{-# LANGUAGE NamedFieldPuns, FlexibleInstances, FlexibleContexts, GeneralizedNewtypeDeriving #-} {- Copyright (C) 2012-2015 Jimmy Liang, Kacper Bak, Michal Antkiewicz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -} module Language.Clafer.Intermediate.ResolverType (resolveTModule) where import Language.ClaferT import Language.Clafer.Common import Language.Clafer.Intermediate.Intclafer hiding (uid) import Language.Clafer.Intermediate.Desugarer import Language.Clafer.Intermediate.TypeSystem import Language.Clafer.Front.PrintClafer import Control.Applicative import Control.Exception (assert) import Control.Lens ((&), (%~), traversed) import Control.Monad.Except import Control.Monad.List import Control.Monad.Reader import Data.Either import Data.List import Data.Maybe import Prelude hiding (exp) type TypeDecls = [(String, IType)] data TypeInfo = TypeInfo {iTypeDecls::TypeDecls, iUIDIClaferMap::UIDIClaferMap, iCurThis::IClafer, iCurPath::Maybe IType} newtype TypeAnalysis a = TypeAnalysis (ReaderT TypeInfo (Either ClaferSErr) a) deriving (MonadError ClaferSErr, Monad, Functor, MonadReader TypeInfo, Applicative) -- return the type of a UID but give preference to local declarations in quantified expressions, which shadow global names typeOfUid :: MonadTypeAnalysis m => UID -> m IType typeOfUid uid = (fromMaybe (TClafer [uid]) . lookup uid) <$> typeDecls class (Functor m, Monad m) => MonadTypeAnalysis m where -- What "this" refers to curThis :: m IClafer localCurThis :: IClafer -> m a -> m a -- The next path is a child of curPath (or Nothing) curPath :: m (Maybe IType) localCurPath :: IType -> m a -> m a -- Extra declarations typeDecls :: m TypeDecls localDecls :: TypeDecls -> m a -> m a instance MonadTypeAnalysis TypeAnalysis where curThis = TypeAnalysis $ asks iCurThis localCurThis newThis (TypeAnalysis d) = TypeAnalysis $ local setCurThis d where setCurThis t = t{iCurThis = newThis} curPath = TypeAnalysis $ asks iCurPath localCurPath newPath (TypeAnalysis d) = TypeAnalysis $ local setCurPath d where setCurPath t = t{iCurPath = Just newPath} typeDecls = TypeAnalysis $ asks iTypeDecls localDecls extra (TypeAnalysis d) = TypeAnalysis $ local addTypeDecls d where addTypeDecls t@TypeInfo{iTypeDecls = c} = t{iTypeDecls = extra ++ c} instance MonadTypeAnalysis m => MonadTypeAnalysis (ListT m) where curThis = lift $ curThis localCurThis = mapListT . localCurThis curPath = lift $ curPath localCurPath = mapListT . localCurPath typeDecls = lift typeDecls localDecls = mapListT . localDecls instance MonadTypeAnalysis m => MonadTypeAnalysis (ExceptT ClaferSErr m) where curThis = lift $ curThis localCurThis = mapExceptT . localCurThis curPath = lift $ curPath localCurPath = mapExceptT . localCurPath typeDecls = lift typeDecls localDecls = mapExceptT . localDecls -- | Type inference and checking runTypeAnalysis :: TypeAnalysis a -> IModule -> Either ClaferSErr a runTypeAnalysis (TypeAnalysis tc) imodule = runReaderT tc $ TypeInfo [] (createUidIClaferMap imodule) undefined Nothing claferWithUid :: (Monad m) => UIDIClaferMap -> String -> m IClafer claferWithUid uidIClaferMap' u = case findIClafer uidIClaferMap' u of Just c -> return c Nothing -> fail $ "ResolverType.claferWithUid: " ++ u ++ " not found!" parentOf :: (Monad m) => UIDIClaferMap -> UID -> m UID parentOf uidIClaferMap' c = case _parentUID <$> findIClafer uidIClaferMap' c of Just u -> return u Nothing -> fail $ "ResolverType.parentOf: " ++ c ++ " not found!" {- - C is an direct child of B. - - abstract A - C // C - child - B : A // B - parent -} isIndirectChild :: (Monad m) => UIDIClaferMap -> UID -> UID -> m Bool isIndirectChild uidIClaferMap' child parent = do (_:allSupers) <- hierarchy uidIClaferMap' parent childOfSupers <- mapM ((isChild uidIClaferMap' child)._uid) $ allSupers return $ or childOfSupers isChild :: (Monad m) => UIDIClaferMap -> UID -> UID -> m Bool isChild uidIClaferMap' child parent = (case findIClafer uidIClaferMap' child of Nothing -> return False Just childIClafer -> do let directChild = (parent == _parentUID childIClafer) indirectChild <- isIndirectChild uidIClaferMap' child parent return $ directChild || indirectChild ) str :: IType -> String str t = case unionType t of [t'] -> t' ts -> "[" ++ intercalate "," ts ++ "]" showType :: PExp -> String showType PExp{ _iType=Nothing } = "unknown type" showType PExp{ _iType=(Just t) } = show t data TAMode = TAReferences -- ^ Phase one: only process references | TAExpressions -- ^ Phase two: only process constraints and goals resolveTModule :: (IModule, GEnv) -> Either ClaferSErr IModule resolveTModule (imodule, _) = case runTypeAnalysis (analysisReferences $ _mDecls imodule) imodule of Right mDecls' -> case runTypeAnalysis (analysisExpressions $ mDecls') imodule{_mDecls = mDecls'} of Right mDecls'' -> return imodule{_mDecls = mDecls''} Left err -> throwError err Left err -> throwError err where analysisReferences = mapM (resolveTElement TAReferences rootIdent) analysisExpressions = mapM (resolveTElement TAExpressions rootIdent) -- Phase one: only process references resolveTElement :: TAMode -> String -> IElement -> TypeAnalysis IElement resolveTElement TAReferences _ (IEClafer iclafer) = do uidIClaferMap' <- asks iUIDIClaferMap reference' <- case _reference iclafer of Nothing -> return Nothing Just originalReference -> do refs' <- resolveTPExp $ _ref originalReference case refs' of [] -> return Nothing [ref'] -> return $ refWithNewType uidIClaferMap' originalReference ref' (ref':_) -> return $ refWithNewType uidIClaferMap' originalReference ref' elements' <- mapM (resolveTElement TAReferences (_uid iclafer)) (_elements iclafer) return $ IEClafer iclafer{_elements = elements', _reference=reference'} where refWithNewType uMap oRef r = let r' = r & iType.traversed %~ (addHierarchy uMap) in case _iType r' of Nothing -> Nothing Just t -> if isTBoolean t then Nothing else Just $ oRef{_ref=r'} resolveTElement TAReferences _ iec@(IEConstraint{}) = return iec resolveTElement TAReferences _ ieg@(IEGoal{}) = return ieg -- Phase two: only process constraints and goals resolveTElement TAExpressions _ (IEClafer iclafer) = do elements' <- mapM (resolveTElement TAExpressions (_uid iclafer)) (_elements iclafer) return $ IEClafer iclafer{_elements = elements'} resolveTElement TAExpressions parent' (IEConstraint _isHard _pexp) = IEConstraint _isHard <$> (testBoolean =<< resolveTConstraint parent' _pexp) where testBoolean pexp' = do unless (isTBoolean $ typeOf pexp') $ throwError $ SemanticErr (_inPos pexp') ("A constraint requires an expression of type 'TBoolean' but got '" ++ showType pexp' ++ "'") return pexp' resolveTElement TAExpressions parent' (IEGoal isMaximize' pexp') = IEGoal isMaximize' <$> resolveTConstraint parent' pexp' resolveTConstraint :: String -> PExp -> TypeAnalysis PExp resolveTConstraint curThis' constraint = do uidIClaferMap' <- asks iUIDIClaferMap curThis'' <- claferWithUid uidIClaferMap' curThis' head <$> (localCurThis curThis'' $ (resolveTPExp constraint :: TypeAnalysis [PExp])) resolveTPExp :: PExp -> TypeAnalysis [PExp] resolveTPExp p = do x <- resolveTPExp' p case partitionEithers x of (f:_, []) -> throwError f -- Case 1: Only fails. Complain about the first one. ([], []) -> throwError $ SemanticErr (_inPos p) ("No results but no errors for " ++ show p) -- Case 2: No success and no error message. Bug. (_, xs) -> return xs -- Case 3: At least one success. resolveTPExp' :: PExp -> TypeAnalysis [Either ClaferSErr PExp] resolveTPExp' p@PExp{_inPos, _exp = IClaferId{_sident = "dref"}} = do uidIClaferMap' <- asks iUIDIClaferMap runListT $ runExceptT $ do curPath' <- curPath case curPath' of Just curPath'' -> do case concatMap (getTMaps uidIClaferMap') $ getTClafers uidIClaferMap' curPath'' of [t'] -> return $ p `withType` t' (t':_) -> return $ p `withType` t' [] -> throwError $ SemanticErr _inPos ("Cannot deref from type '" ++ str curPath'' ++ "'") Nothing -> throwError $ SemanticErr _inPos ("Cannot deref at the start of a path") resolveTPExp' p@PExp{_inPos, _exp = IClaferId{_sident = "parent"}} = do uidIClaferMap' <- asks iUIDIClaferMap runListT $ runExceptT $ do curPath' <- curPath case curPath' of Just curPath'' -> do parent' <- fromUnionType <$> runListT (parentOf uidIClaferMap' =<< liftList (unionType curPath'')) when (isNothing parent') $ throwError $ SemanticErr _inPos "Cannot parent from root" let result = p `withType` fromJust parent' return result Nothing -> throwError $ SemanticErr _inPos "Cannot parent at the start of a path" resolveTPExp' p@PExp{_exp = IClaferId{_sident = "integer"}} = runListT $ runExceptT $ return $ p `withType` TInteger resolveTPExp' p@PExp{_exp = IClaferId{_sident = "int"}} = runListT $ runExceptT $ return $ p `withType` TInteger resolveTPExp' p@PExp{_exp = IClaferId{_sident = "string"}} = runListT $ runExceptT $ return $ p `withType` TString resolveTPExp' p@PExp{_exp = IClaferId{_sident = "double"}} = runListT $ runExceptT $ return $ p `withType` TDouble resolveTPExp' p@PExp{_exp = IClaferId{_sident = "real"}} = runListT $ runExceptT $ return $ p `withType` TReal resolveTPExp' p@PExp{_inPos, _exp = IClaferId{_sident="this"}} = do runListT $ runExceptT $ do sident' <- _uid <$> curThis result <- (p `withType`) <$> typeOfUid sident' return result <++> addDref result -- Case 2: Dereference the sident 1..* times resolveTPExp' p@PExp{_inPos, _exp = IClaferId{_sident, _isTop}} = do uidIClaferMap' <- asks iUIDIClaferMap runListT $ runExceptT $ do curPath' <- curPath sident' <- if _sident == "this" then _uid <$> curThis else return _sident when (isJust curPath') $ do c <- mapM (isChild uidIClaferMap' sident') $ unionType $ fromJust curPath' unless (or c) $ throwError $ SemanticErr _inPos ("'" ++ sident' ++ "' is not a child of type '" ++ str (fromJust curPath') ++ "'") result <- (p `withType`) <$> typeOfUid sident' if _isTop then return result -- Case 1: Use the sident <++> addDref result -- Case 2: Dereference the sident 1..* times <++> addSome result else return result -- all not top-level identifiers must be in a path resolveTPExp' p@PExp{_inPos, _exp} = runListT $ runExceptT $ (case _exp of e@IFunExp {_op = ".", _exps = [arg1, arg2]} -> do (iType', exp') <- do arg1' <- lift $ ListT $ resolveTPExp arg1 localCurPath (typeOf arg1') $ do arg2' <- liftError $ lift $ ListT $ resolveTPExp arg2 (case _iType arg2' of Just (t'@TClafer{}) -> return (t', e{_exps = [arg1', arg2']}) Just (TMap{_ta=t'}) -> return (t', e{_exps = [arg1', arg2']}) _ -> fail $ "Function '.' cannot be performed on " ++ showType arg1' ++ "\n.\n " ++ showType arg2') let result = p{_iType = Just iType', _exp = exp'} return result -- Case 1: Use the sident <++> addDref result -- Case 2: Dereference the sident 1..* times <++> addSome result _ -> do (iType', exp') <- ExceptT $ ListT $ resolveTExp _exp return p{_iType = Just iType', _exp = exp'}) where resolveTExp :: IExp -> TypeAnalysis [Either ClaferSErr (IType, IExp)] resolveTExp e@(IInt _) = runListT $ runExceptT $ return (TInteger, e) resolveTExp e@(IDouble _) = runListT $ runExceptT $ return (TDouble, e) resolveTExp e@(IReal _) = runListT $ runExceptT $ return (TReal, e) resolveTExp e@(IStr _) = runListT $ runExceptT $ return (TString, e) resolveTExp e@IFunExp {_op, _exps = [arg]} = runListT $ runExceptT $ do arg' <- lift $ ListT $ resolveTPExp arg let t = typeOf arg' let test c = unless c $ throwError $ SemanticErr _inPos ("Function '" ++ _op ++ "' cannot be performed on " ++ _op ++ " '" ++ showType arg' ++ "'") let result | _op == iNot = test (isTBoolean t) >> return TBoolean | _op == iCSet = return TInteger | _op == iSumSet = test (isTInteger t) >> return TInteger | _op == iProdSet = test (isTInteger t) >> return TInteger | _op `elem` [iMin, iMinimum, iMaximum, iMinimize, iMaximize] = test (numeric t) >> return t | otherwise = assert False $ error $ "Unknown op '" ++ _op ++ "'" result' <- result return (result', e{_exps = [arg']}) resolveTExp e@IFunExp {_op = "++", _exps = [arg1, arg2]} = do arg1s' <- resolveTPExp arg1 arg2s' <- resolveTPExp arg2 let union' a b = typeOf a +++ typeOf b return $ [ return (union' arg1' arg2', e{_exps = [arg1', arg2']}) | (arg1', arg2') <- sortBy (comparing $ length . unionType . uncurry union') $ liftM2 (,) arg1s' arg2s' , (not $ isTBoolean $ typeOf arg1') && (not $ isTBoolean $ typeOf arg2') ] resolveTExp e@IFunExp {_op, _exps = [arg1, arg2]} = do uidIClaferMap' <- asks iUIDIClaferMap runListT $ runExceptT $ do arg1' <- lift $ ListT $ resolveTPExp arg1 arg2' <- lift $ ListT $ resolveTPExp arg2 let t1 = typeOf arg1' let t2 = typeOf arg2' let testIntersect e1 e2 = do it <- intersection uidIClaferMap' e1 e2 case it of Just it' -> if isTBoolean it' then throwError $ SemanticErr _inPos ("Function '" ++ _op ++ "' cannot be performed on\n" ++ showType arg1' ++ "\n" ++ _op ++ "\n" ++ showType arg2') else return it' Nothing -> throwError $ SemanticErr _inPos ("Function '" ++ _op ++ "' cannot be performed on\n" ++ showType arg1' ++ "\n" ++ _op ++ "\n" ++ showType arg2') let testNotSame e1 e2 = when (e1 `sameAs` e2) $ throwError $ SemanticErr _inPos ("Function '" ++ _op ++ "' is redundant because the two subexpressions are always equivalent") let test c = unless c $ throwError $ SemanticErr _inPos ("Function '" ++ _op ++ "' cannot be performed on\n" ++ showType arg1' ++ "\n" ++ _op ++ "\n" ++ showType arg2') let result | _op `elem` logBinOps = test (isTBoolean t1 && isTBoolean t2) >> return TBoolean | _op `elem` [iLt, iGt, iLte, iGte] = test (numeric t1 && numeric t2) >> return TBoolean | _op `elem` [iEq, iNeq] = testNotSame arg1' arg2' >> testIntersect t1 t2 >> return TBoolean | _op == iDifference = testNotSame arg1' arg2' >> testIntersect t1 t2 >> return t1 | _op == iIntersection = testNotSame arg1' arg2' >> testIntersect t1 t2 | _op `elem` [iDomain, iRange] = testIntersect t1 t2 | _op `elem` relSetBinOps = testIntersect t1 t2 >> return TBoolean | _op `elem` [iSub, iMul, iDiv, iRem] = test (numeric t1 && numeric t2) >> return (coerce t1 t2) | _op == iPlus = (test (isTString t1 && isTString t2) >> return TString) -- Case 1: String concatenation `catchError` const (test (numeric t1 && numeric t2) >> return (coerce t1 t2)) -- Case 2: Addition | otherwise = error $ "ResolverType: Unknown op: " ++ show e result' <- result return (result', e{_exps = [arg1', arg2']}) resolveTExp e@(IFunExp "ifthenelse" [arg1, arg2, arg3]) = do uidIClaferMap' <- asks iUIDIClaferMap runListT $ runExceptT $ do arg1' <- lift $ ListT $ resolveTPExp arg1 arg2' <- lift $ ListT $ resolveTPExp arg2 arg3' <- lift $ ListT $ resolveTPExp arg3 let t1 = typeOf arg1' let t2 = typeOf arg2' let t3 = typeOf arg3' unless (isTBoolean t1) $ throwError $ SemanticErr _inPos ("The type of condition in 'if/then/else' must be 'TBoolean', insted it is " ++ showType arg1') it <- getIfThenElseType uidIClaferMap' t2 t3 t <- case it of Just it' -> return it' Nothing -> throwError $ SemanticErr _inPos ("Function 'if/then/else' cannot be performed on \nif\n" ++ showType arg1' ++ "\nthen\n" ++ showType arg2' ++ "\nelse\n" ++ showType arg3') return (t, e{_exps = [arg1', arg2', arg3']}) -- some P, no P, one P -- P must not be TBoolean resolveTExp e@IDeclPExp{_oDecls=[], _bpexp} = runListT $ runExceptT $ do bpexp' <- liftError $ lift $ ListT $ resolveTPExp _bpexp case _iType bpexp' of Nothing -> fail $ "resolveTExp@IDeclPExp: No type computed for body\n" ++ show bpexp' Just t' -> if isTBoolean t' then throwError $ SemanticErr _inPos "The type of body of a quantified expression without local declarations must not be 'TBoolean'" else return $ (TBoolean, e{_bpexp = bpexp'}) -- some x : X | P, no x : X | P, one x : X | P -- X must not be TBoolean, P must be TBoolean resolveTExp e@IDeclPExp{_oDecls, _bpexp} = runListT $ runExceptT $ do oDecls' <- mapM resolveTDecl _oDecls let extraDecls = [(decl, typeOf $ _body oDecl) | oDecl <- oDecls', decl <- _decls oDecl] localDecls extraDecls $ do bpexp' <- liftError $ lift $ ListT $ resolveTPExp _bpexp case _iType bpexp' of Nothing -> fail $ "resolveTExp@IDeclPExp: No type computed for body\n" ++ show bpexp' Just t' -> if isTBoolean t' then return $ (TBoolean, e{_oDecls = oDecls', _bpexp = bpexp'}) else throwError $ SemanticErr _inPos $ "The type of body of a quantified expression with local declarations must be 'TBoolean', instead it is\n" ++ showType bpexp' where resolveTDecl d@IDecl{_body} = do body' <- lift $ ListT $ resolveTPExp _body case _iType body' of Nothing -> fail $ "resolveTExp@IDeclPExp: No type computed for local declaration\n" ++ show body' Just t' -> if isTBoolean t' then throwError $ SemanticErr _inPos "The type of declaration of a quantified expression must not be 'TBoolean'" else return $ d{_body = body'} resolveTExp e = error $ "Unknown iexp: " ++ show e -- Adds "dref"s at the end, effectively dereferencing Clafers when needed. addDref :: PExp -> ExceptT ClaferSErr (ListT TypeAnalysis) PExp addDref pexp = do localCurPath (typeOf pexp) $ do deref <- (ExceptT $ ListT $ resolveTPExp' $ newPExp $ IClaferId "" "dref" False Nothing) `catchError` const (lift mzero) let result = (newPExp $ IFunExp "." [pexp, deref]) `withType` typeOf deref return result <++> addDref result where newPExp = PExp Nothing "" $ _inPos pexp -- Adds a quantifier "some" at the beginning, effectively turning an identifier into a TBoolean expression addSome :: PExp -> ExceptT ClaferSErr (ListT TypeAnalysis) PExp addSome pexp = do localCurPath (typeOf pexp) $ return $ (newPExp $ IDeclPExp ISome [] pexp) `withType` TBoolean where newPExp = PExp Nothing "" $ _inPos pexp typeOf :: PExp -> IType typeOf pexp = fromMaybe (error "No type") $ _iType pexp withType :: PExp -> IType -> PExp withType p t = p{_iType = Just t} (<++>) :: MonadPlus m => ExceptT e m a -> ExceptT e m a -> ExceptT e m a (ExceptT a) <++> (ExceptT b) = ExceptT $ a `mplus` b liftError :: MonadError e m => ExceptT e m a -> ExceptT e m a liftError e = liftCatch catchError e throwError where liftCatch catchError' m h = ExceptT $ runExceptT m `catchError'` (runExceptT . h) {- - - Utility functions - -} liftList :: Monad m => [a] -> ListT m a liftList = ListT . return comparing :: Ord b => (a -> b) -> a -> a -> Ordering comparing f a b = f a `compare` f b syntaxOf :: PExp -> String syntaxOf = printTree . sugarExp -- Returns true iff the left and right expressions are syntactically identical sameAs :: PExp -> PExp -> Bool sameAs e1 e2 = syntaxOf e1 == syntaxOf e2 -- Not very efficient but hopefully correct