{- Copyright (C) 2012-2014 Jimmy Liang, Kacper Bak Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -} module Language.Clafer.Intermediate.SimpleScopeAnalyzer (simpleScopeAnalysis) where import Language.Clafer.Common import Data.Graph import Data.List import Data.Map (Map) import qualified Data.Map as Map import Data.Maybe import Data.Ord import Data.Ratio import Language.Clafer.Intermediate.Intclafer import Prelude hiding (exp) isReference :: IClafer -> Bool isReference = isOverlapping . super isConcrete :: IClafer -> Bool isConcrete = not . isReference isSuperest :: [IClafer] -> IClafer -> Bool isSuperest clafers clafer = isNothing $ directSuper clafers clafer -- Collects the global cardinality and hierarchy information into proper lower bounds. -- If the model only has Clafers (ie. no constraints) then the lower bound is tight. -- scopeAnalysis :: IModule -> Map IClafer Integer simpleScopeAnalysis :: IModule -> [(String, Integer)] simpleScopeAnalysis IModule{mDecls = decls'} = [(a, b) | (a, b) <- finalAnalysis, isReferenceOrSuper a, b /= 0] where finalAnalysis = Map.toList $ foldl analyzeComponent supersAnalysis connectedComponents isReferenceOrSuper uid' = isReference clafer || isSuperest clafers clafer where clafer = findClafer uid' isConcrete' uid' = isConcrete $ findClafer uid' upperCards u = Map.findWithDefault (error $ "No upper cardinality for clafer named \"" ++ u ++ "\".") u upperCardsMap upperCardsMap = Map.fromList [(uid c, snd $ fromJust $ card c) | c <- clafers] supersAnalysis = foldl (analyzeSupers clafers) Map.empty decls' constraintAnalysis = analyzeConstraints constraints upperCards (subclaferMap, parentMap) = analyzeHierarchy clafers connectedComponents = analyzeDependencies clafers clafers = concatMap findClafers decls' constraints = concatMap findConstraints decls' findClafer uid' = fromJust $ find (isEqClaferId uid') clafers lowCard clafer = max low constraintLow where low = fst $ fromJust $ card clafer constraintLow = Map.findWithDefault 0 (uid clafer) constraintAnalysis analyzeComponent analysis' component = case flattenSCC component of [uid'] -> analyzeSingleton uid' analysis' uids -> foldr analyzeSingleton assume uids where -- assume that each of the scopes in the component is 1 while solving assume = foldr (`Map.insert` 1) analysis' uids where analyzeSingleton uid' analysis'' = analyze analysis'' $ findClafer uid' analyze :: Map String Integer -> IClafer -> Map String Integer analyze analysis clafer = -- Take the max between the reference analysis and this analysis Map.insertWith max (uid clafer) scope analysis where scope | isAbstract clafer = sum subclaferScopes | otherwise = parentScope * lowCard clafer subclaferScopes = map (findOrError " subclafer scope not found" analysis) $ filter isConcrete' subclafers parentScope = case parent' of Just parent'' -> findOrError " parent scope not found" analysis parent'' Nothing -> rootScope subclafers = Map.findWithDefault [] (uid clafer) subclaferMap parent' = Map.lookup (uid clafer) parentMap rootScope = 1 findOrError message m key = Map.findWithDefault (error $ key ++ message) key m analyzeSupers :: [IClafer] -> Map String Integer -> IElement -> Map String Integer analyzeSupers clafers analysis (IEClafer clafer) = foldl (analyzeSupers clafers) analysis' (elements clafer) where lowerBound = max 1 $ fst (fromJust $ card clafer) analysis' = case (directSuper clafers clafer) of (Just c) -> Map.alter ((if isReference clafer then maxLB else incLB) lowerBound) (uid c) analysis Nothing -> analysis incLB lb' Nothing = Just lb' incLB lb' (Just lb) = Just (lb + lb') maxLB lb' Nothing = Just lb' maxLB lb' (Just lb) = Just (max lb lb') analyzeSupers _ analysis _ = analysis analyzeConstraints :: [PExp] -> (String -> Integer) -> Map String Integer analyzeConstraints constraints upperCards = foldr analyzeConstraint Map.empty $ filter isOneOrSomeConstraint constraints where isOneOrSomeConstraint PExp{exp = IDeclPExp{quant = quant'}} = -- Only these two quantifiers requires an increase in scope to satisfy. case quant' of IOne -> True ISome -> True _ -> False isOneOrSomeConstraint _ = False -- Only considers how quantifiers affect scope. Other types of constraints are not considered. -- Constraints of the type [some path1.path2] or [no path1.path2], etc. analyzeConstraint PExp{exp = IDeclPExp{oDecls = [], bpexp = bpexp'}} analysis = foldr atLeastOne analysis path' where path' = dropThisAndParent $ unfoldJoins bpexp' atLeastOne = Map.insertWith max `flip` 1 -- Constraints of the type [all disj a : path1.path2] or [some b : path3.path4], etc. analyzeConstraint PExp{exp = IDeclPExp{oDecls = decls'}} analysis = foldr analyzeDecl analysis decls' analyzeConstraint _ analysis = analysis analyzeDecl IDecl{isDisj = isDisj', decls = decls', body = body'} analysis = foldr (uncurry insert') analysis $ zip path' scores where -- Take the first element in the path', and change its effective lower cardinality. -- Can overestimate the scope. path' = dropThisAndParent $ unfoldJoins body' -- "disj a;b;c" implies at least 3 whereas "a;b;c" implies at least one. minScope = if isDisj' then fromIntegral $ length decls' else 1 insert' = Map.insertWith max scores = assign path' minScope {- - abstract Z - C * - D : integer * - - A : Z - B : integer - [some disj a;b;c;d : D | a = 1 && b = 2 && c = 3 && d = B] -} -- Need at least 4 D's per A. -- Either -- a) Make the effective lower cardinality of C=4 and D=1 -- b) Make the effective lower cardinality of C=1 and D=4 -- c) Some other combination. -- Choose b, a greedy algorithm that starts from the lowest child progressing upwards. {- - abstract Z - C * - D : integer 3..* - - A : Z - B : integer - [some disj a;b;c;d : D | a = 1 && b = 2 && c = 3 && d = B] -} -- The algorithm we do is greedy so it will chose D=3. -- However, it still needs more D's so it will choose C=2 -- C=2, D=3 -- This might not be optimum since now the scope allows for 6 D's. -- A better solution might be C=2, D=2. -- Well too bad, we are using the greedy algorithm. assign [] _ = [1] assign (p : ps) score = pScore : ps' where --upper = upperCards p ps' = assign ps score psScore = product $ ps' pDesireScore = ceiling (score % psScore) pMaxScore = upperCards p pScore = min' pDesireScore pMaxScore min' a b = if b == -1 then a else min a b -- The each child has at most one parent. No matter what the path in a quantifier -- looks like, we ignore the parent parts. dropThisAndParent = dropWhile (== "parent") . dropWhile (== "this") analyzeDependencies :: [IClafer] -> [SCC String] analyzeDependencies clafers = connComponents where connComponents = stronglyConnComp [(key, key, depends) | (key, depends) <- dependencyGraph] dependencies = concatMap (dependency clafers) clafers dependencyGraph = Map.toList $ Map.fromListWith (++) [(a, [b]) | (a, b) <- dependencies] dependency :: [IClafer] -> IClafer -> [(String, String)] dependency clafers clafer = selfDependency : (maybeToList superDependency ++ childDependencies) where -- This is to make the "stronglyConnComp" from Data.Graph play nice. Otherwise, -- clafers with no dependencies will not appear in the result. selfDependency = (uid clafer, uid clafer) superDependency | isReference clafer = Nothing | otherwise = do super' <- directSuper clafers clafer -- Need to analyze clafer before its super return (uid super', uid clafer) -- Need to analyze clafer before its children childDependencies = [(uid child, uid clafer) | child <- childClafers clafer] analyzeHierarchy :: [IClafer] -> (Map String [String], Map String String) analyzeHierarchy clafers = foldl hierarchy (Map.empty, Map.empty) clafers where hierarchy (subclaferMap, parentMap) clafer = (subclaferMap', parentMap') where subclaferMap' = case super' of Just super'' -> Map.insertWith (++) (uid super'') [uid clafer] subclaferMap Nothing -> subclaferMap super' = directSuper clafers clafer parentMap' = foldr (flip Map.insert $ uid clafer) parentMap (map uid $ childClafers clafer) directSuper :: [IClafer] -> IClafer -> Maybe IClafer directSuper clafers clafer = second $ findHierarchy getSuper clafers clafer where second [] = Nothing second [_] = Nothing second (_:x:_) = Just x -- Finds all ancestors findClafers :: IElement -> [IClafer] findClafers (IEClafer clafer) = clafer : concatMap findClafers (elements clafer) findClafers _ = [] -- Find all constraints findConstraints :: IElement -> [PExp] findConstraints IEConstraint{cpexp = c} = [c] findConstraints (IEClafer clafer) = concatMap findConstraints (elements clafer) findConstraints _ = [] -- Finds all the direct ancestors (ie. children) childClafers :: IClafer -> [IClafer] childClafers clafer = mapMaybe asClafer (elements clafer) where asClafer (IEClafer claf) = Just claf asClafer _ = Nothing -- Unfold joins -- If the expression is a tree of only joins, then this function will flatten -- the joins into a list. -- Otherwise, returns an empty list. unfoldJoins :: PExp -> [String] unfoldJoins pexp = fromMaybe [] $ unfoldJoins' pexp where unfoldJoins' PExp{exp = (IFunExp "." args)} = return $ args >>= unfoldJoins unfoldJoins' PExp{exp = IClaferId{sident = sident'}} = return $ [sident'] unfoldJoins' _ = fail "not a join"