module Language.Clafer.Intermediate.ResolverInheritance where
import Control.Applicative
import Control.Lens ((^.), (&), (%%~), (.~), traverse)
import Control.Monad
import Control.Monad.Except
import Control.Monad.State
import Data.Maybe
import Data.Graph
import Data.Tree
import Data.List
import qualified Data.Map as Map
import Data.StringMap (StringMap)
import qualified Data.StringMap as SMap
import Prelude hiding (traverse)
import Language.ClaferT
import Language.Clafer.Common
import Language.Clafer.Front.AbsClafer
import Language.Clafer.Intermediate.Intclafer
import Language.Clafer.Intermediate.ResolverName
resolveNModule :: (IModule, GEnv) -> Resolve (IModule, GEnv)
resolveNModule (imodule, genv') =
do
let
unresolvedDecls = _mDecls imodule
abstractClafers = filter _isAbstract $ bfsClafers $ toClafers unresolvedDecls
resolvedDecls <- mapM (resolveNElement abstractClafers) unresolvedDecls
let
relocatedDecls = relocateTopLevelAbstractToParents resolvedDecls
uidClaferMap' = createUidIClaferMap imodule{_mDecls = relocatedDecls}
resolvedHierarchyDecls <- mapM (resolveHierarchy uidClaferMap') relocatedDecls
let
resolvedHierarchiesIModule = imodule{_mDecls = resolvedHierarchyDecls}
return
( resolvedHierarchiesIModule
, genv'{ sClafers = bfs toNodeShallow $ toClafers resolvedHierarchyDecls
, uidClaferMap = createUidIClaferMap resolvedHierarchiesIModule}
)
resolveNClafer :: [IClafer] -> IClafer -> Resolve IClafer
resolveNClafer abstractClafers clafer =
do
(super', superIClafer') <- resolveNSuper abstractClafers $ _super clafer
let
parentUID' =
case superIClafer' of
(Just superIClafer'') ->
if _isAbstract clafer && isTopLevel clafer && not (isTopLevel superIClafer'')
then _parentUID superIClafer''
else _parentUID clafer
Nothing -> _parentUID clafer
elements' <- mapM (resolveNElement abstractClafers) $ _elements clafer
return $ clafer {_super = super', _parentUID = parentUID', _elements = elements'}
resolveNSuper :: [IClafer] -> Maybe PExp -> Resolve (Maybe PExp, Maybe IClafer)
resolveNSuper _ Nothing = return (Nothing, Nothing)
resolveNSuper abstractClafers (Just (PExp _ pid' pos' (IClaferId _ id' _ _))) =
if isPrimitive id'
then throwError $ SemanticErr pos' $ "Primitive types are not allowed as super types: " ++ id'
else do
r <- resolveN pos' abstractClafers id'
(id'', [superClafer']) <- case r of
Nothing -> throwError $ SemanticErr pos' $ "No superclafer found: " ++ id'
Just m -> return m
return (Just $ PExp (Just $ TClafer [id'']) pid' pos' (IClaferId "" id'' (isTopLevel superClafer') (Just id''))
, Just superClafer')
resolveNSuper _ x = return (x, Nothing)
resolveNElement :: [IClafer] -> IElement -> Resolve IElement
resolveNElement abstractClafers x = case x of
IEClafer clafer -> IEClafer <$> resolveNClafer abstractClafers clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
resolveN :: Span -> [IClafer] -> String -> Resolve (Maybe (String, [IClafer]))
resolveN pos' abstractClafers id' =
findUnique pos' id' $ map (\x -> (x, [x])) abstractClafers
resolveHierarchy :: UIDIClaferMap -> IElement -> Resolve IElement
resolveHierarchy uidClaferMap' (IEClafer iClafer') = IEClafer <$> (super.traverse.iType.traverse %%~ addHierarchy $ iClafer')
where
addHierarchy :: IType -> Resolve IType
addHierarchy (TClafer _) = TClafer <$> checkForLoop (tail $ mapHierarchy _uid getSuper uidClaferMap' iClafer')
addHierarchy x = return x
checkForLoop :: [String] -> Resolve [String]
checkForLoop supers = case find (_uid iClafer' ==) supers of
Nothing -> return supers
Just _ -> throwError $ SemanticErr (_cinPos iClafer') $ "ResolverInheritance: clafer " ++ _uid iClafer' ++ " inherits from itself"
resolveHierarchy _ x = return x
resolveOModule :: (IModule, GEnv) -> Resolve (IModule, GEnv)
resolveOModule (imodule, genv') =
do
let decls' = _mDecls imodule
decls'' <- mapM (resolveOElement (defSEnv genv' decls')) decls'
let imodule' = imodule{_mDecls = decls''}
return ( imodule'
, genv'{sClafers = bfs toNodeShallow $ toClafers decls'', uidClaferMap = createUidIClaferMap imodule'})
resolveOClafer :: SEnv -> IClafer -> Resolve IClafer
resolveOClafer env clafer =
do
reference' <- resolveOReference env {context = Just clafer} $ _reference clafer
elements' <- mapM (resolveOElement env {context = Just clafer}) $ _elements clafer
return $ clafer {_reference = reference', _elements = elements'}
resolveOReference :: SEnv -> Maybe IReference -> Resolve (Maybe IReference)
resolveOReference _ Nothing = return Nothing
resolveOReference env (Just (IReference is' exp')) = Just <$> IReference is' <$> resolvePExp env exp'
resolveOElement :: SEnv -> IElement -> Resolve IElement
resolveOElement env x = case x of
IEClafer clafer -> IEClafer <$> resolveOClafer env clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
analyzeModule :: (IModule, GEnv) -> IModule
analyzeModule (imodule, genv') =
imodule{_mDecls = map (analyzeElement (defSEnv genv' decls')) decls'}
where
decls' = _mDecls imodule
analyzeClafer :: SEnv -> IClafer -> IClafer
analyzeClafer env clafer =
clafer' {_elements = map (analyzeElement env {context = Just clafer'}) $
_elements clafer'}
where
clafer' = clafer {_gcard = analyzeGCard env clafer,
_card = analyzeCard env clafer}
analyzeGCard :: SEnv -> IClafer -> Maybe IGCard
analyzeGCard env clafer = gcard' `mplus` (Just $ IGCard False (0, 1))
where
gcard'
| isNothing $ _super clafer = _gcard clafer
| otherwise = listToMaybe $ mapMaybe _gcard $ findHierarchy getSuper (uidClaferMap $ genv env) clafer
analyzeCard :: SEnv -> IClafer -> Maybe Interval
analyzeCard env clafer = _card clafer `mplus` Just card'
where
card'
| _isAbstract clafer = (0, 1)
| (isJust $ context env) && pGcard == (0, 1)
|| (isTopLevel clafer) = (1, 1)
| otherwise = (0, 1)
pGcard = _interval $ fromJust $ _gcard $ fromJust $ context env
analyzeElement :: SEnv -> IElement -> IElement
analyzeElement env x = case x of
IEClafer clafer -> IEClafer $ analyzeClafer env clafer
IEConstraint _ _ -> x
IEGoal _ _ -> x
resolveEModule :: (IModule, GEnv) -> (IModule, GEnv)
resolveEModule (imodule, genv') = (imodule', newGenv)
where
decls' = _mDecls imodule
imodule' = imodule{_mDecls = decls''}
newGenv = genv''{uidClaferMap = createUidIClaferMap imodule'}
(decls'', genv'') = runState (mapM (resolveEElement []
(unrollableModule imodule)
False decls') decls') genv'
unrollableModule :: IModule -> [String]
unrollableModule imodule = getDirUnrollables $
mapMaybe unrollabeDeclaration $ _mDecls imodule
unrollabeDeclaration :: IElement -> Maybe (String, [String])
unrollabeDeclaration x = case x of
IEClafer clafer -> if _isAbstract clafer
then Just (_uid clafer, unrollableClafer clafer)
else Nothing
IEConstraint _ _ -> Nothing
IEGoal _ _ -> Nothing
unrollableClafer :: IClafer -> [String]
unrollableClafer clafer = (getSuper clafer) ++ deps
where
deps = (toClafers $ _elements clafer) >>= unrollableClafer
getDirUnrollables :: [(String, [String])] -> [String]
getDirUnrollables dependencies = (filter isUnrollable $ map (map v2n) $
map flatten (scc graph)) >>= map fst3
where
(graph, v2n, _) = graphFromEdges $map (\(c, ss) -> (c, c, ss)) dependencies
isUnrollable (x:[]) = fst3 x `elem` trd3 x
isUnrollable _ = True
resolveEClafer :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> IClafer -> m IClafer
resolveEClafer predecessors unrollables absAncestor declarations clafer = do
uidClaferMap' <- gets uidClaferMap
clafer' <- renameClafer absAncestor (_parentUID clafer) clafer
let predecessors' = _uid clafer' : predecessors
(sElements, super', superList) <-
resolveEInheritance predecessors' unrollables absAncestor declarations
(findHierarchy getSuper uidClaferMap' clafer)
let sClafer = Map.fromList $ zip (map _uid superList) $ repeat [predecessors']
modify (\e -> e {stable = Map.delete "clafer" $
Map.unionWith ((nub.).(++)) sClafer $
stable e})
elements' <-
mapM (resolveEElement predecessors' unrollables absAncestor declarations)
$ _elements clafer
return $ clafer' {_super = super', _elements = elements' ++ sElements}
renameClafer :: MonadState GEnv m => Bool -> UID -> IClafer -> m IClafer
renameClafer False _ clafer = return clafer
renameClafer True puid clafer = renameClafer' puid clafer
renameClafer' :: MonadState GEnv m => UID -> IClafer -> m IClafer
renameClafer' puid clafer = do
let claferIdent = _ident clafer
identCountMap' <- gets identCountMap
let count = Map.findWithDefault 0 claferIdent identCountMap'
modify (\e -> e { identCountMap = Map.alter (\_ -> Just (count+1)) claferIdent identCountMap' } )
return $ clafer { _uid = genId claferIdent count, _parentUID = puid }
genId :: String -> Int -> String
genId id' count = concat ["c", show count, "_", id']
resolveEInheritance :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> [IClafer] -> m ([IElement], Maybe PExp, [IClafer])
resolveEInheritance predecessors unrollables absAncestor declarations allSuper = do
let superList = (if absAncestor then id else tail) allSuper
let unrollSuper = filter (\s -> _uid s `notElem` unrollables) $ tail allSuper
elements' <-
mapM (resolveEElement predecessors unrollables True declarations) $
unrollSuper >>= _elements
let super' = case (`elem` unrollables) <$> getSuper clafer of
[True] -> _super clafer
_ -> Nothing
return (elements', super', superList)
where
clafer = head allSuper
resolveEElement :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> IElement -> m IElement
resolveEElement predecessors unrollables absAncestor declarations x = case x of
IEClafer clafer -> if _isAbstract clafer then return x else IEClafer `liftM`
resolveEClafer predecessors unrollables absAncestor declarations clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
resolveRedefinition :: (IModule, GEnv) -> Resolve IModule
resolveRedefinition (iModule, _) =
if (not $ null improperClafers)
then throwError $ SemanticErr noSpan ("Refinement errors in the following places:\n" ++ improperClafers)
else return iModule
where
uidIClaferMap' = createUidIClaferMap iModule
improperClafers :: String
improperClafers = foldMapIR isImproper iModule
isImproper :: Ir -> String
isImproper (IRClafer claf@IClafer{_cinPos = (Span (Pos l c) _) ,_ident=i}) =
let
match = matchNestedInheritance uidIClaferMap' claf
in
if (isProperNesting uidIClaferMap' match)
then let
(properCardinalityRefinement, properBagToSetRefinement, properTargetSubtyping) = isProperRefinement uidIClaferMap' match
in if (properCardinalityRefinement)
then if (properBagToSetRefinement)
then if (properTargetSubtyping)
then ""
else ("Improper target subtyping for clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
else ("Improper bag to set refinement for clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
else ("Improper cardinality refinement for clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
else ("Improperly nested clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
isImproper _ = ""
relocateTopLevelAbstractToParents :: [IElement] -> [IElement]
relocateTopLevelAbstractToParents originalElements =
let
(elementsToBeRelocated, remainingElements) = partition needsRelocation originalElements
in
case elementsToBeRelocated of
[] -> originalElements
_ -> map (insertElements $ mkParentUIDIElementMap elementsToBeRelocated) remainingElements
where
needsRelocation :: IElement -> Bool
needsRelocation IEClafer{_iClafer} = not $ isTopLevel _iClafer
needsRelocation _ = False
mkParentUIDIElementMap :: [IElement] -> StringMap [IElement]
mkParentUIDIElementMap elems = foldl'
(\accumMap' (parentUID', elem') -> SMap.insertWith (++) parentUID' [elem'] accumMap')
SMap.empty
(map (\e -> (_parentUID $ _iClafer e, e)) elems)
insertElements :: StringMap [IElement] -> IElement -> IElement
insertElements parentMap targetElement = let
targetUID = targetElement ^. iClafer . uid
newChildren = SMap.findWithDefault [] targetUID parentMap
currentElements = targetElement ^. iClafer . elements
newElements = map (insertElements parentMap) currentElements
++ newChildren
in
targetElement & iClafer . elements .~ newElements