/* Copyright (c) 2013 Scott Lembcke and Howling Moon Software * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "chipmunk/chipmunk_private.h" static void preStep(cpRotaryLimitJoint *joint, cpFloat dt) { cpBody *a = joint->constraint.a; cpBody *b = joint->constraint.b; cpFloat dist = b->a - a->a; cpFloat pdist = 0.0f; if(dist > joint->max) { pdist = joint->max - dist; } else if(dist < joint->min) { pdist = joint->min - dist; } // calculate moment of inertia coefficient. joint->iSum = 1.0f/(a->i_inv + b->i_inv); // calculate bias velocity cpFloat maxBias = joint->constraint.maxBias; joint->bias = cpfclamp(-bias_coef(joint->constraint.errorBias, dt)*pdist/dt, -maxBias, maxBias); // If the bias is 0, the joint is not at a limit. Reset the impulse. if(!joint->bias) joint->jAcc = 0.0f; } static void applyCachedImpulse(cpRotaryLimitJoint *joint, cpFloat dt_coef) { cpBody *a = joint->constraint.a; cpBody *b = joint->constraint.b; cpFloat j = joint->jAcc*dt_coef; a->w -= j*a->i_inv; b->w += j*b->i_inv; } static void applyImpulse(cpRotaryLimitJoint *joint, cpFloat dt) { if(!joint->bias) return; // early exit cpBody *a = joint->constraint.a; cpBody *b = joint->constraint.b; // compute relative rotational velocity cpFloat wr = b->w - a->w; cpFloat jMax = joint->constraint.maxForce*dt; // compute normal impulse cpFloat j = -(joint->bias + wr)*joint->iSum; cpFloat jOld = joint->jAcc; if(joint->bias < 0.0f){ joint->jAcc = cpfclamp(jOld + j, 0.0f, jMax); } else { joint->jAcc = cpfclamp(jOld + j, -jMax, 0.0f); } j = joint->jAcc - jOld; // apply impulse a->w -= j*a->i_inv; b->w += j*b->i_inv; } static cpFloat getImpulse(cpRotaryLimitJoint *joint) { return cpfabs(joint->jAcc); } static const cpConstraintClass klass = { (cpConstraintPreStepImpl)preStep, (cpConstraintApplyCachedImpulseImpl)applyCachedImpulse, (cpConstraintApplyImpulseImpl)applyImpulse, (cpConstraintGetImpulseImpl)getImpulse, }; cpRotaryLimitJoint * cpRotaryLimitJointAlloc(void) { return (cpRotaryLimitJoint *)cpcalloc(1, sizeof(cpRotaryLimitJoint)); } cpRotaryLimitJoint * cpRotaryLimitJointInit(cpRotaryLimitJoint *joint, cpBody *a, cpBody *b, cpFloat min, cpFloat max) { cpConstraintInit((cpConstraint *)joint, &klass, a, b); joint->min = min; joint->max = max; joint->jAcc = 0.0f; return joint; } cpConstraint * cpRotaryLimitJointNew(cpBody *a, cpBody *b, cpFloat min, cpFloat max) { return (cpConstraint *)cpRotaryLimitJointInit(cpRotaryLimitJointAlloc(), a, b, min, max); } cpBool cpConstraintIsRotaryLimitJoint(const cpConstraint *constraint) { return (constraint->klass == &klass); } cpFloat cpRotaryLimitJointGetMin(const cpConstraint *constraint) { cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint."); return ((cpRotaryLimitJoint *)constraint)->min; } void cpRotaryLimitJointSetMin(cpConstraint *constraint, cpFloat min) { cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint."); cpConstraintActivateBodies(constraint); ((cpRotaryLimitJoint *)constraint)->min = min; } cpFloat cpRotaryLimitJointGetMax(const cpConstraint *constraint) { cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint."); return ((cpRotaryLimitJoint *)constraint)->max; } void cpRotaryLimitJointSetMax(cpConstraint *constraint, cpFloat max) { cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint."); cpConstraintActivateBodies(constraint); ((cpRotaryLimitJoint *)constraint)->max = max; }