-1))) , Right aTy , Left (valToTerm kn) , Left (Either.lefts vArgs !! 2) ]) ] "Clash.Sized.Vector.rotateLeftS" -- :: KnownNat n => Vec n a -> SNat d -> Vec n a | nTy : aTy : _ : _ <- tys , kn : xs : d : _ <- args , DC dc vArgs <- xs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (mkVecNil dc aTy) n' | DC snatDc [_,Left d'] <- d , (h2,[],Literal (NaturalLiteral d2)) <- whnf reduceConstant tcm isSubj (h,[],d') -> case (d2 `mod` n) of 0 -> reduce (valToTerm xs) d3 -> let (_,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty (Just vecTc) = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc in reduceWHNF' h2 $ mkApps (Prim nm pInfo) [Right nTy ,Right aTy ,Right (LitTy (NumTy (d3-1))) ,Left (valToTerm kn) ,Left (mkApps (vecAppendPrim vecTcNm) [Right (LitTy (NumTy (n'-1))) ,Right aTy ,Right (LitTy (NumTy 1)) ,Left (Either.lefts vArgs !! 2) ,Left (mkVec nilCon consCon aTy 1 [Either.lefts vArgs !! 1])]) ,Left (mkApps (Data snatDc) [Right (LitTy (NumTy (d3-1))) ,Left (Literal (NaturalLiteral (d3-1)))]) ] _ -> Nothing "Clash.Sized.Vector.rotateRightS" -- :: KnownNat n => Vec n a -> SNat d -> Vec n a | isSubj , nTy : aTy : _ : _ <- tys , kn : xs : d : _ <- args , DC dc _ <- xs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (mkVecNil dc aTy) n' | DC snatDc [_,Left d'] <- d , (h2,[],Literal (NaturalLiteral d2)) <- whnf reduceConstant tcm isSubj (h,[],d') -> case (d2 `mod` n) of 0 -> reduce (valToTerm xs) d3 -> let (_,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty in reduceWHNF' h2 $ mkApps (Prim nm pInfo) [Right nTy ,Right aTy ,Right (LitTy (NumTy (d3-1))) ,Left (valToTerm kn) ,Left (mkVecCons dc aTy n (mkApps (vecLastPrim vecTcNm) [Right (LitTy (NumTy (n'-1))) ,Right aTy ,Left (valToTerm xs)]) (mkApps (vecInitPrim vecTcNm) [Right (LitTy (NumTy (n'-1))) ,Right aTy ,Left (valToTerm xs)])) ,Left (mkApps (Data snatDc) [Right (LitTy (NumTy (d3-1))) ,Left (Literal (NaturalLiteral (d3-1)))]) ] _ -> Nothing -- Element-wise operations -- - mapping "Clash.Sized.Vector.map" -- :: (a -> b) -> Vec n a -> Vec n b | isSubj , DC dc vArgs <- args !! 1 , aTy : bTy : nTy : _ <- tys , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (mkVecNil dc bTy) n' -> reduce $ mkVecCons dc bTy n' (mkApps (valToTerm (args !! 0)) [Left (Either.lefts vArgs !! 1)]) (mkApps (Prim nm pInfo) [Right aTy ,Right bTy ,Right (LitTy (NumTy (n' - 1))) ,Left (valToTerm (args !! 0)) ,Left (Either.lefts vArgs !! 2)]) "Clash.Sized.Vector.imap" -- :: forall n a b . KnownNat n => (Index n -> a -> b) -> Vec n a -> Vec n b | isSubj , nTy : aTy : bTy : _ <- tys , (tyArgs,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty , let (tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 1) , TyConApp indexTcNm _ <- tyView (Either.rights tyArgs' !! 0) , Right n <- runExcept (tyNatSize tcm nTy) , let iLit = mkIndexLit (Either.rights tyArgs' !! 0) nTy n 0 -> reduceWHNF $ mkApps (Prim "Clash.Sized.Vector.imap_go" (PrimInfo (vecImapGoTy vecTcNm indexTcNm) WorkNever)) [Right nTy ,Right nTy ,Right aTy ,Right bTy ,Left iLit ,Left (valToTerm (args !! 1)) ,Left (valToTerm (args !! 2)) ] "Clash.Sized.Vector.imap_go" | isSubj , nTy : mTy : aTy : bTy : _ <- tys , n : f : xs : _ <- args , DC dc vArgs <- xs , Right n' <- runExcept (tyNatSize tcm nTy) , Right m <- runExcept (tyNatSize tcm mTy) -> case m of 0 -> reduce (mkVecNil dc bTy) m' -> let (tyArgs,_) = splitFunForallTy ty TyConApp indexTcNm _ = tyView (Either.rights tyArgs !! 0) iLit = mkIndexLit (Either.rights tyArgs !! 0) nTy n' 1 in reduce $ mkVecCons dc bTy m' (mkApps (valToTerm f) [Left (valToTerm n),Left (Either.lefts vArgs !! 1)]) (mkApps (Prim nm pInfo) [Right nTy ,Right (LitTy (NumTy (m'-1))) ,Right aTy ,Right bTy ,Left (mkApps (Prim "Clash.Sized.Internal.Index.+#" (PrimInfo (indexAddTy indexTcNm) WorkVariable)) [Right nTy ,Left (Literal (NaturalLiteral n')) ,Left (valToTerm n) ,Left iLit ]) ,Left (valToTerm f) ,Left (Either.lefts vArgs !! 2) ]) -- - Zipping "Clash.Sized.Vector.zipWith" -- :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c | isSubj , aTy : bTy : cTy : nTy : _ <- tys , f : xs : ys : _ <- args , DC dc vArgs <- xs , (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (mkVecNil dc cTy) n' -> reduce $ mkVecCons dc cTy n' (mkApps (valToTerm f) [Left (Either.lefts vArgs !! 1) ,Left (mkApps (vecHeadPrim vecTcNm) [Right (LitTy (NumTy (n'-1))) ,Right bTy ,Left (valToTerm ys) ]) ]) (mkApps (Prim nm pInfo) [Right aTy ,Right bTy ,Right cTy ,Right (LitTy (NumTy (n' - 1))) ,Left (valToTerm f) ,Left (Either.lefts vArgs !! 2) ,Left (mkApps (vecTailPrim vecTcNm) [Right (LitTy (NumTy (n'-1))) ,Right bTy ,Left (valToTerm ys) ])]) -- Folding "Clash.Sized.Vector.foldr" -- :: (a -> b -> b) -> b -> Vec n a -> b | isSubj , aTy : bTy : nTy : _ <- tys , f : z : xs : _ <- args , DC _ vArgs <- xs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduce (valToTerm z) _ -> reduceWHNF $ mkApps (valToTerm f) [Left (Either.lefts vArgs !! 1) ,Left (mkApps (Prim nm pInfo) [Right aTy ,Right bTy ,Right (LitTy (NumTy (n-1))) ,Left (valToTerm f) ,Left (valToTerm z) ,Left (Either.lefts vArgs !! 2) ]) ] "Clash.Sized.Vector.fold" -- :: (a -> a -> a) -> Vec (n + 1) a -> a | isSubj , aTy : nTy : _ <- tys , f : vs : _ <- args , DC _ vArgs <- vs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> reduceWHNF (Either.lefts vArgs !! 1) _ -> let (tyArgs,_) = splitFunForallTy ty TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 1) tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2) (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc n' = n+1 m = n' `div` 2 n1 = n' - m mTy = LitTy (NumTy m) m'ty = LitTy (NumTy (m-1)) n1mTy = LitTy (NumTy n1) n1m'ty = LitTy (NumTy (n1-1)) splitAtCall = mkApps (Prim "Clash.Sized.Vector.fold_split" (PrimInfo (foldSplitAtTy vecTcNm) WorkNever)) [Right mTy ,Right n1mTy ,Right aTy ,Left (Literal (NaturalLiteral m)) ,Left (valToTerm vs) ] mVecTy = mkTyConApp vecTcNm [mTy,aTy] n1mVecTy = mkTyConApp vecTcNm [n1mTy,aTy] -- Guaranteed no capture, so okay to use unsafe name generation asNm = mkUnsafeSystemName "as" 0 bsNm = mkUnsafeSystemName "bs" 1 asId = mkLocalId mVecTy asNm bsId = mkLocalId n1mVecTy bsNm tupPat = DataPat tupDc [] [asId,bsId] asAlt = (tupPat, (Var asId)) bsAlt = (tupPat, (Var bsId)) in reduceWHNF $ mkApps (valToTerm f) [Left (mkApps (Prim nm pInfo) [Right aTy ,Right m'ty ,Left (valToTerm f) ,Left (Case splitAtCall mVecTy [asAlt]) ]) ,Left (mkApps (Prim nm pInfo) [Right aTy ,Right n1m'ty ,Left (valToTerm f) ,Left (Case splitAtCall n1mVecTy [bsAlt]) ]) ] "Clash.Sized.Vector.fold_split" -- :: Natural -> Vec (m + n) a -> (Vec m a, Vec n a) | isSubj , mTy : nTy : aTy : _ <- tys , Right m <- runExcept (tyNatSize tcm mTy) -> let -- Get the tuple data-constructor ty1 = piResultTys tcm ty tys (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty1 (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc -- Get the vector data-constructors TyConApp vecTcNm _ = tyView (head tyArgs) Just vecTc = lookupUniqMap vecTcNm tcm [nilCon,consCon] = tyConDataCons vecTc -- Recursive call to @splitAt@ splitAtRec v = mkApps (Prim nm pInfo) [Right (LitTy (NumTy (m-1))) ,Right nTy ,Right aTy ,Left (Literal (NaturalLiteral (m-1))) ,Left v ] -- Projection either the first or second field of the recursive -- call to @splitAt@ splitAtSelR v = Case (splitAtRec v) m1VecTy = mkTyConApp vecTcNm [LitTy (NumTy (m-1)),aTy] nVecTy = mkTyConApp vecTcNm [nTy,aTy] -- Guaranteed no capture, so okay to use unsafe name generation lNm = mkUnsafeSystemName "l" 0 rNm = mkUnsafeSystemName "r" 1 lId = mkLocalId m1VecTy lNm rId = mkLocalId nVecTy rNm tupPat = DataPat tupDc [] [lId,rId] lAlt = (tupPat, (Var lId)) rAlt = (tupPat, (Var rId)) in case m of -- (Nil,v) 0 -> reduce $ mkApps (Data tupDc) $ (map Right tyArgs) ++ [ Left (mkVecNil nilCon aTy) , Left (valToTerm (last args)) ] -- (x:xs) <- v m' | DC _ vArgs <- last args -- (x:fst (splitAt (m-1) xs),snd (splitAt (m-1) xs)) -> reduce $ mkApps (Data tupDc) $ (map Right tyArgs) ++ [ Left (mkVecCons consCon aTy m' (Either.lefts vArgs !! 1) (splitAtSelR (Either.lefts vArgs !! 2) m1VecTy [lAlt])) , Left (splitAtSelR (Either.lefts vArgs !! 2) nVecTy [rAlt]) ] -- v doesn't reduce to a data-constructor _ -> Nothing -- - Specialised folds "Clash.Sized.Vector.dfold" | isSubj , pTy : kTy : aTy : _ <- tys , _ : p : f : z : xs : _ <- args , DC _ vArgs <- xs , Right k' <- runExcept (tyNatSize tcm kTy) -> case k' of 0 -> reduce (valToTerm z) _ -> let (tyArgs,_) = splitFunForallTy ty (tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 2) TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0) Just snatTc = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc k'ty = LitTy (NumTy (k'-1)) in reduceWHNF $ mkApps (valToTerm f) [Right k'ty ,Left (mkApps (Data snatDc) [Right k'ty ,Left (Literal (NaturalLiteral (k'-1)))]) ,Left (Either.lefts vArgs !! 1) ,Left (mkApps (Prim nm pInfo) [Right pTy ,Right k'ty ,Right aTy ,Left (Literal (NaturalLiteral (k'-1))) ,Left (valToTerm p) ,Left (valToTerm f) ,Left (valToTerm z) ,Left (Either.lefts vArgs !! 2) ]) ] "Clash.Sized.Vector.dtfold" | isSubj , pTy : kTy : aTy : _ <- tys , _ : p : f : g : xs : _ <- args , DC _ vArgs <- xs , Right k' <- runExcept (tyNatSize tcm kTy) -> case k' of 0 -> reduceWHNF (mkApps (valToTerm f) [Left (Either.lefts vArgs !! 1)]) _ -> let (tyArgs,_) = splitFunForallTy ty TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 4) (tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 3) TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0) Just snatTc = lookupUniqMap snatTcNm tcm [snatDc] = tyConDataCons snatTc tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2) (Just tupTc) = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc k'ty = LitTy (NumTy (k'-1)) k2ty = LitTy (NumTy (2^(k'-1))) splitAtCall = mkApps (splitAtPrim snatTcNm vecTcNm) [Right k2ty ,Right k2ty ,Right aTy ,Left (mkApps (Data snatDc) [Right k2ty ,Left (Literal (NaturalLiteral (2^(k'-1))))]) ,Left (valToTerm xs) ] xsSVecTy = mkTyConApp vecTcNm [k2ty,aTy] -- Guaranteed no capture, so okay to use unsafe name generation xsLNm = mkUnsafeSystemName "xsL" 0 xsRNm = mkUnsafeSystemName "xsR" 1 xsLId = mkLocalId k2ty xsLNm xsRId = mkLocalId k2ty xsRNm tupPat = DataPat tupDc [] [xsLId,xsRId] asAlt = (tupPat, (Var xsLId)) bsAlt = (tupPat, (Var xsRId)) in reduceWHNF $ mkApps (valToTerm g) [Right k'ty ,Left (mkApps (Data snatDc) [Right k'ty ,Left (Literal (NaturalLiteral (k'-1)))]) ,Left (mkApps (Prim nm pInfo) [Right pTy ,Right k'ty ,Right aTy ,Left (Literal (NaturalLiteral (k'-1))) ,Left (valToTerm p) ,Left (valToTerm f) ,Left (valToTerm g) ,Left (Case splitAtCall xsSVecTy [asAlt])]) ,Left (mkApps (Prim nm pInfo) [Right pTy ,Right k'ty ,Right aTy ,Left (Literal (NaturalLiteral (k'-1))) ,Left (valToTerm p) ,Left (valToTerm f) ,Left (valToTerm g) ,Left (Case splitAtCall xsSVecTy [bsAlt])]) ] -- Misc "Clash.Sized.Vector.lazyV" | isSubj , nTy : aTy : _ <- tys , _ : xs : _ <- args , (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> let (Just vecTc) = lookupUniqMap vecTcNm tcm [nilCon,_] = tyConDataCons vecTc in reduce (mkVecNil nilCon aTy) n' -> let (Just vecTc) = lookupUniqMap vecTcNm tcm [_,consCon] = tyConDataCons vecTc in reduce $ mkVecCons consCon aTy n' (mkApps (vecHeadPrim vecTcNm) [ Right (LitTy (NumTy (n' - 1))) , Right aTy , Left (valToTerm xs) ]) (mkApps (Prim nm pInfo) [ Right (LitTy (NumTy (n' - 1))) , Right aTy , Left (Literal (NaturalLiteral (n'-1))) , Left (mkApps (vecTailPrim vecTcNm) [ Right (LitTy (NumTy (n'-1))) , Right aTy , Left (valToTerm xs) ]) ]) -- Traversable "Clash.Sized.Vector.traverse#" | isSubj , aTy : fTy : bTy : nTy : _ <- tys , apDict : f : xs : _ <- args , DC dc vArgs <- xs , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> let (pureF,ids') = runPEM (mkSelectorCase $(curLoc) is0 tcm (valToTerm apDict) 1 1) ids in reduceWHNF' (Heap gh gbl h' ids' is0) $ mkApps pureF [Right (mkTyConApp (vecTcNm) [nTy,bTy]) ,Left (mkVecNil dc bTy)] _ -> let ((fmapF,apF),ids') = flip runPEM ids $ do fDict <- mkSelectorCase $(curLoc) is0 tcm (valToTerm apDict) 1 0 fmapF' <- mkSelectorCase $(curLoc) is0 tcm fDict 1 0 apF' <- mkSelectorCase $(curLoc) is0 tcm (valToTerm apDict) 1 2 return (fmapF',apF') n'ty = LitTy (NumTy (n-1)) Just (consCoTy : _) = dataConInstArgTys dc [nTy,bTy,n'ty] in reduceWHNF' (Heap gh gbl h' ids' is0) $ mkApps apF [Right (mkTyConApp vecTcNm [n'ty,bTy]) ,Right (mkTyConApp vecTcNm [nTy,bTy]) ,Left (mkApps fmapF [Right bTy ,Right (mkFunTy (mkTyConApp vecTcNm [n'ty,bTy]) (mkTyConApp vecTcNm [nTy,bTy])) ,Left (mkApps (Data dc) [Right nTy ,Right bTy ,Right n'ty ,Left (primCo consCoTy)]) ,Left (mkApps (valToTerm f) [Left (Either.lefts vArgs !! 1)]) ]) ,Left (mkApps (Prim nm pInfo) [Right aTy ,Right fTy ,Right bTy ,Right n'ty ,Left (valToTerm apDict) ,Left (valToTerm f) ,Left (Either.lefts vArgs !! 2) ]) ] where (tyArgs,_) = splitFunForallTy ty TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 2) Heap gh gbl h' ids is0 = h -- BitPack "Clash.Sized.Vector.concatBitVector#" | isSubj , nTy : mTy : _ <- tys , _ : km : v : _ <- args , DC _ vArgs <- v , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> let resTyInfo = extractTySizeInfo tcm ty tys in reduce (mkBitVectorLit' resTyInfo 0 0) n' | Right m <- runExcept (tyNatSize tcm mTy) , (_,tyView -> TyConApp bvTcNm _) <- splitFunForallTy ty -> reduceWHNF $ mkApps (bvAppendPrim bvTcNm) [ Right (mkTyConApp typeNatMul [LitTy (NumTy (n'-1)),mTy]) , Right mTy , Left (Literal (NaturalLiteral ((n'-1)*m))) , Left (Either.lefts vArgs !! 1) , Left (mkApps (Prim nm pInfo) [ Right (LitTy (NumTy (n'-1))) , Right mTy , Left (Literal (NaturalLiteral (n'-1))) , Left (valToTerm km) , Left (Either.lefts vArgs !! 2) ]) ] _ -> Nothing "Clash.Sized.Vector.unconcatBitVector#" | isSubj , nTy : mTy : _ <- tys , _ : km : bv : _ <- args , (_,tyView -> TyConApp vecTcNm [_,bvMTy]) <- splitFunForallTy ty , TyConApp bvTcNm _ <- tyView bvMTy , Right n <- runExcept (tyNatSize tcm nTy) -> case n of 0 -> let (Just vecTc) = lookupUniqMap vecTcNm tcm [nilCon,_] = tyConDataCons vecTc in reduce (mkVecNil nilCon (mkTyConApp bvTcNm [mTy])) n' | Right m <- runExcept (tyNatSize tcm mTy) -> let Just vecTc = lookupUniqMap vecTcNm tcm [_,consCon] = tyConDataCons vecTc tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2) Just tupTc = lookupUniqMap tupTcNm tcm [tupDc] = tyConDataCons tupTc splitCall = mkApps (bvSplitPrim bvTcNm) [ Right (mkTyConApp typeNatMul [LitTy (NumTy (n'-1)),mTy]) , Right mTy , Left (Literal (NaturalLiteral ((n'-1)*m))) , Left (valToTerm bv) ] mBVTy = mkTyConApp bvTcNm [mTy] n1BVTy = mkTyConApp bvTcNm [mkTyConApp typeNatMul [LitTy (NumTy (n'-1)) ,mTy]] -- Guaranteed no capture, so okay to use unsafe name generation xNm = mkUnsafeSystemName "x" 0 bvNm = mkUnsafeSystemName "bv'" 1 xId = mkLocalId mBVTy xNm bvId = mkLocalId n1BVTy bvNm tupPat = DataPat tupDc [] [xId,bvId] xAlt = (tupPat, (Var xId)) bvAlt = (tupPat, (Var bvId)) in reduce $ mkVecCons consCon (mkTyConApp bvTcNm [mTy]) n' (Case splitCall mBVTy [xAlt]) (mkApps (Prim nm pInfo) [ Right (LitTy (NumTy (n'-1))) , Right mTy , Left (Literal (NaturalLiteral (n'-1))) , Left (valToTerm km) , Left (Case splitCall n1BVTy [bvAlt]) ]) _ -> Nothing _ -> Nothing where ty = primType pInfo checkNaturalRange1 nTy i f = checkNaturalRange nTy [i] (\[i'] -> naturalToNaturalLiteral (f i')) checkNaturalRange2 nTy i j f = checkNaturalRange nTy [i, j] (\[i', j'] -> naturalToNaturalLiteral (f i' j')) -- Check given integer's range. If any of them are less than zero, give up -- and return an undefined type. checkNaturalRange :: Type -- Type of GHC.Natural.Natural ^ -> [Integer] -> ([Natural] -> Term) -> Term checkNaturalRange nTy natsAsInts f = if any (<0) natsAsInts then undefinedTm nTy else f (map fromInteger natsAsInts) reduce :: Term -> Maybe (Heap, Stack, Term) reduce e = case isX e of Left msg -> trace (unlines ["Warning: Not evaluating constant expression:", show nm, "Because doing so generates an XException:", msg]) Nothing Right e' -> Just (h,k,e') reduceWHNF e = let (h2,[],e') = whnf reduceConstant tcm isSubj (h,[],e) in Just (h2,k,e') reduceWHNF' h' e = let (h2,[],e') = whnf reduceConstant tcm isSubj (h',[],e) in Just (h2,k,e') makeUndefinedIf :: Exception e => (e -> Bool) -> Term -> Term makeUndefinedIf wantToHandle tm = case unsafeDupablePerformIO $ tryJust selectException (evaluate $ force tm) of Right b -> b Left e -> trace (msg e) (undefinedTm resTy) where resTy = getResultTy tcm ty tys selectException e | wantToHandle e = Just e | otherwise = Nothing msg e = unlines ["Warning: caught exception: \"" ++ show e ++ "\" while trying to evaluate: " , showPpr (mkApps (Prim nm pInfo) (map (Left . valToTerm) args)) ] catchDivByZero = makeUndefinedIf (==DivideByZero) typedLiterals' :: (Value -> Maybe a) -> [Value] -> [a] typedLiterals' typedLiteral = mapMaybe typedLiteral doubleLiterals' :: [Value] -> [Rational] doubleLiterals' = typedLiterals' doubleLiteral where doubleLiteral x = case x of Lit (DoubleLiteral i) -> Just i _ -> Nothing floatLiterals' :: [Value] -> [Rational] floatLiterals' = typedLiterals' floatLiteral where floatLiteral x = case x of Lit (FloatLiteral i) -> Just i _ -> Nothing integerLiterals :: [Value] -> Maybe (Integer, Integer) integerLiterals args = case integerLiterals' args of [i,j] -> Just (i,j) _ -> Nothing naturalLiterals :: [Value] -> Maybe (Integer, Integer) naturalLiterals args = case naturalLiterals' args of [i,j] -> Just (i, j) _ -> Nothing integerLiterals' :: [Value] -> [Integer] integerLiterals' = typedLiterals' integerLiteral naturalLiterals' :: [Value] -> [Integer] naturalLiterals' = typedLiterals' naturalLiteral intLiterals :: [Value] -> Maybe (Integer,Integer) intLiterals args = case args of [Lit (IntLiteral i), Lit (IntLiteral j)] -> Just (i,j) _ -> Nothing intLiterals' :: [Value] -> [Integer] intLiterals' = typedLiterals' intLiteral where intLiteral x = case x of Lit (IntLiteral i) -> Just i _ -> Nothing intCLiteral :: Value -> Maybe Integer intCLiteral (DC _ [Left (Literal (IntLiteral i))]) = Just i intCLiteral _ = Nothing intCLiterals :: [Value] -> Maybe (Integer, Integer) intCLiterals (a1:a2:_) = liftA2 (,) (intCLiteral a1) (intCLiteral a2) intCLiterals _ = Nothing intCLiterals' :: [Value] -> [Integer] intCLiterals' = catMaybes . map intCLiteral mkIntCLiteral :: HasCallStack => Value -- ^ Some existing intC literal. To construct a new intC literal, this -- function needs the dataconstructor. -> Integer -- ^ New value of intC literal -> Term mkIntCLiteral (DC dc [Left (Literal (IntLiteral _))]) i = App (Data dc) (Literal (IntLiteral i)) mkIntCLiteral v _i = error $ "Report as bug: mkIntCLiteral was called with wrong value: " ++ show v wordLiterals :: [Value] -> Maybe (Integer,Integer) wordLiterals args = case args of [Lit (WordLiteral i), Lit (WordLiteral j)] -> Just (i,j) _ -> Nothing wordLiterals' :: [Value] -> [Integer] wordLiterals' = typedLiterals' wordLiteral where wordLiteral x = case x of Lit (WordLiteral i) -> Just i _ -> Nothing charLiterals :: [Value] -> Maybe (Char,Char) charLiterals args = case args of [Lit (CharLiteral i), Lit (CharLiteral j)] -> Just (i,j) _ -> Nothing charLiterals' :: [Value] -> [Char] charLiterals' = typedLiterals' charLiteral where charLiteral x = case x of Lit (CharLiteral c) -> Just c _ -> Nothing sizedLiterals :: Text -> [Value] -> Maybe (Integer,Integer) sizedLiterals szCon args = case args of ([ PrimVal nm _ _ [_, Lit (IntegerLiteral i)] , PrimVal nm' _ _ [_, Lit (IntegerLiteral j)]]) | nm == szCon , nm' == szCon -> Just (i,j) _ -> Nothing sizedLiterals' :: Text -> [Value] -> [Integer] sizedLiterals' szCon = typedLiterals' (sizedLiteral szCon) sizedLiteral :: Text -> Value -> Maybe Integer sizedLiteral szCon val = case val of PrimVal nm _ _ [_, Lit (IntegerLiteral i)] | nm == szCon -> Just i _ -> Nothing bitLiterals :: [Value] -> [(Integer,Integer)] bitLiterals = map normalizeBit . typedLiterals' go where normalizeBit (msk,v) = (msk .&. 1, v .&. 1) go val = case val of PrimVal nm _ _ [Lit (IntegerLiteral m), Lit (IntegerLiteral i)] | nm == "Clash.Sized.Internal.BitVector.fromInteger##" -> Just (m,i) _ -> Nothing indexLiterals, signedLiterals, unsignedLiterals :: [Value] -> Maybe (Integer,Integer) indexLiterals = sizedLiterals "Clash.Sized.Internal.Index.fromInteger#" signedLiterals = sizedLiterals "Clash.Sized.Internal.Signed.fromInteger#" unsignedLiterals = sizedLiterals "Clash.Sized.Internal.Unsigned.fromInteger#" bitVectorLiterals :: [Value] -> Maybe ((Integer,Integer),(Integer,Integer)) bitVectorLiterals args = case args of ([ PrimVal nm _ _ [_, Lit (IntegerLiteral mi), Lit (IntegerLiteral i)] , PrimVal nm' _ _ [_, Lit (IntegerLiteral mj), Lit (IntegerLiteral j)]]) | nm == "Clash.Sized.Internal.BitVector.fromInteger#" , nm' == "Clash.Sized.Internal.BitVector.fromInteger#" -> Just ((mi,i),(mj,j)) _ -> Nothing indexLiterals', signedLiterals', unsignedLiterals' :: [Value] -> [Integer] indexLiterals' = sizedLiterals' "Clash.Sized.Internal.Index.fromInteger#" signedLiterals' = sizedLiterals' "Clash.Sized.Internal.Signed.fromInteger#" unsignedLiterals' = sizedLiterals' "Clash.Sized.Internal.Unsigned.fromInteger#" bitVectorLiterals' :: [Value] -> [(Integer,Integer)] bitVectorLiterals' = mapMaybe go where go :: Value -> Maybe (Integer,Integer) go val = case val of PrimVal nm _ _ [_, Lit (IntegerLiteral mi), Lit (IntegerLiteral i)] | nm == "Clash.Sized.Internal.BitVector.fromInteger#" -> Just (mi, i) _ -> Nothing toBV :: (Integer,Integer) -> BitVector n toBV = uncurry BV splitBV :: BitVector n -> (Integer,Integer) splitBV (BV msk val) = (msk,val) valArgs :: Value -> Maybe [Term] valArgs (PrimVal _ _ _ vs) = Just (map valToTerm vs) valArgs (DC _ args) = Just (Either.lefts args) valArgs _ = Nothing -- Tries to match literal arguments to a function like -- (Unsigned.shiftL# :: forall n. KnownNat n => Unsigned n -> Int -> Unsigned n) sizedLitIntLit :: Text -> TyConMap -> [Type] -> [Value] -> Maybe (Type,Integer,Integer,Integer) sizedLitIntLit szCon tcm tys args | Just (nTy,kn) <- extractKnownNat tcm tys , [_ ,PrimVal nm _ _ [_,Lit (IntegerLiteral i)] ,valArgs -> Just [Literal (IntLiteral j)] ] <- args , nm == szCon = Just (nTy,kn,i,j) | otherwise = Nothing signedLitIntLit, unsignedLitIntLit :: TyConMap -> [Type] -> [Value] -> Maybe (Type,Integer,Integer,Integer) signedLitIntLit = sizedLitIntLit "Clash.Sized.Internal.Signed.fromInteger#" unsignedLitIntLit = sizedLitIntLit "Clash.Sized.Internal.Unsigned.fromInteger#" bitVectorLitIntLit :: TyConMap -> [Type] -> [Value] -> Maybe (Type,Integer,(Integer,Integer),Integer) bitVectorLitIntLit tcm tys args | Just (nTy,kn) <- extractKnownNat tcm tys , [_ ,PrimVal nm _ _ [_,Lit (IntegerLiteral m),Lit (IntegerLiteral i)] ,valArgs -> Just [Literal (IntLiteral j)] ] <- args , nm == "Clash.Sized.Internal.BitVector.fromInteger#" = Just (nTy,kn,(m,i),j) | otherwise = Nothing -- From an argument list to function of type -- forall n. KnownNat n => ... -- extract (nTy,nInt) -- where nTy is the Type of n -- and nInt is its value as an Integer extractKnownNat :: TyConMap -> [Type] -> Maybe (Type, Integer) extractKnownNat tcm tys = case tys of nTy : _ | Right nInt <- runExcept (tyNatSize tcm nTy) -> Just (nTy, nInt) _ -> Nothing extractKnownNatVal :: TyConMap -> [Type] -> Maybe Integer extractKnownNatVal tcm tys = fmap snd (extractKnownNat tcm tys) -- From an argument list to function of type -- forall n m o .. . (KnownNat n, KnownNat m, KnownNat o, ..) => ... -- extract [(nTy,nInt), (mTy,mInt), (oTy,oInt)] -- where nTy is the Type of n -- and nInt is its value as an Integer extractKnownNats :: TyConMap -> [Type] -> [(Type, Integer)] extractKnownNats tcm tys = catMaybes (map (extractKnownNat tcm . pure) tys) extractKnownNatVals :: TyConMap -> [Type] -> [Integer] extractKnownNatVals tcm tys = map snd (extractKnownNats tcm tys) -- Construct a constant term of a sized type mkSizedLit :: (Type -> Term) -- ^ Type constructor? -> Type -- ^ Result type -> Type -- ^ forall n. -> Integer -- ^ KnownNat n -> Integer -- ^ Value to construct -> Term mkSizedLit conPrim ty nTy kn val = mkApps (conPrim sTy) [ Right nTy , Left (Literal (NaturalLiteral kn)) , Left (Literal (IntegerLiteral val)) ] where (_,sTy) = splitFunForallTy ty mkBitLit :: Type -- ^ Result type -> Integer -- ^ Mask -> Integer -- ^ Value -> Term mkBitLit ty msk val = mkApps (bConPrim sTy) [ Left (Literal (IntegerLiteral (msk .&. 1))) , Left (Literal (IntegerLiteral (val .&. 1)))] where (_,sTy) = splitFunForallTy ty mkSignedLit, mkUnsignedLit :: Type -- Result type -> Type -- forall n. -> Integer -- KnownNat n -> Integer -- Value -> Term mkSignedLit = mkSizedLit signedConPrim mkUnsignedLit = mkSizedLit unsignedConPrim mkBitVectorLit :: Type -- ^ Result type -> Type -- ^ forall n. -> Integer -- ^ KnownNat n -> Integer -- ^ mask -> Integer -- ^ Value to construct -> Term mkBitVectorLit ty nTy kn mask val = mkApps (bvConPrim sTy) [Right nTy ,Left (Literal (NaturalLiteral kn)) ,Left (Literal (IntegerLiteral mask)) ,Left (Literal (IntegerLiteral val))] where (_,sTy) = splitFunForallTy ty mkIndexLitE :: Type -- ^ Result type -> Type -- ^ forall n. -> Integer -- ^ KnownNat n -> Integer -- ^ Value to construct -> Either Term Term -- ^ Either undefined (if given value is out of bounds of given type) or term -- representing literal mkIndexLitE rTy nTy kn val | val >= 0 , val < kn = Right (mkSizedLit indexConPrim rTy nTy kn val) | otherwise = Left (undefinedTm (mkTyConApp indexTcNm [nTy])) where TyConApp indexTcNm _ = tyView (snd (splitFunForallTy rTy)) mkIndexLit :: Type -- ^ Result type -> Type -- ^ forall n. -> Integer -- ^ KnownNat n -> Integer -- ^ Value to construct -> Term mkIndexLit rTy nTy kn val = either id id (mkIndexLitE rTy nTy kn val) -- | Construct a constant term of a sized type mkSizedLit' :: (Type -> Term) -- ^ Type constructor? -> (Type, Type, Integer) -- ^ (result type, forall n., KnownNat n) -> Integer -- ^ Value to construct -> Term mkSizedLit' conPrim (ty,nTy,kn) = mkSizedLit conPrim ty nTy kn mkSignedLit', mkUnsignedLit' :: (Type, Type, Integer) -- ^ (result type, forall n., KnownNat n) -> Integer -- ^ Value to construct -> Term mkSignedLit' = mkSizedLit' signedConPrim mkUnsignedLit' = mkSizedLit' unsignedConPrim mkBitVectorLit' :: (Type, Type, Integer) -- ^ (result type, forall n., KnownNat n) -> Integer -- ^ Mask -> Integer -- ^ Value -> Term mkBitVectorLit' (ty,nTy,kn) = mkBitVectorLit ty nTy kn mkIndexLit' :: (Type, Type, Integer) -- ^ (result type, forall n., KnownNat n) -> Integer -- ^ value -> Term mkIndexLit' (rTy,nTy,kn) = mkIndexLit rTy nTy kn -- | Create a vector of supplied elements mkVecCons :: DataCon -- ^ The Cons (:>) constructor -> Type -- ^ Element type -> Integer -- ^ Length of the vector -> Term -- ^ head of the vector -> Term -- ^ tail of the vector -> Term mkVecCons consCon resTy n h t = mkApps (Data consCon) [Right (LitTy (NumTy n)) ,Right resTy ,Right (LitTy (NumTy (n-1))) ,Left (primCo consCoTy) ,Left h ,Left t] where args = dataConInstArgTys consCon [LitTy (NumTy n),resTy,LitTy (NumTy (n-1))] Just (consCoTy : _) = args -- | Create an empty vector mkVecNil :: DataCon -- ^ The Nil constructor -> Type -- ^ The element type -> Term mkVecNil nilCon resTy = mkApps (Data nilCon) [Right (LitTy (NumTy 0)) ,Right resTy ,Left (primCo nilCoTy) ] where args = dataConInstArgTys nilCon [LitTy (NumTy 0),resTy] Just (nilCoTy : _ ) = args boolToIntLiteral :: Bool -> Term boolToIntLiteral b = if b then Literal (IntLiteral 1) else Literal (IntLiteral 0) boolToBoolLiteral :: TyConMap -> Type -> Bool -> Term boolToBoolLiteral tcm ty b = let (_,tyView -> TyConApp boolTcNm []) = splitFunForallTy ty (Just boolTc) = lookupUniqMap boolTcNm tcm [falseDc,trueDc] = tyConDataCons boolTc retDc = if b then trueDc else falseDc in Data retDc charToCharLiteral :: Char -> Term charToCharLiteral = Literal . CharLiteral integerToIntLiteral :: Integer -> Term integerToIntLiteral = Literal . IntLiteral . toInteger . (fromInteger :: Integer -> Int) -- for overflow behavior integerToWordLiteral :: Integer -> Term integerToWordLiteral = Literal . WordLiteral . toInteger . (fromInteger :: Integer -> Word) -- for overflow behavior integerToIntegerLiteral :: Integer -> Term integerToIntegerLiteral = Literal . IntegerLiteral naturalToNaturalLiteral :: Natural -> Term naturalToNaturalLiteral = Literal . NaturalLiteral . toInteger bConPrim :: Type -> Term bConPrim (tyView -> TyConApp bTcNm _) = Prim "Clash.Sized.Internal.BitVector.fromInteger##" (PrimInfo funTy WorkNever) where funTy = foldr1 mkFunTy [integerPrimTy,integerPrimTy,mkTyConApp bTcNm []] bConPrim _ = error $ $(curLoc) ++ "called with incorrect type" bvConPrim :: Type -> Term bvConPrim (tyView -> TyConApp bvTcNm _) = Prim "Clash.Sized.Internal.BitVector.fromInteger#" (PrimInfo (ForAllTy nTV funTy) WorkNever) where funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,integerPrimTy,mkTyConApp bvTcNm [nVar]] nName = mkUnsafeSystemName "n" 0 nVar = VarTy nTV nTV = mkTyVar typeNatKind nName bvConPrim _ = error $ $(curLoc) ++ "called with incorrect type" indexConPrim :: Type -> Term indexConPrim (tyView -> TyConApp indexTcNm _) = Prim "Clash.Sized.Internal.Index.fromInteger#" (PrimInfo (ForAllTy nTV funTy) WorkNever) where funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp indexTcNm [nVar]] nName = mkUnsafeSystemName "n" 0 nVar = VarTy nTV nTV = mkTyVar typeNatKind nName indexConPrim _ = error $ $(curLoc) ++ "called with incorrect type" signedConPrim :: Type -> Term signedConPrim (tyView -> TyConApp signedTcNm _) = Prim "Clash.Sized.Internal.Signed.fromInteger#" (PrimInfo (ForAllTy nTV funTy) WorkNever) where funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp signedTcNm [nVar]] nName = mkUnsafeSystemName "n" 0 nVar = VarTy nTV nTV = mkTyVar typeNatKind nName signedConPrim _ = error $ $(curLoc) ++ "called with incorrect type" unsignedConPrim :: Type -> Term unsignedConPrim (tyView -> TyConApp unsignedTcNm _) = Prim "Clash.Sized.Internal.Unsigned.fromInteger#" (PrimInfo (ForAllTy nTV funTy) WorkNever) where funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp unsignedTcNm [nVar]] nName = mkUnsafeSystemName "n" 0 nVar = VarTy nTV nTV = mkTyVar typeNatKind nName unsignedConPrim _ = error $ $(curLoc) ++ "called with incorrect type" -- | Lift a binary function over 'Unsigned' values to be used as literal Evaluator -- -- liftUnsigned2 :: KnownNat n => (Unsigned n -> Unsigned n -> Unsigned n) -> Type -> TyConMap -> [Type] -> [Value] -> (Proxy n -> Maybe Term) liftUnsigned2 = liftSized2 unsignedLiterals' mkUnsignedLit liftSigned2 :: KnownNat n => (Signed n -> Signed n -> Signed n) -> Type -> TyConMap -> [Type] -> [Value] -> (Proxy n -> Maybe Term) liftSigned2 = liftSized2 signedLiterals' mkSignedLit liftBitVector2 :: KnownNat n => (BitVector n -> BitVector n -> BitVector n) -> Type -> TyConMap -> [Type] -> [Value] -> (Proxy n -> Maybe Term) liftBitVector2 f ty tcm tys args _p | Just (nTy, kn) <- extractKnownNat tcm tys , [i,j] <- bitVectorLiterals' args = let BV mask val = f (toBV i) (toBV j) in Just $ mkBitVectorLit ty nTy kn mask val | otherwise = Nothing liftBitVector2Bool :: KnownNat n => (BitVector n -> BitVector n -> Bool) -> Type -> TyConMap -> [Value] -> (Proxy n -> Maybe Term) liftBitVector2Bool f ty tcm args _p | [i,j] <- bitVectorLiterals' args = let val = f (toBV i) (toBV j) in Just $ boolToBoolLiteral tcm ty val | otherwise = Nothing liftSized2 :: (KnownNat n, Integral (sized n)) => ([Value] -> [Integer]) -- ^ literal argument extraction function -> (Type -> Type -> Integer -> Integer -> Term) -- ^ literal contruction function -> (sized n -> sized n -> sized n) -> Type -> TyConMap -> [Type] -> [Value] -> (Proxy n -> Maybe Term) liftSized2 extractLitArgs mkLit f ty tcm tys args p | Just (nTy, kn) <- extractKnownNat tcm tys , [i,j] <- extractLitArgs args = let val = runSizedF f i j p in Just $ mkLit ty nTy kn val | otherwise = Nothing -- | Helper to run a function over sized types on integers -- -- This only works on function of type (sized n -> sized n -> sized n) -- The resulting function must be executed with reifyNat runSizedF :: (KnownNat n, Integral (sized n)) => (sized n -> sized n -> sized n) -- ^ function to run -> Integer -- ^ first argument -> Integer -- ^ second argument -> (Proxy n -> Integer) runSizedF f i j _ = toInteger $ f (fromInteger i) (fromInteger j) extractTySizeInfo :: TyConMap -> Type -> [Type] -> (Type, Type, Integer) extractTySizeInfo tcm ty tys = (resTy,resSizeTy,resSize) where ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' TyConApp _ [resSizeTy] = tyView resTy Right resSize = runExcept (tyNatSize tcm resSizeTy) getResultTy :: TyConMap -> Type -> [Type] -> Type getResultTy tcm ty tys = resTy where ty' = piResultTys tcm ty tys (_,resTy) = splitFunForallTy ty' liftDDI :: (Double# -> Double# -> Int#) -> [Value] -> Maybe Term liftDDI f args = case doubleLiterals' args of [i,j] -> Just $ runDDI f i j _ -> Nothing liftDDD :: (Double# -> Double# -> Double#) -> [Value] -> Maybe Term liftDDD f args = case doubleLiterals' args of [i,j] -> Just $ runDDD f i j _ -> Nothing liftDD :: (Double# -> Double#) -> [Value] -> Maybe Term liftDD f args = case doubleLiterals' args of [i] -> Just $ runDD f i _ -> Nothing runDDI :: (Double# -> Double# -> Int#) -> Rational -> Rational -> Term runDDI f i j = let !(D# a) = fromRational i !(D# b) = fromRational j r = f a b in Literal . IntLiteral . toInteger $ I# r runDDD :: (Double# -> Double# -> Double#) -> Rational -> Rational -> Term runDDD f i j = let !(D# a) = fromRational i !(D# b) = fromRational j r = f a b in Literal . DoubleLiteral . toRational $ D# r runDD :: (Double# -> Double#) -> Rational -> Term runDD f i = let !(D# a) = fromRational i r = f a in Literal . DoubleLiteral . toRational $ D# r liftFFI :: (Float# -> Float# -> Int#) -> [Value] -> Maybe Term liftFFI f args = case floatLiterals' args of [i,j] -> Just $ runFFI f i j _ -> Nothing liftFFF :: (Float# -> Float# -> Float#) -> [Value] -> Maybe Term liftFFF f args = case floatLiterals' args of [i,j] -> Just $ runFFF f i j _ -> Nothing liftFF :: (Float# -> Float#) -> [Value] -> Maybe Term liftFF f args = case floatLiterals' args of [i] -> Just $ runFF f i _ -> Nothing runFFI :: (Float# -> Float# -> Int#) -> Rational -> Rational -> Term runFFI f i j = let !(F# a) = fromRational i !(F# b) = fromRational j r = f a b in Literal . IntLiteral . toInteger $ I# r runFFF :: (Float# -> Float# -> Float#) -> Rational -> Rational -> Term runFFF f i j = let !(F# a) = fromRational i !(F# b) = fromRational j r = f a b in Literal . FloatLiteral . toRational $ F# r runFF :: (Float# -> Float#) -> Rational -> Term runFF f i = let !(F# a) = fromRational i r = f a in Literal . FloatLiteral . toRational $ F# r vecHeadPrim :: TyConName -- ^ Vec TyCon name -> Term vecHeadPrim vecTcNm = Prim "Clash.Sized.Vector.head" (PrimInfo (vecHeadTy vecTcNm) WorkNever) vecLastPrim :: TyConName -- ^ Vec TyCon name -> Term vecLastPrim vecTcNm = Prim "Clash.Sized.Vector.last" (PrimInfo (vecHeadTy vecTcNm) WorkNever) vecHeadTy :: TyConName -- ^ Vec TyCon name -> Type vecHeadTy vecNm = ForAllTy nTV ( ForAllTy aTV ( mkFunTy (mkTyConApp vecNm [mkTyConApp typeNatAdd [VarTy nTV ,LitTy (NumTy 1)] ,VarTy aTV ]) (VarTy aTV))) where aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 0) nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1) vecTailPrim :: TyConName -- ^ Vec TyCon name -> Term vecTailPrim vecTcNm = Prim "Clash.Sized.Vector.tail" (PrimInfo (vecTailTy vecTcNm) WorkNever) vecInitPrim :: TyConName -- ^ Vec TyCon name -> Term vecInitPrim vecTcNm = Prim "Clash.Sized.Vector.init" (PrimInfo (vecTailTy vecTcNm) WorkNever) vecTailTy :: TyConName -- ^ Vec TyCon name -> Type vecTailTy vecNm = ForAllTy nTV ( ForAllTy aTV ( mkFunTy (mkTyConApp vecNm [mkTyConApp typeNatAdd [VarTy nTV ,LitTy (NumTy 1)] ,VarTy aTV ]) (mkTyConApp vecNm [VarTy nTV ,VarTy aTV ]))) where nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0) aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 1) splitAtPrim :: TyConName -- ^ SNat TyCon name -> TyConName -- ^ Vec TyCon name -> Term splitAtPrim snatTcNm vecTcNm = Prim "Clash.Sized.Vector.splitAt" (PrimInfo (splitAtTy snatTcNm vecTcNm) WorkNever) splitAtTy :: TyConName -- ^ SNat TyCon name -> TyConName -- ^ Vec TyCon name -> Type splitAtTy snatNm vecNm = ForAllTy mTV ( ForAllTy nTV ( ForAllTy aTV ( mkFunTy (mkTyConApp snatNm [VarTy mTV]) (mkFunTy (mkTyConApp vecNm [mkTyConApp typeNatAdd [VarTy mTV ,VarTy nTV] ,VarTy aTV]) (mkTyConApp tupNm [mkTyConApp vecNm [VarTy mTV ,VarTy aTV] ,mkTyConApp vecNm [VarTy nTV ,VarTy aTV]]))))) where mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 0) nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1) aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 2) tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2) foldSplitAtTy :: TyConName -- ^ Vec TyCon name -> Type foldSplitAtTy vecNm = ForAllTy mTV ( ForAllTy nTV ( ForAllTy aTV ( mkFunTy naturalPrimTy (mkFunTy (mkTyConApp vecNm [mkTyConApp typeNatAdd [VarTy mTV ,VarTy nTV] ,VarTy aTV]) (mkTyConApp tupNm [mkTyConApp vecNm [VarTy mTV ,VarTy aTV] ,mkTyConApp vecNm [VarTy nTV ,VarTy aTV]]))))) where mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 0) nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1) aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 2) tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2) vecAppendPrim :: TyConName -- ^ Vec TyCon name -> Term vecAppendPrim vecNm = Prim "Clash.Sized.Vector.++" (PrimInfo (vecAppendTy vecNm) WorkNever) vecAppendTy :: TyConName -- ^ Vec TyCon name -> Type vecAppendTy vecNm = ForAllTy nTV ( ForAllTy aTV ( ForAllTy mTV ( mkFunTy (mkTyConApp vecNm [VarTy nTV ,VarTy aTV ]) (mkFunTy (mkTyConApp vecNm [VarTy mTV ,VarTy aTV ]) (mkTyConApp vecNm [mkTyConApp typeNatAdd [VarTy nTV ,VarTy mTV] ,VarTy aTV ]))))) where nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0) aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 1) mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 2) vecZipWithPrim :: TyConName -- ^ Vec TyCon name -> Term vecZipWithPrim vecNm = Prim "Clash.Sized.Vector.zipWith" (PrimInfo (vecAppendTy vecNm) WorkNever) vecZipWithTy :: TyConName -- ^ Vec TyCon name -> Type vecZipWithTy vecNm = ForAllTy aTV ( ForAllTy bTV ( ForAllTy cTV ( ForAllTy nTV ( mkFunTy (mkFunTy aTy (mkFunTy bTy cTy)) (mkFunTy (mkTyConApp vecNm [nTy,aTy]) (mkFunTy (mkTyConApp vecNm [nTy,bTy]) (mkTyConApp vecNm [nTy,cTy]))))))) where aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 0) bTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "b" 1) cTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "c" 2) nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 3) aTy = VarTy aTV bTy = VarTy bTV cTy = VarTy cTV nTy = VarTy nTV vecImapGoTy :: TyConName -- ^ Vec TyCon name -> TyConName -- ^ Index TyCon name -> Type vecImapGoTy vecTcNm indexTcNm = ForAllTy nTV ( ForAllTy mTV ( ForAllTy aTV ( ForAllTy bTV ( mkFunTy indexTy (mkFunTy fTy (mkFunTy vecATy vecBTy)))))) where nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0) mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 1) aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 2) bTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "b" 3) indexTy = mkTyConApp indexTcNm [nTy] nTy = VarTy nTV mTy = VarTy mTV fTy = mkFunTy indexTy (mkFunTy aTy bTy) aTy = VarTy aTV bTy = VarTy bTV vecATy = mkTyConApp vecTcNm [mTy,aTy] vecBTy = mkTyConApp vecTcNm [mTy,bTy] indexAddTy :: TyConName -- ^ Index TyCon name -> Type indexAddTy indexTcNm = ForAllTy nTV ( mkFunTy naturalPrimTy (mkFunTy indexTy (mkFunTy indexTy indexTy))) where nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0) indexTy = mkTyConApp indexTcNm [VarTy nTV] bvAppendPrim :: TyConName -- ^ BitVector TyCon Name -> Term bvAppendPrim bvTcNm = Prim "Clash.Sized.Internal.BitVector.++#" (PrimInfo (bvAppendTy bvTcNm) WorkNever) bvAppendTy :: TyConName -- ^ BitVector TyCon Name -> Type bvAppendTy bvNm = ForAllTy mTV ( ForAllTy nTV ( mkFunTy naturalPrimTy (mkFunTy (mkTyConApp bvNm [VarTy nTV]) (mkFunTy (mkTyConApp bvNm [VarTy mTV]) (mkTyConApp bvNm [mkTyConApp typeNatAdd [VarTy nTV ,VarTy mTV]]))))) where mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 0) nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1) bvSplitPrim :: TyConName -- ^ BitVector TyCon Name -> Term bvSplitPrim bvTcNm = Prim "Clash.Sized.Internal.BitVector.split#" (PrimInfo (bvSplitTy bvTcNm) WorkNever) bvSplitTy :: TyConName -- ^ BitVector TyCon Name -> Type bvSplitTy bvNm = ForAllTy nTV ( ForAllTy mTV ( mkFunTy naturalPrimTy (mkFunTy (mkTyConApp bvNm [mkTyConApp typeNatAdd [VarTy mTV ,VarTy nTV]]) (mkTyConApp tupNm [mkTyConApp bvNm [VarTy mTV] ,mkTyConApp bvNm [VarTy nTV]])))) where nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0) mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 1) tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2) typeNatAdd :: TyConName typeNatAdd = Name User "GHC.TypeNats.+" (getKey typeNatAddTyFamNameKey) wiredInSrcSpan typeNatMul :: TyConName typeNatMul = Name User "GHC.TypeNats.*" (getKey typeNatMulTyFamNameKey) wiredInSrcSpan typeNatSub :: TyConName typeNatSub = Name User "GHC.TypeNats.-" (getKey typeNatSubTyFamNameKey) wiredInSrcSpan ghcTyconToTyConName :: TyCon.TyCon -> TyConName ghcTyconToTyConName tc = Name User n' (getKey (TyCon.tyConUnique tc)) (getSrcSpan n) where n' = fromMaybe "_INTERNAL_" (modNameM n) `Text.append` ('.' `Text.cons` Text.pack occName) occName = occNameString $ nameOccName n n = TyCon.tyConName tc svoid :: (State# RealWorld -> State# RealWorld) -> IO () svoid m0 = IO (\s -> case m0 s of s' -> (# s', () #))