module Language.Clafer.Intermediate.ResolverInheritance where
import Control.Applicative
import Control.Monad
import Control.Monad.Error
import Control.Monad.State
import Data.Maybe
import Data.Graph
import Data.Tree
import Data.List
import qualified Data.Map as Map
import Language.ClaferT
import Language.Clafer.Common
import Language.Clafer.Front.AbsClafer
import Language.Clafer.Intermediate.Intclafer
import Language.Clafer.Intermediate.ResolverName
resolveNModule :: (IModule, GEnv) -> Resolve (IModule, GEnv)
resolveNModule (imodule, genv') =
do
let decls' = _mDecls imodule
decls'' <- mapM (resolveNElement decls') decls'
let imodule' = imodule{_mDecls = decls''}
return
( imodule'
, genv'{sClafers = bfs toNodeShallow $ toClafers decls'', uidClaferMap = createUidIClaferMap imodule'})
resolveNClafer :: [IElement] -> IClafer -> Resolve IClafer
resolveNClafer declarations clafer =
do
(super', superIClafer') <- resolveNSuper declarations $ _super clafer
elements' <- mapM (resolveNElement declarations) $ _elements clafer
return $ clafer {_super = super',
_elements = elements'}
resolveNSuper :: [IElement] -> Maybe PExp -> Resolve (Maybe PExp, Maybe IClafer)
resolveNSuper _ Nothing = return (Nothing, Nothing)
resolveNSuper declarations (Just (PExp _ pid' pos' (IClaferId _ id' _ _))) =
if isPrimitive id'
then throwError $ SemanticErr pos' $ "Primitive types are not allowed as super types: " ++ id'
else do
r <- resolveN pos' declarations id'
(id'', [superClafer']) <- case r of
Nothing -> throwError $ SemanticErr pos' $ "No superclafer found: " ++ id'
Just m -> return m
return $ (Just $ PExp (Just $ TClafer [id'']) pid' pos' (IClaferId "" id'' (isTopLevel superClafer') (Just $ id''))
, Just superClafer')
resolveNSuper _ x = return (x, Nothing)
resolveNElement :: [IElement] -> IElement -> Resolve IElement
resolveNElement declarations x = case x of
IEClafer clafer -> IEClafer <$> resolveNClafer declarations clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
resolveN :: Span -> [IElement] -> String -> Resolve (Maybe (String, [IClafer]))
resolveN pos' declarations id' =
findUnique pos' id' $ map (\x -> (x, [x])) $ filter _isAbstract $ bfsClafers $
toClafers declarations
resolveOModule :: (IModule, GEnv) -> Resolve (IModule, GEnv)
resolveOModule (imodule, genv') =
do
let decls' = _mDecls imodule
decls'' <- mapM (resolveOElement (defSEnv genv' decls')) decls'
let imodule' = imodule{_mDecls = decls''}
return ( imodule'
, genv'{sClafers = bfs toNodeShallow $ toClafers decls'', uidClaferMap = createUidIClaferMap imodule'})
resolveOClafer :: SEnv -> IClafer -> Resolve IClafer
resolveOClafer env clafer =
do
reference' <- resolveOReference env {context = Just clafer} $ _reference clafer
elements' <- mapM (resolveOElement env {context = Just clafer}) $ _elements clafer
return $ clafer {_reference = reference', _elements = elements'}
resolveOReference :: SEnv -> Maybe IReference -> Resolve (Maybe IReference)
resolveOReference _ Nothing = return Nothing
resolveOReference env (Just (IReference is' exp')) = Just <$> IReference is' <$> resolvePExp env exp'
resolveOElement :: SEnv -> IElement -> Resolve IElement
resolveOElement env x = case x of
IEClafer clafer -> IEClafer <$> resolveOClafer env clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
analyzeModule :: (IModule, GEnv) -> IModule
analyzeModule (imodule, genv') =
imodule{_mDecls = map (analyzeElement (defSEnv genv' decls')) decls'}
where
decls' = _mDecls imodule
analyzeClafer :: SEnv -> IClafer -> IClafer
analyzeClafer env clafer =
clafer' {_elements = map (analyzeElement env {context = Just clafer'}) $
_elements clafer'}
where
clafer' = clafer {_gcard = analyzeGCard env clafer,
_card = analyzeCard env clafer}
analyzeGCard :: SEnv -> IClafer -> Maybe IGCard
analyzeGCard env clafer = gcard' `mplus` (Just $ IGCard False (0, 1))
where
gcard'
| isNothing $ _super clafer = _gcard clafer
| otherwise = listToMaybe $ mapMaybe _gcard $ findHierarchy getSuper (uidClaferMap $ genv env) clafer
analyzeCard :: SEnv -> IClafer -> Maybe Interval
analyzeCard env clafer = _card clafer `mplus` Just card'
where
card'
| _isAbstract clafer = (0, 1)
| (isJust $ context env) && pGcard == (0, 1)
|| (isTopLevel clafer) = (1, 1)
| otherwise = (0, 1)
pGcard = _interval $ fromJust $ _gcard $ fromJust $ context env
analyzeElement :: SEnv -> IElement -> IElement
analyzeElement env x = case x of
IEClafer clafer -> IEClafer $ analyzeClafer env clafer
IEConstraint _ _ -> x
IEGoal _ _ -> x
resolveEModule :: (IModule, GEnv) -> (IModule, GEnv)
resolveEModule (imodule, genv') = (imodule', newGenv)
where
decls' = _mDecls imodule
imodule' = imodule{_mDecls = decls''}
newGenv = genv''{uidClaferMap = createUidIClaferMap imodule'}
(decls'', genv'') = runState (mapM (resolveEElement []
(unrollableModule imodule)
False decls') decls') genv'
unrollableModule :: IModule -> [String]
unrollableModule imodule = getDirUnrollables $
mapMaybe unrollabeDeclaration $ _mDecls imodule
unrollabeDeclaration :: IElement -> Maybe (String, [String])
unrollabeDeclaration x = case x of
IEClafer clafer -> if _isAbstract clafer
then Just (_uid clafer, unrollableClafer clafer)
else Nothing
IEConstraint _ _ -> Nothing
IEGoal _ _ -> Nothing
unrollableClafer :: IClafer -> [String]
unrollableClafer clafer = (getSuper clafer) ++ deps
where
deps = (toClafers $ _elements clafer) >>= unrollableClafer
getDirUnrollables :: [(String, [String])] -> [String]
getDirUnrollables dependencies = (filter isUnrollable $ map (map v2n) $
map flatten (scc graph)) >>= map fst3
where
(graph, v2n, _) = graphFromEdges $map (\(c, ss) -> (c, c, ss)) dependencies
isUnrollable (x:[]) = fst3 x `elem` trd3 x
isUnrollable _ = True
resolveEClafer :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> IClafer -> m IClafer
resolveEClafer predecessors unrollables absAncestor declarations clafer = do
uidClaferMap' <- gets uidClaferMap
clafer' <- renameClafer absAncestor (_parentUID clafer) clafer
let predecessors' = _uid clafer' : predecessors
(sElements, super', superList) <-
resolveEInheritance predecessors' unrollables absAncestor declarations
(findHierarchy getSuper uidClaferMap' clafer)
let sClafer = Map.fromList $ zip (map _uid superList) $ repeat [predecessors']
modify (\e -> e {stable = Map.delete "clafer" $
Map.unionWith ((nub.).(++)) sClafer $
stable e})
elements' <-
mapM (resolveEElement predecessors' unrollables absAncestor declarations)
$ _elements clafer
return $ clafer' {_super = super', _elements = elements' ++ sElements}
renameClafer :: MonadState GEnv m => Bool -> UID -> IClafer -> m IClafer
renameClafer False _ clafer = return clafer
renameClafer True puid clafer = renameClafer' puid clafer
renameClafer' :: MonadState GEnv m => UID -> IClafer -> m IClafer
renameClafer' puid clafer = do
let claferIdent = _ident clafer
identCountMap' <- gets identCountMap
let count = Map.findWithDefault 0 claferIdent identCountMap'
modify (\e -> e { identCountMap = Map.alter (\_ -> Just (count+1)) claferIdent identCountMap' } )
return $ clafer { _uid = genId claferIdent count, _parentUID = puid }
genId :: String -> Int -> String
genId id' count = concat ["c", show count, "_", id']
resolveEInheritance :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> [IClafer] -> m ([IElement], Maybe PExp, [IClafer])
resolveEInheritance predecessors unrollables absAncestor declarations allSuper = do
let superList = (if absAncestor then id else tail) allSuper
let unrollSuper = filter (\s -> _uid s `notElem` unrollables) $ tail allSuper
elements' <-
mapM (resolveEElement predecessors unrollables True declarations) $
unrollSuper >>= _elements
let super' = case (`elem` unrollables) <$> getSuper clafer of
[True] -> _super clafer
_ -> Nothing
return (elements', super', superList)
where
clafer = head allSuper
resolveEElement :: MonadState GEnv m => [String] -> [String] -> Bool -> [IElement] -> IElement -> m IElement
resolveEElement predecessors unrollables absAncestor declarations x = case x of
IEClafer clafer -> if _isAbstract clafer then return x else IEClafer `liftM`
resolveEClafer predecessors unrollables absAncestor declarations clafer
IEConstraint _ _ -> return x
IEGoal _ _ -> return x
resolveRedefinition :: (IModule, GEnv) -> Resolve IModule
resolveRedefinition (iModule, _) =
if (not $ null improperClafers)
then throwError $ SemanticErr noSpan ("Refinement errors in the following places:\n" ++ improperClafers)
else return iModule
where
uidIClaferMap' = createUidIClaferMap iModule
improperClafers :: String
improperClafers = foldMapIR isImproper iModule
isImproper :: Ir -> String
isImproper (IRClafer claf@IClafer{_cinPos = (Span (Pos l c) _) ,_ident=i}) =
let
match = matchNestedInheritance uidIClaferMap' claf
in
if (isProperNesting uidIClaferMap' match)
then let
(properCardinalityRefinement, properBagToSetRefinement, properTargetSubtyping) = isProperRefinement uidIClaferMap' match
in if (properCardinalityRefinement)
then if (properBagToSetRefinement)
then if (properTargetSubtyping)
then ""
else ("Improper target subtyping for clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
else ("Improper bag to set refinement for clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
else ("Improper cardinality refinement for clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
else ("Improperly nested clafer '" ++ i ++ "' on line " ++ show l ++ " column " ++ show c ++ "\n")
isImproper _ = ""