{-| Module: Data.Morphism.Cata Copyright: (c) 2014 Frerich Raabe License: BSD3 Maintainer: frerich.raabe@gmail.com Stability: experimental This module exposes a 'makeCata' function which can create catamorphisms for arbitrary Haskell types. Catamorphisms are functions which deconstruct some value by replacing each data constructor with a custom function yielding a new value. See for a more in-depth discussion of catamorphisms in Haskell. The Haskell base package already comes with a couple of standard catamorphisms such as 'bool' (for Bool values), 'maybe' (for Maybe values) values, 'either' for (Either values) values and 'foldr' (for lists). These catamorphisms could have been generated using 'makeCata' as follows: > -- Defines 'bool :: a -> a -> Bool -> a' > $(makeCata defaultOptions ''Bool) > > -- Defines 'maybe :: b -> (a -> b) -> Maybe a -> b' > $(makeCata defaultOptions ''Maybe) > > -- Defines 'either :: (a -> c) -> (b -> c) -> Either a b -> c' > $(makeCata defaultOptions ''Either) > > -- Defines 'fold :: b -> (a -> b -> b) -> [a] -> b', i.e. 'flip foldr'. Note > -- that a custom catamorphism name has to be specified since '[]' is not a > -- valid function name. > $(makeCata defaultOptions { cataName = "fold" } ''[]) However, catamorphisms are especially useful for recursive data structures. Consider the following simple example which defines a basic data type for modelling sums of numbers, supporting variables: > {-# LANGUAGE TemplateHaskell #-} > > import Data.Morphism.Cata > import Data.Maybe (fromJust) > > data Expr a = Number a > | Variable Char > | Sum (Expr a) (Expr a) > > -- Defines 'cataExpr :: (a -> b) -> (Char -> b) -> (b -> b -> b) -> Expr a -> b' > $(makeCata defaultOptions { cataName = "cataExpr" } ''Expr) The 'makeCata' invocation defines a 'cataExpr' function which works like a fold on 'Expr' values; it can be used to implement various useful other functions: > -- Evaluate an Expr, given some variable bindings > eval :: Num a => [(Char, a)] -> Expr a -> a > eval vars = cataExpr id (fromJust . (`lookup` vars)) (+) > > -- Pretty-prints an Expr > pprint :: Show a => Expr a -> String > pprint = cataExpr show show (\a b -> a ++ " + " ++ b) > > -- Counts the number of variables used in an expr > numVars :: Expr a -> Int > numVars = cataExpr (const 1) (const 0) (+) -} {-# LANGUAGE CPP #-} module Data.Morphism.Cata ( CataOptions(..) , defaultOptions , makeCata ) where import Control.Monad (forM, replicateM) import Data.Char (toLower) import Data.Functor ((<$>)) import Language.Haskell.TH import Language.Haskell.TH.Syntax (mkNameG, NameSpace(TcClsName)) {-| Values of the 'CataOptions' type can be passed to 'makeCata' in order to customize the generated catamorphism. At this point, only the name of the function can be changed. -} data CataOptions = CataOptions { {-| The desired name for the catamorphism. An empty string will make 'makeCata' derive the catamorphism name from the type by just taking the type name and making the first letter lower-case. -} cataName :: String } {-| The default catamorphism generation options; the catamorphism will be named after the type, e.g. > $(makeCata defaultOptions ''Bool) defines a function 'bool'. -} defaultOptions :: CataOptions defaultOptions = CataOptions "" listName :: Name listName = mkNameG TcClsName "ghc-prim" "GHC.Types" "[]" makeFuncT :: Type -> Type -> Type makeFuncT a = AppT (AppT ArrowT a) conArgTypes :: Con -> [Type] conArgTypes (NormalC _ args) = map snd args conArgTypes (RecC _ args) = map (\(_,_,x) -> x) args conArgTypes (InfixC arg1 _ arg2) = map snd [arg1, arg2] conArgTypes (ForallC _ _ c) = conArgTypes c #if MIN_VERSION_template_haskell(2,11,0) conArgTypes (GadtC _ args _) = map snd args conArgTypes (RecGadtC _ args _) = map (\(_,_,x) -> x) args #endif conName :: Con -> Name conName (NormalC n _) = n conName (RecC n _) = n conName (InfixC _ n _) = n conName (ForallC _ _ c) = conName c -- How to handle these? Both constructor types take a list of names - which -- (if any) of them should we pick? #if MIN_VERSION_template_haskell(2,11,0) conName (GadtC _ _ _) = undefined conName (RecGadtC _ _ _) = undefined #endif typeName :: Type -> Maybe Name typeName (AppT t _) = typeName t typeName (ConT n) = Just n typeName ListT = Just listName typeName _ = Nothing conType :: Name -> Name -> Con -> Type conType inputT resultT c = foldr makeFuncT (VarT resultT) argTypes where argTypes = map fixupArgType (conArgTypes c) fixupArgType t = case typeName t of Just n -> if n == inputT then VarT resultT else t Nothing -> t -- |The 'makeCata' function creates a catamorphism for the given type. makeCata :: CataOptions -- Options to customize the catamorphism; the name of the defined function can be changed -> Name -- The type to generate a catamorphism for. -> Q [Dec] makeCata opts ty = do typeInfo <- reify ty (tyVarBndrs, cons) <- case typeInfo of #if MIN_VERSION_template_haskell(2,11,0) TyConI (DataD _ _ tyVarBndrs _ cons _) -> return (tyVarBndrs, cons) TyConI (NewtypeD _ _ tyVarBndrs _ con _) -> return (tyVarBndrs, [con]) #else TyConI (DataD _ _ tyVarBndrs cons _) -> return (tyVarBndrs, cons) TyConI (NewtypeD _ _ tyVarBndrs con _) -> return (tyVarBndrs, [con]) #endif _ -> fail "makeCata: Expected name of type constructor" sequence [signature tyVarBndrs cons, funDef cons] where signature :: [TyVarBndr] -> [Con] -> Q Dec signature tyVarBndrs cons = do let tyVarNames = map tyVarName tyVarBndrs let typeConType = foldl AppT (ConT ty) (map VarT tyVarNames) resultTypeName <- newName "a" let args = map (conType ty resultTypeName) cons ++ [typeConType, VarT resultTypeName] return (SigD funName (ForallT (PlainTV resultTypeName : tyVarBndrs) [] (foldr1 makeFuncT args))) funDef :: [Con] -> Q Dec funDef cons = (FunD funName . (:[])) <$> funImpl cons funName :: Name funName = mkName $ if null (cataName opts) then let (x:xs) = nameBase ty in toLower x : xs else cataName opts funImpl :: [Con] -> Q Clause funImpl cons = do conArgNames <- replicateM (length cons) (newName "c") valueArgName <- newName "x" let funArgs = map VarP (conArgNames ++ [valueArgName]) matches <- forM (zip cons conArgNames) $ \(c, cn) -> do pat@(ConP _ conPats) <- conToConP c let patNames = map (\(VarP n) -> n) conPats let translateArg t arg = case typeName t of Just n -> if n == ty then foldl AppE (VarE funName) (map VarE (conArgNames ++ [arg])) else VarE arg Nothing -> VarE arg let argsWithTypes = zipWith translateArg (conArgTypes c) patNames let bodyE = foldl AppE (VarE cn) argsWithTypes return (Match pat (NormalB bodyE) []) let bodyE = CaseE (VarE valueArgName) matches return (Clause funArgs (NormalB bodyE) []) where conToConP :: Con -> Q Pat conToConP c = do argNames <- replicateM (length . conArgTypes $ c) (VarP <$> newName "a") return (ConP (conName c) argNames) tyVarName :: TyVarBndr -> Name tyVarName (PlainTV n) = n tyVarName (KindedTV n _) = n