ChalkBoard Tutorial

Kevin Matlage and Andy Gill

Information Technology and Telecommunication Center
Department of Electrical Engineering and Computer Science
The University of Kansas
2335 Irving Hill Road
Lawrence, KS 66045
{kmatlage,andygill}@ittc.ku.edu

ChalkBoard Version 1.9.0.15

Released December 1st, 2009

This is a tutorial on how to use ChalkBoard, a domain specific language for
describing and creating images being developed at the University of Kansas.
The aim of this tutorial is to familiarize the user with some of the basic syntax
and structure possibilities that can be used within ChalkBoard.

This is an early version of ChalkBoard. Everything might change! The primary
concepts (functor based transformations of images, OpenGL acceleration) will
remain, but we are still trying to balance and tune our observable sub-language.
Applicative functors are also sure to follow, and much more experimentation is
needed.

Please let us know if there is anything we can add, and/or give feedback. Thank

you for looking at ChalkBoard.

Kevin Matlage, Andy Gill
Dec 2009

Contents

i

Installing ChalkBoard|

2

Building A Standalone ChalkBoard Binary|

l Al Al

B

ChalkBoard Examples|

3.1 Example 1 — Blue ChalkBoard|
3.2 Example 2 - Red Square] 0 L.

8.3 Example 3 - Overlayingl
8.4 Example 4 - Alpha Triangle|o 0000
8.5 Example 5 - Alpha Blending|.

3.6 Using Existing Images| 0.

3.7 Example 6 - Displaying Existing Images|

3.8 Example 7 - Image Overlayingl

3.9 Example 8 - Transformations|

3.10 Examples 9and 10[.o oL

@

ChalkBoard cabal package|

4.1 xamples|

6.1 Graphics.ChalkBoard.Board|

-
=]
]
]
1)
=
@)

6.1.3 Ways of manipulating Board.|

10
11
12
13
14
15
16
17

18
18
18
18

19

6.1.4 Ways of creating a new Board.| 21

6.2 Graphics.ChalkBoard.Of 22
6.2. NOPSIS| .« v v v o e e e e e 22
6.2.2 The Observable datatype] 22
6.2.3 The Observable languagel 23
6.3 Graphics.ChalkBoard.Shapes| 23
6.3.1 Description| 0oL 23
6.3.2 Synopsis|. 24
[6.3.3 Documentationl oL 24
6.4 Graphics.ChalkBoard. Types| 24
6.4.1 Description| o 0oL 24
6.4 pSIs 25
6.4.3 Basic types| o 25
6.4.4 Overlaying] 25
6.4.5 Scaling| 26
6.4.6 Linear Interpolation| 26
6.4.7 Averaging| 27
0648 Constantsl 27
BA9 Colordo 27
6.5 Graphics.ChalkBoard.Main| 28
6 NOPSIS| .« v v v v e e e 28
652 Documentationl oL 28
6.6 Graphics.ChalkBoard.Utils| 29
6.6.1 Description| Lo 29
6.6 DSIS| .« . . 29
6.6.3 Point Utilties).o L. 29
664 Utiltiesfor RS o oL 30
6.7 Graphics.ChalkBoard.Options| 30
671 Documentationl 30

List of Figures

[Blue ChalkBoardl 6
2 Blue ChalkBoardl 8
13 Red Squarel 9
4 Overlaying|. 10
5] Alpha Triangle] oo oo 11
6 Alpha Blending| o oo 12
7 Existing Imagelo oo 14
18 Image Overlaying| 15
9 Transformations| L. 16

1 Installing ChalkBoard

Installing ChalkBoard is easy, using the cabal install command.
$ cabal install ChalkBoard

ChalkBoard depends on a number of Haskell packages, all available on [Hackagel
cabal install ChalkBoard should take care of this.

1.1 Possible Issues

We have tested ChalkBoard on Linux and OSX. Your milage may vary on Win-
dows. Please tell us how you get on.

1.1.1 Mac OSX

One that might cause an issue is the DevIL library, Codec-Image-DevIL. We
found the underlying C library, as loaded via the port OSX package manager,
was unable to load .gif files properly. This may have been fixed.

http://hackage.haskell.org/

2 Building A Standalone ChalkBoard Binary

To build your first ChalkBoard example, type in (or cut and paste) this example
into a file Example.hs

Example.hs

import Graphics.ChalkBoard

main = startChalkBoard [] $ \ cb -> do
-- ChalkBoard commands go here
drawChalkBoard cb (boardOf blue)

Compiling this file with GHC gives a binary that
uses ChalkBoard. We use the notation $ to sig-
nify a command to be typed in.

$ ghc --make Example.hs

This binary can be executed.

$./Example
This brings up the ChalkBoard viewer on the
screen, with the default size of 400x400, and a
rather bland blue background, as shown in fig-

ure [11

)) Figure 1: Blue ChalkBoard
This example gives the first flavor of ChalkBoard.

We

e initialize a ChalkBoard viewer, giving us a ChalkBoard handle inside a
scope,

e then issue a sequence of ChalkBoard commands, in this case a single
drawChalkBoard, using the cb handle.

This completes the trivial example. In our next example, we introduce some
basic shapes.

2.1 ChalkBoard and GHCi

For technical reasons, OpenGL (which ChalkBoard uses) and GHCi do not
interact well. To mitigate this, we have provided the ChalkBoard server, which
accepts commands from the GHCi command line. We discuss using this a special
[ChalkBoard Server sectionl All the commands that we present in this and the
following sections can equally be used in stand alone or server modes; the only
difference is in initialization.

3 ChalkBoard Examples

To begin, consider this example. This example may also be found in the cabal
distribution, in tutorial/basic/Main.hs.

Main.hs
module Main where

import Graphics.ChalkBoard
main = startChalkBoard [] cbMain
cbMain cb = do

let examplel = boardOf blue
drawChalkBoard cb examplel

First, notice that the only module you need to import to use ChalkBoard is the
Graphics.ChalkBoard module. This module gives you all of the functions you
need to use ChalkBoard.

The function to begin running ChalkBoard is startChalkBoard. This function
takes two parameters. The first is a list of options, and the second is another
driver function that takes a ChalkBoard handle. For now, we leave the list of
options empty and pass our driver function cbMain for the second parameter,
defining our main as:

main = startChalkBoard [] cbMain

Now, for this tutorial, cbMain has been defined a little bit unusually. For clarity,
a lot of examples have been defined, where each example represents a Board of
RGB, or Board RGB type. At the bottom of cbMain is the line of code that
actually draws one of those boards. This line is:

drawChalkBoard chalkboard examplel

This drawChalkBoard function takes in two parameters. The first one is the
ChalkBoard handle cb, which is the only argument passed to cbMain. The
second parameter is a board of type Board RGB. In order to display any of the
examples in this tutorial, simply change which example board is being passed
to drawChalkBoard.

The rest of this section will walk through the different examples, explaining how
each of these different boards is created. This is mainly done to show the syntax
and structure that can be used while defining images in ChalkBoard. For a little
more insight on how to start creating more complicated boards, see some of the
other ChalkBoard tutorials and tests.

3.1 Example 1 — Blue ChalkBoard

In example 1, we simply draw a board filled en-
tirely with the color blue. In ChalkBoard, the
board0f function is kind of similar to pure in
that it takes a color and creates an entire board
of that color. Many common colors, like blue, are
already defined in ChalkBoard and can be used
by name. Others can easily be created by the
user, but this will be described a little bit later.

Figure 2: Blue ChalkBoard

examplel = boardOf blue

3.2 Example 2 - Red Square

In the second example, we start to introduce some
of the basic functions of ChalkBoard. Starting
on the right, square is a predefined region, or
board of booleans. It’s type, as you may expect,
is Board Bool. The choose function is one of
the most important functions in ChalkBoard. It
takes two colors and a region (Board Bool) and
maps the first color to the parts of the region that
are true and the second color to the parts of the
region that are false. In this instance, the color
red is applied to the true parts of the board (the
square) and green is applied to the false parts
of the board (outside the square). Finally, the
board is scaled by 0.5 in much the way that you

Figure 3: Red Square

would expect, reducing the sides of the square by a factor of 2 while still keeping

it centered.

This final scaling step is taken here because square and the default backing
board in ChalkBoard are both unit squares. While we can consider all the area
outside of the inner square to be green, only a certain portion of this infinite
board can be displayed. Because the default backing board in ChalkBoard is a
unit square centered at the origin, the same as the region generated by square,
we wouldn’t be able to see any of this green portion without first scaling the
image or changing the size of the default backing board.

example2 = scale 0.5 $ choose red green <$> square

3.3 Example 3 - Overlaying

Example 3 is much the same as example 2, but
with a few notable exceptions. The first is the
addition of a new function, over. What this
function does is simply overlay two boards of the
same type. While this function works over boards
of any type, it is used here over boards of bool.
This way, when the choose function is applied,
the region which is used is the resulting Board
Bool that comes from combining the circle re-
gion with the scaled square region. This brings
me to the second change worth noting, that the
scale function is now also being used over the
square region. This shows how scale can be
applied not just to the final image, but also to

Figure 4: Overlaying

boards of different types during many parts of the image specification process.
In this particular instance, it keeps the square from encompassing the circle,
allowing the resulting region to be a much more interesting shape.

example3 = scale 0.5 $ choose red blue <$> circle
‘over*
(scale 0.9 square)

10

3.4 Example 4 - Alpha Triangle

Example 4 is another one that introduces a lot of
new functions available to the user. The most ba-
sic of these functions is triangle, which creates
a region (Board Bool) similar to square. The
main difference with triangle is that it allows
the user to specify the 3 points of the triangu-
lar region that is created. While all squares can
be achieved by moving, rotating, and scaling an-
other square, this is not true of triangles, and
thus the vertices must be specified. Note that,
while the default backing board in ChalkBoard
is still a unit board, the points specified aren’t
touching the edges because the triangle is later Figure 5: Alpha Triangle
scaled by 0.5.

The next set of new functions all have to do with adding an alpha channel to
our image. The withAlpha function adds this alpha channel to a normal RGB
color with the specified value. In this example, an alpha of 0.2 is added to
the RGB color blue, resulting in an RGBA value equivalent to (0 0 1 0.2).
The transparent function is very similar, but adds a set alpha value of 0 to
the color, making it entirely transparent. Because it is entirely transparent, it
doesn’t really matter what initial color is given, but in this case, the resulting
RGBA value would be (1 1 1 0). Lastly, the unAlpha function is used to take
the Board RGBA that comes after the <$> operator, and turn it into a Board
RGB by removing the alpha channel. The image itself will not be changed by
this operation. It will look exactly as it did when it had an alpha channel, but
with the blending of colors already done so that it can be stored as RGB.

example4 = unAlpha <$> scale 0.5 (choose (withAlpha 0.2 blue)
(transparent white)
<$> triangle (-0.5,-0.5)
(0.5,-0.5)
(0,0.5))

11

3.5 Example 5 - Alpha Blending

In our fifth example, we show a little bit more
how boards can start to be built up. The Board
RGBA boards that are built up in the where clause
are combined using the over operator. Because
the cir board has a partially transparent circle
on it, this will be visible over the polygon on the
poly board. Again, scale is used on cir before it
is combined so that the circle will not completely
cover the polygon, allowing for a slightly more
interesting combination.

There are also a couple new functions used in
this example that should be pointed out. The
first of these is polygon, which takes in a list of

points to use in creating an arbitrary polygon. This allows for general shapes
to be created much more quickly and easily. It should be noted, however, that
like OpenGL, the specified polygon must be convex in order to be guaranteed
to display correctly. Concave polygons can be created using combinations of
convex polygons. The other new function is alpha, which is used to turn an
RGB color into an RGBA color with an alpha value of one. This would be the
exact same as using the withAlpha function with an argument of 1, and in this

Figure 6: Alpha Blending

instance will create an opaque red with RGBA value (1 00 1).

example5 = unAlpha <$> ((scale 0.7 cir) ‘over‘ poly)
where
cir = choose (withAlpha 0.5 blue)
(transparent white)
<$> circle
poly = choose (alpha red)
(transparent white)

<$> polygon [(0,-0.5),
(0,0.5),

.4,-

(-0.4,-0.3),
(0.4,-0.3)]

12

3.6 Using Existing Images

The examples from this point forward will all be using an image that is read in
from a file. The ChalkBoard command to create a board with an image from
a file on it is readBoard. This is an IO function, however, and so therefore
must be used outside of the let clauses that we have been using so far to specify
individual boards. At the moment, this image is always read in as an Board
RGBA strictly following the data in the file. In order to get the image board to
be visible on the backing board, however, there is some scaling and moving that
needs to be done. This is shown in the following segment of code, which can
be used to read in an image board from the file lambda.png and fit it to the
default backing board. After this segment of code is executed, img can be used
as a Board RGBA in creating other boards.

(w,h,imgBrd) <- readBoard ("lambda.png")
let wh = fromIntegral $ max w h
sc =1/ wh
wd = fromIntegral w / wh
hd = fromIntegral h / wh
img = move (-0.5 * hd,-0.5 * wd) (scale sc imgBrd)

While this method allows for the most freedom, giving the user back the actual
image board and the w and h dimensions of this board, it is not always the
easiest to work with. In order to get back a board that has already been fit
to the backing board, simply use the readNormalizedBoard function instead.
This function does the exact operations listed above and returns the original
w, h and img so that the board you get back is already fit to the ChalkBoard
backing board. From there the image board can be additionally modified by the
user, but starts in a much more usable state. An example of reading an image
in with this method is:

(w2,h2,img2) <- readNormalizedBoard ("lambda.png")

13

3.7 Example 6 - Displaying Existing Images

Example 6 doesn’t really contain any new infor-
mation. It simply shows how one would go about
using the image board that was read in from a file.
Because the image is read into a Board RGBA, it
just needs to have the alpha channel removed in
order to be displayed.

Figure 7: Existing Image

example6 = unAlpha <$> img2

14

3.8 Example 7 - Image Overlaying

Example 7 is another fairly simple extension. It
shows how one can overlay the image board above
another Board RGBA as long as the image board
contains transparency. Naturally, building up other
RGBA boards and placing them over the image
board would then draw on top of the image in-
stead.

There is one other interesting change in this ex-
ample, however, which is the ability to work with
user-defined colors instead of just the built in
colors. Creating a new color is simple, one just
uses the RGB function with arguments of the red,
green, and blue values for the new color. In this

Figure 8: Image Overlaying

way, colors can be created in much the same way as in other graphics appli-
cations. One difference, however, is that in ChalkBoard everything must be
observable in order to be compiled down into the ChalkBoard Intermediate
Representation for OpenGL translation. Because of this, the o function must
be used to lift the new color into this observable world, in much the same way

that return works for monads.

example7 = unAlpha <$> img2 ‘over‘ (board0f (alpha (o (RGB 0.5 1 0.8))))

15

3.9 Example 8 - Transformations

In example 8, the other transformation functions
are introduced. These functions are move and
rotate. Note that these functions, like scale,
also work on any type of board. The arguments
to rotate are the number of radians that you
wish to rotate the board clockwise, and then the
board itself. The move function takes an ordered
pair for its first argument, which corresponds to
the amount the board should be moved in the x
and y directions, respectively. This movement is
in relation to the ChalkBoard backing board and
can therefore easily move things off the screen, if
desired.

Figure 9: Transformations

In this particular instance, the image is scaled and then rotated before being
placed over the pure board of red. The combined board is then moved to the
right and down. Because the boards are thought to be infinite though and the
entire background is red, more red just comes in from the top left and this move
actually ends up having the same effect as it would have had if it was done prior
to the boards being overlaid (in that only the image itself appears to move).

example8 = unAlpha <$> move (0.25, -0.25) ((rotate 1 (scale 0.7 img2))
‘over*
(board0f (alpha red)))

16

3.10 Examples 9 and 10

Examples 9 and 10 will not be discussed in depth in this tutorial. These exam-
ples don’t present any new functionality, but rather show some basic extensions
to what has already been given. They are included in order to hint at some of
the simplest possibilities of using ChalkBoard to functionally create images and
animations.

In order to display either of these examples, simply switch the last two lines in
the tutorial’s Main.hs file, commenting out the simple drawChalkBoard func-
tion and uncommenting the version of drawChalkBoard that uses list compre-
hensions. Then just compile and run the program like you usually would, with
either example9 or examplelO being called from this line. Note that while most
of this tutorial has used 1 drawChalkBoard call, you can actually use as many
as you want, as demonstrated by these last couple of examples.

Keep in mind that all of these examples are extremely simple. Even these last
two still only use 1 line of code to create the board and 1 variable to change
some of the features over the list comprehension. Once you start to build up
examples that are a little bit more sophisticated, ChalkBoard clearly becomes
capable of doing a lot more than has been demonstrated here. In order to see
a couple examples that are at least a little bit more complicated, try checking
out some of the test programs provided with ChalkBoard.

17

4 ChalkBoard cabal package

ChalkBoard is packaged with cabal, and is shipped with a number of tests which
are disabled by default (if you want to just use the library, then you do not
need to build these tests, obviously). The ChalkBoard server is always built.

There are a number of extra binaries provided inside the cabal distribution,
most of them disabled by default. This page lists the various options for the
cabal package, as well as listing the tests available.

4.1 Examples

There are two examples provided, example and simple.
$ cabal configure -fexample

example, in examples/example, gives a trivial example of spinning boxes.
$ cabal configure -fsimple

simple, in examples/simple, gives a small number of tests, and was use as
material for this tutorial.

4.2 Tests

There are two test suits, one for the front end, and one for the backend.
$ cabal configure -ftestl -fcbbel

testl, in tests/testl, is our primary testing system. Typing
$ make test

inside tests/testl does a basic sanity check for ChalkBoard. cbbel should
only be used if you are developing ChalkBoard.

4.3 Benchmark

ChalkBoard ships with chalkmark, a basic timing test. At some point in the
future it will output a number, the chalkmark. It lives in tests/chalkmark.

18

5 ChalkBoard Server

The server, called chalkboard-server-1.9.0.15, is found in the server direc-
tory. The binary name is version specific, and can not be mixed and matched
with other ChalkBoard releases. Typically, its usage is transparent.

To revisit our original example, we can use the server (rather than a standalone
binary) use

ServerExample.hs

import Graphics.ChalkBoard

main = do cb <- openChalkBoard []
-- ChalkBoard commands go here
drawChalkBoard cb (board0f blue)

openChalkBoard takes the same options as createChalkBoard, but instead
of opening up a OpenGL window (using GLUT), it spawns a child that has
responsibility to open the window, and instead simply returns the ChalkBoard
handle. openChalkBoard can be used from inside GHCi or GHC, and accepts
exactly the same ChalkBoard language.

The only disadvantage is speed, because every ChalkBoard command needs to
be serialized into bits, and piped to the server.

When using the server, is completely reasonable to have multiple instances of
the server interacting with a single ChalkBoard client program.

19

6 ChalkBoard API

This is the API, as transliterated from haddock. You only need to import
Graphics.ChalkBoard, which imports the following modules.

Note: This API might change at any time. ChalkBoard is experimental.

6.1 Graphics.ChalkBoard.Board

Contents

e The Board
e Ways of manipulating Board.

e Ways of creating a new Board.

6.1.1 Synopsis

data Board a

(<$>) :: (O a->0 b)->Board a -> Board b

move :: (R, R) -> Board a -> Board a

rotate :: Radian -> Board a -> Board a

scaleXY :: (R, R) -> Board a -> Board a

boardOf :: O a -> Board a

circle :: Board Bool

box :: (Point, Point) -> Board Bool

square :: Board Bool

triangle :: Point -> Point -> Point -> Board Bool
polygon :: [Point] -> Board Bool

readBoard :: String -> IO (Int, Int, Board RGBA)
readNormalizedBoard :: String -> IO (Int, Int, Board RGBA)

6.1.2 The Board

data Board a

Instances
Show (Board a)
Scale (Board a)
Over a => Over (Board a)

20

6.1.3 Ways of manipulating Board.

(<$>) :: (O a->0b)->Board a -> Board b
fmap like operator over a Board.
move :: (R, R) -> Board a -> Board a
move moves the contents of Board
rotate :: Radian -> Board a -> Board a
rotate rotates a Board clockwise by a radian argument.
scaleXY :: (R, R) -> Board a -> Board a

scaleXY scales the contents of Board the X and Y dimension. See also
scale.

6.1.4 Ways of creating a new Board.

boardOf :: O a -> Board a

pure like operator for Board.
circle :: Board Bool

Generate a unit circle (radius .5) centered on origin
box :: (Point, Point) -> Board Bool

box generate a box between two corner points)
square :: Board Bool

Generate a unit square (1 by 1 square) centered on origin
triangle :: Point -> Point -> Point -> Board Bool

Generate an arbitary triangle from 3 points.
polygon :: [Point] -> Board Bool

Generate a (convex) polygon from a list of points. There must be at
least 3 points, and the points must form a convex polygon.

readBoard :: String -> IO (Int, Int, Board RGBA)

read a file containing a common image format (jpg, gif, etc.), and create
a 'Board RGBA’, and the X and Y size of the image.

readNormalizedBoard :: String -> IO (Int, Int, Board RGBA)

21

6.2 Graphics.ChalkBoard.O

Contents

e The Observable datatype
e The Observable language

6.2.1 Synopsis

data O o
class Obs a where
o:xa->0a
unO :: Oo->0
true :: O Bool
false :: O Bool
choose :: O 0->00->0 Bool->0 o
alpha :: O RGB -> O RGBA
withAlpha :: UI -> O RGB -> O RGBA
unAlpha :: O RGBA -> O RGB
transparent :: O RGB -> O RGBA
red :: O RGB
green :: O RGB
blue :: O RGB
white :: O RGB
black :: O RGB
cyan :: O RGB
purple :: O RGB
yellow :: O RGB

6.2.2 The Observable datatype

data O o

Instances
Show o => Show (O o)

class Obs a where

Methods
o:a->0a

Instances
Obs Bool
Obs RGBA
Obs RGB

22

unO :: Oo->o0

project into an unobservable version of O.

6.2.3 The Observable language

true :: O Bool

Observable True.
false :: O Bool

Observable False.
choose :: O 0->0 0->0 Bool->0 o

choose between two Observable alternatives, based on a Observable Bool
alpha :: O RGB -> O RGBA

Observable function to add an alpha channel.
withAlpha :: UI-> O RGB -> O RGBA

Observable function to add a preset alpha channel.
unAlpha :: O RGBA -> O RGB

Observable function to remove the alpha channel.
transparent :: O RGB -> O RGBA

Observable function to add a transparent alpha channel.
red :: O RGB
green :: O RGB

blue :: O RGB
white :: O RGB
black :: O RGB
cyan :: O RGB

purple :: O RGB
yellow :: O RGB
6.3 Graphics.ChalkBoard.Shapes

6.3.1 Description

This module contains some basic shape generators, expressed as Board
Bool.

23

6.3.2 Synopsis

straightLine :: (Point, Point) -> R -> Board Bool
pointsToLine :: [Point] -> R -> Board Bool

dotAt :: Point -> R -> Board Bool

functionLine :: (R -> Point) -> R -> Int -> Board Bool

6.3.3 Documentation

straightLine :: (Point, Point) -> R -> Board Bool

A straight line, of a given width, between two points.
pointsToLine :: [Point] -> R -> Board Bool
dotAt :: Point -> R -> Board Bool

place dot at this location, with given diameter.

functionLine :: (R -> Point) -> R -> Int -> Board Bool

A line generated by sampling a function from R to Points, with a specific
width. There needs to be at least 2 sample points.

6.4 Graphics.ChalkBoard.Types

Contents

e Basic types

e Overlaying

e Scaling

e Linear Interpolation
e Averaging

e Constants

e Colors

6.4.1 Description

This module contains the types used by chalkboard, except Board itself.

24

6.4.2 Synopsis

type Ul = R
type R = Float
type Point = (R, R)
type Radian = Float
class Over ¢ where
over : c->c->c
stack :: Over ¢ => [¢] -> ¢
class Scale ¢ where
scale:: R->c¢c->¢
class Lerp a where
lerp:: UL->a->a->a
class Average a where
average :: [a] -> a
nearZero :: R
type Gray = Ul
data RGB = RGB !UI !UI UI
data RGBA = RGBA !UT 'UT 'UI IUI

6.4.3 Basic types

type UI = R
Unit Interval: value between 0 and 1, inclusive.
type R = Float
A real number.
type Point = (R, R)
A point in R2.
type Radian = Float
Angle units

6.4.4 Overlaying

class Over ¢ where

25

For placing a value literally over another value. The 2nd value might shine
through. The operation must be associative.
Methods

over :: c->c->cC
Instances

Over Bool

Over RGBA

Over RGB

Over Gray

Over (Maybe a)

Over a => Over (Board a)

stack :: Over ¢ => [c] -> ¢

stack stacks a list of things over each other, where earlier elements are
over later elements. Requires non empty lists, which can be satisfied
by using an explicitly transparent Board as one of the elements.

6.4.5 Scaling

class Scale ¢ where

Scale something by a value. scaling value can be bigger than 1.
Methods

scale:: R->c->c¢c
Instances

Scale RGB

Scale R

Scale (Board a)

(Scale a, Scale b) => Scale ((,) a b)

6.4.6 Linear Interpolation

class Lerp a where

Linear interpolation between two values.
Methods

lerp:: Ul->a->a->a
Instances

Lerp RGB

Lerp R

Lerp a => Lerp (Maybe a)

(Lerp a, Lerp b) => Lerp ((,) a b)

26

6.4.7 Averaging

class Average a where

Average a set of values. weighting can be achived using multiple entries.
Methods

average :: [a] -> a

average is not defined for empty list

Instances

Average RGB

Average R

(Average a, Average b) => Average ((,) a b)

6.4.8 Constants

nearZero :: R

Close to zero; needed for Over (Alpha c) instance.

6.4.9 Colors

type Gray = Ul

Gray is just a value between 0 and 1, inclusive. Be careful to consider
if this is pre or post gamma.

data RGB

RGB is our color, with values between 0 and 1, inclusive.
Constructors
RGB !UI 'UI !UI
Instances
Show RGB
Binary RGB
Average RGB
Lerp RGB
Scale RGB
Over RGB
Obs RGB

data RGBA

27

RGBA is our color, with values between 0 and 1, inclusive. These values are
not prenormalized
Constructors
RGBA 'UI 'UT 'UT 'UI
Instances
Show RGBA
Binary RGBA
Over RGBA
Obs RGBA

6.5 Graphics.ChalkBoard.Main
6.5.1 Synopsis

data ChalkBoard

drawChalkBoard :: ChalkBoard -> Board RGB -> 10 ()

writeChalkBoard :: ChalkBoard -> FilePath -> 1O ()

updateChalkBoard :: ChalkBoard -> (Board RGB -> Board RGB) -> IO ()
drawRawChalkBoard :: ChalkBoard -> [Inst BufferId] -> IO ()
exitChalkBoard :: ChalkBoard -> IO ()

startChalkBoard :: [Options| -> (ChalkBoard -> 10 ()) -> IO ()
openChalkBoard :: [Options] -> IO ChalkBoard

chalkBoardServer :: 10 ()

6.5.2 Documentation

data ChalkBoard
drawChalkBoard :: ChalkBoard -> Board RGB -> 10 ()
Draw a board onto the ChalkBoard.
writeChalkBoard :: ChalkBoard -> FilePath -> 10 ()
Write the contents of a ChalkBoard into a File.
updateChalkBoard :: ChalkBoard -> (Board RGB -> Board RGB) -> IO ()
modify the current ChalkBoard.
drawRawChalkBoard :: ChalkBoard -> [Inst BufferId] -> 10 ()
Debugging hook for writing raw CBIR code.
exitChalkBoard :: ChalkBoard -> IO ()
quit ChalkBoard.
startChalkBoard :: [Options] -> (ChalkBoard -> IO ()) -> IO ()

28

Start, in this process, a ChalkBoard window, and run some commands
on it.

openChalkBoard :: [Options] -> IO ChalkBoard

Open, remotely, a ChalkBoard windown, and return a handle to it.
Needs CHALKBOARD_SERVER set to the location of the ChalkBoard

server.

chalkBoardServer : 10 ()

create an instance of the ChalkBoard. Only used by the server binary.

6.6 Graphics.ChalkBoard.Utils

Contents

e Point Utilties.
e Utilties for R.

6.6.1 Description

This module has some basic, externally visable, definitions.

6.6.2 Synopsis

insideRegion :: (Point, Point) -> Point -> Bool
insideCircle :: Point -> R -> Point -> Bool
distance :: Point -> Point -> R
intervalOnLine :: (Point, Point) -> Point -> R
circleOfDots :: Int -> [Point]

insidePoly :: [Point] -> Point -> Bool
innerSteps :: Int -> [R]

outerSteps :: Int -> [R]

fracPart :: R -> R

fromPolar :: (R, Radian) -> Point

toPolar :: Point -> (R, Radian)

angleOfLine :: (Point, Point) -> Radian

6.6.3 Point Utilties.

insideRegion :: (Point, Point) -> Point -> Bool

is a Point inside a region?

29

insideCircle :: Point -> R -> Point -> Bool
is a Point inside a circle, where the first two arguments are the center
of the circle, and the radius.

distance :: Point -> Point -> R

What is the distance between two points in R27 This is optimised for
the normal form distance pl p2 <= v, which avoids using sqrt.

intervalOnLine :: (Point, Point) -> Point -> R

intervalOnLine find the place on a line (between 0 and 1) that is closest
to the given point.

circleOfDots :: Int -> [Point]

circleOfDots generates a set of points between (-1..1,-1..1), inside a cir-
cle.

insidePoly :: [Point] -> Point -> Bool

6.6.4 Utilties for R.

innerSteps :: Int -> [R]

innerSteps takes n even steps from 0 .. 1, by not actually touching 0 or
1. The first and last step are 1/2 the size of the others, so that repeated
innerSteps can be tiled neatly.

outerSteps :: Int -> [R]

outerSteps takes n even steps from 0 .. 1, starting with 0, and ending
with 1, returning n+1 elements.

fracPart :: R -> R

Extract the fractional part of an R.
fromPolar :: (R, Radian) -> Point
toPolar :: Point -> (R, Radian)
angleOfLine :: (Point, Point) -> Radian

6.7 Graphics.ChalkBoard.Options

6.7.1 Documentation

data Options

30

Constructors
NoFBO
DebugFrames
DebugAll not supported (yet!)
DebugBoards [BufferId] not supported (yet!)
BoardSize Int Int default is 400x400.
FullScreen not supported (yet!)
Instances
Eq Options
Show Options
Binary Options

31

	Installing ChalkBoard
	Possible Issues
	Mac OSX

	Building A Standalone ChalkBoard Binary
	ChalkBoard and GHCi

	ChalkBoard Examples
	Example 1 -- Blue ChalkBoard
	Example 2 - Red Square
	Example 3 - Overlaying
	Example 4 - Alpha Triangle
	Example 5 - Alpha Blending
	Using Existing Images
	Example 6 - Displaying Existing Images
	Example 7 - Image Overlaying
	Example 8 - Transformations
	Examples 9 and 10

	ChalkBoard cabal package
	Examples
	Tests
	Benchmark

	ChalkBoard Server
	ChalkBoard API
	Graphics.ChalkBoard.Board
	Synopsis
	The Board
	Ways of manipulating Board.
	Ways of creating a new Board.

	Graphics.ChalkBoard.O
	Synopsis
	The Observable datatype
	The Observable language

	Graphics.ChalkBoard.Shapes
	Description
	Synopsis
	Documentation

	Graphics.ChalkBoard.Types
	Description
	Synopsis
	Basic types
	Overlaying
	Scaling
	Linear Interpolation
	Averaging
	Constants
	Colors

	Graphics.ChalkBoard.Main
	Synopsis
	Documentation

	Graphics.ChalkBoard.Utils
	Description
	Synopsis
	Point Utilties.
	Utilties for R.

	Graphics.ChalkBoard.Options
	Documentation

