{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UnboxedTuples #-} -- | Cantor pairing gives us an isomorphism between a single natural number and pairs of natural numbers. This package provides a modern API to this functionality using GHC generics, allowing the encoding of arbitrary combinations of finite or countably infinite types in natural number form. -- -- As a user, all you need to do is derive generic and get the instances for free. -- -- = Example -- @ -- import GHC.Generics -- import Cantor -- -- data MyType = MyType { -- value1 :: [ Maybe Bool ] -- , value2 :: Integer -- } deriving (Generic) -- -- instance Cantor MyType -- @ -- This should work nicely even with simple inductive types: -- -- = Recursive example -- @ -- data Tree a = Leaf | Branch (Tree a) a (Tree a) deriving (Generic) -- -- instance Cantor a => Cantor (Tree a) -- @ -- -- If your type is finite, you can specify this by deriving the @Finite@ typeclass, which is a subclass of @Cantor@: -- -- = Finite example -- @ -- data Color = Red | Green | Blue deriving (Generic) -- -- instance Cantor Color -- instance Finite Color -- @ -- module Cantor ( cantorEnumeration , Cardinality(..) , Cantor(..) , Finite(..) ) where import GHC.Generics import GHC.Integer import GHC.Int import GHC.Word import GHC.Natural import Data.Semigroup import Data.Functor.Identity import qualified Data.Functor.Const import Data.Proxy import Math.NumberTheory.Powers.Squares (integerSquareRoot') import Data.Void import Data.Bits (finiteBitSize) import Data.Bits import Data.Foldable (foldl') import Math.NumberTheory.Logarithms import qualified Data.Map as M import qualified Data.Sequence import qualified Data.Set import qualified Data.IntSet -- internal value-level representation, currently only used for function enumeration data ESpace a = ESpace { eCardinality :: Cardinality , eToCantor :: Integer -> a , eFromCantor :: a -> Integer } defaultSpace :: forall a . Cantor a => ESpace a defaultSpace = ESpace { eCardinality = cardinality @a , eToCantor = toCantor , eFromCantor = fromCantor } enumerateSpace :: ESpace a -> [ a ] enumerateSpace (ESpace c te _) = case c of Finite 0 -> [] Finite i -> te <$> [ 0 .. (i - 1) ] Countable -> te <$> [ 0 .. ] -- | Enumerates all values of a type by mapping @toCantor@ over the naturals or finite subset of naturals with the correct cardinality. -- -- If the cardinality of the type is large and finite, (e.g., @IntSet@), you will need to try fixing the amount of items you want instead like @toCantor @IntSet <$> [ 0 .. 10 ]@. This is unfortunately necessary because even though the list is computed lazily in @cantorEnumeration@, its *size* is not, and the size of @IntSet@ is a *very* large number which is not feasible to compute even on a modern system (it has more than 200k terabytes of digits!). Note that if you defer to using even larger types like @Integer@ which have true non-finite cardinality instead of finite approximations like @Int@, you will naturally tend to avoid this problem. cantorEnumeration :: Cantor a => [ a ] cantorEnumeration = enumerateSpace defaultSpace instance forall a b . (Finite a , Cantor b) => Cantor (a -> b) where cardinality = case (cardinality @a , cardinality @b) of (Finite 0 , _) -> Finite 1 -- anything to the zero power is one (including zero!) (Finite c1 , Finite c2) -> Finite (c2 ^ c1) _ -> Countable toCantor i a = m M.! fromCantor a where m :: M.Map Integer b m = M.fromList $ zip [ 0 .. ] (eToCantor es i) es :: ESpace [ b ] es = nary (fCardinality @a) defaultSpace fromCantor g = eFromCantor es . fmap ((M.!) m) $ [ 0 .. (fCardinality @a - 1) ] where es :: ESpace [ b ] es = nary (fCardinality @a) defaultSpace m :: M.Map Integer b m = M.fromList $ (\x -> (fromCantor x , g x)) <$> enumerateSpace (defaultSpace @a) instance (Finite a , Finite b) => Finite (a -> b) -- | @Cardinality@ can be either @Finite@ or @Countable@. @Countable@ cardinality entails that a type has the same cardinality as the natural numbers. Note that not all infinite types are countable: for example, @Natural -> Natural@ is an infinite type, but it is not countably infinite; the basic intuition is that there is no possible way to enumerate all values of type @Natural -> Natural@ without "skipping" almost all of them. This is in contrast to the naturals, where despite their being infinite, we can trivially (by definition, in fact!) enumerate all of them without skipping any. data Cardinality = Finite Integer | Countable deriving (Generic,Eq,Ord,Show) -- | The @Finite@ typeclass simply entails that the @Cardinality@ of the set is finite. class Cantor a => Finite a where fCardinality :: Integer fCardinality = case cardinality @a of Finite i -> i _ -> error "Expected finite cardinality, got Countable." -- | The @Cantor@ class gives a way to convert a type to and from the natural numbers, as well as specifies the cardinality of the type. class Cantor a where cardinality :: Cardinality default cardinality :: GCantor a (Rep a) => Cardinality cardinality = gCardinality' @a @(Rep a) toCantor :: Integer -> a -- ideally this should be `Fin n -> a` (for finite types) -- or `N` (for countably infinite types). -- I chose not to use `Natural` from `GHC.Natural` -- because it's turned out to be a huge pain and integrates -- poorly with the haskell ecosystem default toCantor :: (Generic a , GCantor a (Rep a)) => Integer -> a toCantor = to . gToCantor' @a @(Rep a) fromCantor :: a -> Integer default fromCantor :: (Generic a , GCantor a (Rep a)) => a -> Integer fromCantor = gFromCantor' @a @(Rep a) . from instance Cantor Natural where cardinality = Countable toCantor = fromInteger fromCantor = toInteger data IntAlg = Zero | Neg Natural | Pos Natural deriving (Generic,Show) instance Cantor IntAlg toIntAlg :: Integer -> IntAlg toIntAlg 0 = Zero toIntAlg x = if x < 0 then Neg $ fromInteger $ negate (x + 1) else Pos $ fromInteger $ x - 1 fromIntAlg :: IntAlg -> Integer fromIntAlg Zero = 0 fromIntAlg (Neg x) = negate (toInteger x) - 1 fromIntAlg (Pos x) = toInteger x + 1 instance Cantor Integer where cardinality = Countable toCantor = fromIntAlg . toCantor fromCantor = fromCantor . toIntAlg instance Finite () instance Cantor () instance Cantor Void instance Finite Void instance Finite Bool instance Cantor Bool where cardinality = Finite 2 toCantor 0 = False toCantor _ = True fromCantor False = 0 fromCantor _ = 1 instance Finite Int8 instance Cantor Int8 where cardinality = Finite $ 2 ^ (8 :: Integer) toCantor = fromInteger . toCantor @Integer fromCantor = fromCantor @Integer . toInteger instance Finite Int16 instance Cantor Int16 where cardinality = Finite $ 2 ^ (16 :: Integer) toCantor = fromInteger . toCantor @Integer fromCantor = fromCantor @Integer . toInteger instance Finite Int32 instance Cantor Int32 where cardinality = Finite $ 2 ^ (32 :: Integer) toCantor = fromInteger . toCantor @Integer fromCantor = fromCantor @Integer . toInteger instance Finite Int64 instance Cantor Int64 where cardinality = Finite $ 2 ^ (64 :: Integer) toCantor = fromInteger . toCantor @Integer fromCantor = fromCantor @Integer . toInteger instance Finite Int instance Cantor Int where cardinality = Finite $ 2 ^ (finiteBitSize @Int undefined) toCantor = fromInteger . toCantor @Integer fromCantor = fromCantor @Integer . toInteger instance Finite Word8 instance Cantor Word8 where cardinality = Finite $ 2 ^ (8 :: Integer) toCantor = fromIntegral fromCantor = fromIntegral instance Finite Word16 instance Cantor Word16 where cardinality = Finite $ 2 ^ (16 :: Integer) toCantor = fromIntegral fromCantor = fromIntegral instance Finite Word32 instance Cantor Word32 where cardinality = Finite $ 2 ^ (32 :: Integer) toCantor = fromIntegral fromCantor = fromIntegral instance Finite Word64 instance Cantor Word64 where cardinality = Finite $ 2 ^ (64 :: Integer) toCantor = fromIntegral fromCantor = fromIntegral instance Finite Word instance Cantor Word where cardinality = Finite $ 2 ^ (finiteBitSize @Word undefined) toCantor = fromIntegral fromCantor = fromIntegral instance Finite Char instance Cantor Char where cardinality = Finite . fromIntegral $ (fromEnum (maxBound :: Char) :: Int) + 1 toCantor x = toEnum (fromIntegral x :: Int) fromCantor x = fromIntegral (fromEnum x :: Int) instance (Cantor a , Cantor b) => Cantor (a , b) instance (Cantor a , Cantor b , Cantor c) => Cantor (a , b , c) instance (Cantor a , Cantor b , Cantor c , Cantor d) => Cantor (a , b , c , d) instance (Cantor a , Cantor b , Cantor c , Cantor d , Cantor e) => Cantor (a , b , c , d , e) instance (Cantor a , Cantor b , Cantor c , Cantor d , Cantor e , Cantor f) => Cantor (a , b , c , d , e , f) instance (Cantor a , Cantor b , Cantor c , Cantor d , Cantor e , Cantor f , Cantor g) => Cantor (a , b , c , d , e , f , g) instance Cantor a => Cantor (Product a) instance Cantor a => Cantor (Sum a) instance Cantor a => Cantor (Last a) instance Cantor a => Cantor (First a) instance Cantor a => Cantor (Identity a) instance Cantor a => Cantor (Data.Functor.Const.Const a b) instance Cantor a => Cantor (Option a) instance Cantor a => Cantor (Min a) instance Cantor a => Cantor (Max a) instance Cantor (Proxy a) instance (Cantor a , Cantor b) => Cantor (Arg a b) instance Cantor a => Cantor (Maybe a) instance (Cantor a , Cantor b) => Cantor (Either a b) instance (Finite a , Finite b) => Finite (a , b) instance (Finite a , Finite b , Finite c) => Finite (a , b , c) instance (Finite a , Finite b , Finite c , Finite d) => Finite (a , b , c , d) instance (Finite a , Finite b , Finite c , Finite d , Finite e) => Finite (a , b , c , d , e) instance (Finite a , Finite b , Finite c , Finite d , Finite e , Finite f) => Finite (a , b , c , d , e , f) instance (Finite a , Finite b , Finite c , Finite d , Finite e , Finite f , Finite g) => Finite (a , b , c , d , e , f , g) instance Finite a => Finite (Product a) instance Finite a => Finite (Sum a) instance Finite a => Finite (Last a) instance Finite a => Finite (First a) instance Finite a => Finite (Identity a) instance Finite a => Finite (Data.Functor.Const.Const a b) instance Finite a => Finite (Option a) instance Finite a => Finite (Min a) instance Finite a => Finite (Max a) instance Finite (Proxy a) instance (Finite a , Finite b) => Finite (Arg a b) instance Finite a => Finite (Maybe a) instance (Finite a , Finite b) => Finite (Either a b) instance Cantor a => Cantor [ a ] instance Cantor a => Cantor (Data.Sequence.Seq a) where cardinality = cardinality @[ a ] toCantor = Data.Sequence.fromList . toCantor fromCantor = fromCantor . foldr (:) [] -- this algorithm is correct, but too slow for large a -- instance (Ord a , Finite a , Cantor b) => Cantor (M.Map a b) where -- cardinality = cardinality @(a -> Maybe b) -- toCantor i = m -- where -- m :: M.Map a b -- m = M.fromList $ mapMaybe (\(a,w) -> (,) a <$> w) $ zip (toCantor <$> [ 0 .. ]) (eToCantor es i) -- es :: ESpace [ Maybe b ] -- es = nary (fCardinality @a) defaultSpace -- fromCantor g = eFromCantor es . fmap (\i -> M.lookup (toCantor i) g) $ [ 0 .. (fCardinality @a - 1) ] -- where -- es :: ESpace [ Maybe b ] -- es = nary (fCardinality @a) defaultSpace -- instance (Ord a , Finite a , Finite b) => Finite (M.Map a b) -- espace for `Set (Fin c)` fSetEnum :: Integer -> ESpace (Data.Set.Set Integer) fSetEnum c = ESpace (Finite (2 ^ c)) t f where t :: Integer -> Data.Set.Set Integer t 0 = Data.Set.empty t m = Data.Set.fromAscList $ foldr g mempty [ 0 .. (integerLog2 m + 1) ] where g :: Int -> [ Integer ] -> [ Integer ] g i s = if testBit m i then toInteger i : s else s f :: Data.Set.Set Integer -> Integer f = foldl' g 0 where g :: Integer -> Integer -> Integer g a i = setBit a (fromInteger i) instance (Ord a , Finite a) => Cantor (Data.Set.Set a) where cardinality = Finite (2 ^ fCardinality @a) -- would be nice to map monotonic and save a log here, but that only works when -- Ord a respects the ordering on Integer, which we have no assurance of toCantor = Data.Set.map toCantor . eToCantor (fSetEnum (fCardinality @a)) fromCantor = eFromCantor (fSetEnum (fCardinality @a)) . Data.Set.map fromCantor instance (Ord a , Finite a) => Finite (Data.Set.Set a) -- espace for `IntSet (Fin c)`, where c is in proper range fSetEnum' :: Integer -> ESpace Data.IntSet.IntSet fSetEnum' c = ESpace (Finite (2 ^ c)) t f where t :: Integer -> Data.IntSet.IntSet t 0 = Data.IntSet.empty t m = Data.IntSet.fromAscList $ foldr g mempty [ 0 .. (integerLog2 m + 1) ] where g :: Int -> [ Int ] -> [ Int ] g i s = if testBit m i then i : s else s f :: Data.IntSet.IntSet -> Integer f = Data.IntSet.foldl' g 0 where g :: Integer -> Int -> Integer g a i = setBit a i instance Cantor Data.IntSet.IntSet where cardinality = Finite (2 ^ fCardinality @Int) toCantor = eToCantor (fSetEnum' (fCardinality @Int)) fromCantor = eFromCantor (fSetEnum' (fCardinality @Int)) instance Finite Data.IntSet.IntSet -- this algorithm is wrong; only works on Countable a. -- instance Cantor a => Cantor (Data.IntMap.Lazy.IntMap a) where -- cardinality = case cardinality @a of -- Countable -> Countable -- Finite c -> Finite $ (c + 1) ^ fCardinality @Int -- toCantor i = if i == 0 then mempty else case cantorSplit i of -- (j , k) -> Data.IntMap.Lazy.fromAscList $ zip (Data.IntSet.toAscList s) as -- where -- s :: Data.IntSet.IntSet -- s = toCantor (j + 1) -- es :: ESpace [ a ] -- es = nary (toInteger (Data.IntSet.size s)) defaultSpace -- as :: [ a ] -- as = eToCantor es k -- fromCantor m = if Data.IntMap.Lazy.null m then 0 else case unzip (Data.IntMap.Lazy.toAscList m) of -- (is , as) -> cantorUnsplit (fromCantor s , eFromCantor es as) -- where -- s = Data.IntSet.fromAscList is -- es :: ESpace [ a ] -- es = nary (toInteger (Data.IntSet.size s)) defaultSpace -- instance Finite a => Finite (Data.IntMap.Lazy.IntMap a) -- ES is just an alias to get in a position to use stimes for nary to get the nice algorithm data ES a = ES !Int (ESpace (Endo [ a ])) (ESpace [ a ]) instance Semigroup (ES a) where (<>) (ES a x x') (ES b y y') = ES (a + b) s1 s2 where s1 :: ESpace (Endo [ a ]) s1 = case x *** y of (ESpace c f _) -> ESpace c f' undefined where f' :: Integer -> Endo [ a ] f' i = case f i of (xs , ys) -> xs <> ys s2 :: ESpace [ a ] s2 = case x' *** y' of (ESpace c _ t) -> ESpace c undefined t' where t' :: [ a ] -> Integer t' = t . splitAt a nary :: forall a . Integer -> ESpace a -> ESpace [ a ] nary 0 _ = undefined nary i (ESpace c f t) = case stimes i es' of (ES _ (ESpace c' f' _) (ESpace _ _ t')) -> ESpace c' (flip appEndo [] . f') t' where toE :: [ a ] -> Endo [ a ] toE = Endo . (<>) es' :: ES a es' = ES 1 (ESpace c (\j -> toE [ f j ]) undefined) $ ESpace c undefined $ \case [ x ] -> t x _ -> error "Bounds error." infixr 7 *** (***) :: forall a b . ESpace a -> ESpace b -> ESpace (a , b) (***) (ESpace (Finite ca) tea fea) (ESpace (Finite cb) teb feb) = ESpace (Finite (ca * cb)) tec fec where tec i = let par_s = min ca cb -- small altitude of the parallelogram tri_l = par_s - 1 tri_a = (tri_l * (tri_l + 1)) `div` 2 in -- optimisation - if tri_l is 0, one or both of these is trivial and we have a line if i < tri_a then -- we're in the triangle, so just use cantor case cantorSplit i of (a , b) -> (tea a , teb b) else let j = i - tri_a -- shadowing would make this so much safer, alas... par_l = max ca cb - tri_l par_a = par_s * par_l in if j < par_a then -- find their coordinates in the box -- and then skew them to the real grid case divModInteger j par_s of (# l , s #) -> let c1 = (l + tri_l) - s c2 = s (a , b) = if ca <= cb then (c2 , c1) else (c1 , c2) in (tea a , teb b) else let k = j - par_a l = tri_a - (k + 1) in case cantorSplit l of (a , b) -> (tea (ca - (a + 1)) , teb (cb - (b + 1))) fec (a , b) = let (x , y) = (fea a , feb b) par_s = min ca cb tri_l = par_s - 1 in if y < tri_l - x then cantorUnsplit $ (x , y) else let x'' = ca - (x + 1) y'' = cb - (y + 1) in if y'' < tri_l - x'' then (ca * cb) - (cantorUnsplit (x'' , y'') + 1) else let (x' , y') = if ca <= cb then (x , y - (tri_l - x)) else (y , x - (tri_l - y)) tri_a = (tri_l * (tri_l + 1)) `div` 2 in tri_a + x' + y' * par_s (***) (ESpace (Finite ca) tea fea) (ESpace Countable teb feb) = ESpace (if ca == 0 then Finite 0 else Countable) tec fec where tec i = let par_s = ca -- small altitude of the parallelogram tri_l = par_s - 1 tri_a = (tri_l * (tri_l + 1)) `div` 2 in if i < tri_a then case cantorSplit i of (a , b) -> (tea a , teb b) else let j = i - tri_a -- shadowing would make this so much safer, alas... in case divModInteger j par_s of (# l , s #) -> let c1 = (l + tri_l) - s c2 = s (a , b) = (c2 , c1) in (tea a , teb b) fec (a , b) = let (x , y) = (fea a , feb b) par_s = ca tri_l = par_s - 1 in if y < tri_l - x then cantorUnsplit $ (x , y) else let (x' , y') = (x , y - (tri_l - x)) tri_a = (tri_l * (tri_l + 1)) `div` 2 in tri_a + x' + y' * par_s (***) (ESpace Countable tea fea) (ESpace (Finite cb) teb feb) = ESpace (if cb == 0 then Finite 0 else Countable) tec fec where tec i = let par_s = cb -- small altitude of the parallelogram tri_l = par_s - 1 tri_a = (tri_l * (tri_l + 1)) `div` 2 in if i < tri_a then case cantorSplit i of (a , b) -> (tea a , teb b) else let j = i - tri_a -- shadowing would make this so much safer, alas... in case divModInteger j par_s of (# l , s #) -> let c1 = (l + tri_l) - s c2 = s (a , b) = (c1 , c2) in (tea a , teb b) fec (a , b) = let (x , y) = (fea a , feb b) par_s = cb tri_l = par_s - 1 in if y < tri_l - x then cantorUnsplit $ (x , y) else let (x' , y') = (y , x - (tri_l - y)) tri_a = (tri_l * (tri_l + 1)) `div` 2 in tri_a + x' + y' * par_s (***) (ESpace _ tea fea) (ESpace _ teb feb) = ESpace Countable tec fec where tec i = case cantorSplit i of (a , b) -> (tea a , teb b) fec (a , b) = cantorUnsplit (fea a , feb b) -- https://en.wikipedia.org/wiki/Pairing_function#Cantor_pairing_function -- adapted for integer square rooting in the w, which should yield the same result -- but benchmarks significantly faster. buuut on closer inspection that makes no sense, since -- this is exactly what arithmoi is doing anyway... -- -- also, maybe try this https://gist.github.com/orlp/3481770 cantorSplit :: Integer -> (Integer , Integer) cantorSplit i = let w = (integerSquareRoot' (8 * i + 1) - 1) `div` 2 -- original implementation (convert to/from float for the sqrt) -- w :: Int = floor (0.5 * (sqrt (8 * fromIntegral i + 1 :: Double) - 1)) t = (w^(2 :: Int) + w) `quot` 2 y = i - t x = w - y in (x , y) cantorUnsplit :: (Integer , Integer) -> Integer cantorUnsplit (x , y) = (((x + y + 1) * (x + y)) `quot` 2) + y class GCantor s f where hasExit :: Bool gCardinality' :: Cardinality gToCantor' :: Integer -> f a gFromCantor' :: f a -> Integer instance GCantor s V1 where hasExit = False gCardinality' = Finite 0 gToCantor' = undefined gFromCantor' = undefined instance GCantor s U1 where hasExit = True gCardinality' = Finite 1 gToCantor' _ = U1 gFromCantor' _ = 0 instance {-# OVERLAPPING #-} Cantor a => GCantor a (K1 i a) where hasExit = False gCardinality' = Countable gToCantor' = K1 . toCantor gFromCantor' (K1 x) = fromCantor x instance {-# OVERLAPPABLE #-} Cantor b => GCantor w (K1 i b) where hasExit = True gCardinality' = cardinality @b gToCantor' = K1 . toCantor gFromCantor' (K1 x) = fromCantor x instance (GCantor s a , GCantor s b) => GCantor s (a :*: b) where hasExit = hasExit @s @a && hasExit @s @b gCardinality' = case (gCardinality' @s @a , gCardinality' @s @b) of (Finite i , Finite j) -> Finite (i * j) (Finite 0 , _) -> Finite 0 (_ , Finite 0) -> Finite 0 _ -> Countable gToCantor' i = case (gCardinality' @s @a , gCardinality' @s @b) of (Finite ca , Finite cb) -> let par_s = min ca cb -- small altitude of the parallelogram tri_l = par_s - 1 tri_a = (tri_l * (tri_l + 1)) `div` 2 in -- optimisation - if tri_l is 0, one or both of these is trivial and we have a line if i < tri_a then -- we're in the triangle, so just use cantor case cantorSplit i of (a , b) -> (gToCantor' @s @a a :*: gToCantor' @s @b b) else let j = i - tri_a -- shadowing would make this so much safer, alas... par_l = max ca cb - tri_l par_a = par_s * par_l in if j < par_a then -- find their coordinates in the box -- and then skew them to the real grid case divModInteger j par_s of (# l , s #) -> let c1 = (l + tri_l) - s c2 = s (a , b) = if ca <= cb then (c2 , c1) else (c1 , c2) in (gToCantor' @s @a a :*: gToCantor' @s @b b) else let k = j - par_a l = tri_a - (k + 1) in case cantorSplit l of (a , b) -> (gToCantor' @s @a (ca - (a + 1)) :*: gToCantor' @s @b (cb - (b + 1))) (Finite ca , Countable) -> let par_s = ca -- small altitude of the parallelogram tri_l = par_s - 1 tri_a = (tri_l * (tri_l + 1)) `div` 2 in if i < tri_a then case cantorSplit i of (a , b) -> (gToCantor' @s @a a :*: gToCantor' @s @b b) else let j = i - tri_a -- shadowing would make this so much safer, alas... in case divModInteger j par_s of (# l , s #) -> let c1 = (l + tri_l) - s c2 = s (a , b) = (c2 , c1) in (gToCantor' @s @a a :*: gToCantor' @s @b b) (Countable , Finite cb) -> let par_s = cb -- small altitude of the parallelogram tri_l = par_s - 1 tri_a = (tri_l * (tri_l + 1)) `div` 2 in if i < tri_a then case cantorSplit i of (a , b) -> (gToCantor' @s @a a :*: gToCantor' @s @b b) else let j = i - tri_a -- shadowing would make this so much safer, alas... in case divModInteger j par_s of (# l , s #) -> let c1 = (l + tri_l) - s c2 = s (a , b) = (c1 , c2) in (gToCantor' @s @a a :*: gToCantor' @s @b b) _ -> case cantorSplit i of (a , b) -> (gToCantor' @s @a a :*: gToCantor' @s @b b) gFromCantor' (a :*: b) = case (gCardinality' @s @a , gCardinality' @s @b) of (Finite ca , Finite cb) -> let (x , y) = (gFromCantor' @s @a a , gFromCantor' @s @b b) par_s = min ca cb tri_l = par_s - 1 in if y < tri_l - x then cantorUnsplit $ (x , y) else let x'' = ca - (x + 1) y'' = cb - (y + 1) in if y'' < tri_l - x'' then (ca * cb) - (cantorUnsplit (x'' , y'') + 1) else let (x' , y') = if ca <= cb then (x , y - (tri_l - x)) else (y , x - (tri_l - y)) tri_a = (tri_l * (tri_l + 1)) `div` 2 in tri_a + x' + y' * par_s (Finite ca , Countable) -> let (x , y) = (gFromCantor' @s @a a , gFromCantor' @s @b b) par_s = ca tri_l = par_s - 1 in if y < tri_l - x then cantorUnsplit $ (x , y) else let (x' , y') = (x , y - (tri_l - x)) tri_a = (tri_l * (tri_l + 1)) `div` 2 in tri_a + x' + y' * par_s (Countable , Finite cb) -> let (x , y) = (gFromCantor' @s @a a , gFromCantor' @s @b b) par_s = cb tri_l = par_s - 1 in if y < tri_l - x then cantorUnsplit $ (x , y) else let (x' , y') = (y , x - (tri_l - y)) tri_a = (tri_l * (tri_l + 1)) `div` 2 in tri_a + x' + y' * par_s _ -> cantorUnsplit (gFromCantor' @s @a a , gFromCantor' @s @b b) -- in this instance, make sure we head towards the exit if there is one, otherwise we can get -- stuck endlessly in the labyrinth instance (GCantor s a , GCantor s b) => GCantor s (a :+: b) where hasExit = hasExit @s @a || hasExit @s @b gCardinality' = case (gCardinality' @s @a , gCardinality' @s @b) of (Finite i , Finite j) -> Finite (i + j) _ -> Countable gToCantor' i = case (gCardinality' @s @a , gCardinality' @s @b) of (Finite ca , Finite cb) -> if i < 2 * min ca cb then case divModInteger i 2 of (# k , 0 #) -> L1 $ gToCantor' @s @a k (# k , _ #) -> R1 $ gToCantor' @s @b k else if ca > cb then L1 $ gToCantor' @s @a (i - cb) else R1 $ gToCantor' @s @b (i - ca) (Finite ca , Countable) -> if i < 2 * ca then case divModInteger i 2 of (# k , 0 #) -> L1 $ gToCantor' @s @a k (# k , _ #) -> R1 $ gToCantor' @s @b k else R1 $ gToCantor' @s @b (i - ca) (Countable , Finite _) -> case gToCantor' @s @(b :+: a) i of L1 x -> R1 x R1 x -> L1 x _ -> if not (hasExit @s @a) && hasExit @s @b then case gToCantor' @s @(b :+: a) i of L1 x -> R1 x R1 x -> L1 x else case divModInteger i 2 of (# k , 0 #) -> L1 $ gToCantor' @s @a k (# k , _ #) -> R1 $ gToCantor' @s @b k gFromCantor' (L1 x) = case gCardinality' @s @b of Finite cb -> case gCardinality' @s @a of Countable -> gFromCantor' @s @(b :+: a) $ R1 x _ -> case gFromCantor' @s @a x of 0 -> 0 i -> i + min cb i Countable -> case gCardinality' @s @a of Countable -> if not (hasExit @s @a) && hasExit @s @b then gFromCantor' @s @(b :+: a) $ R1 x else case gFromCantor' @s @a x of 0 -> 0 i -> 2 * i _ -> case gFromCantor' @s @a x of 0 -> 0 i -> 2 * i gFromCantor' (R1 x) = case gCardinality' @s @a of Finite ca -> case gFromCantor' @s @b x of 0 -> 1 i -> i + min ca (i + 1) Countable -> case gCardinality' @s @b of Finite _ -> gFromCantor' @s @(b :+: a) $ L1 x Countable -> if not (hasExit @s @a) && hasExit @s @b then gFromCantor' @s @(b :+: a) $ L1 x else case gFromCantor' @s @b x of 0 -> 1 i -> 2 * i + 1 instance GCantor s f => GCantor s (M1 i t f) where hasExit = hasExit @s @f gCardinality' = gCardinality' @s @f gToCantor' = M1 . gToCantor' @s @f gFromCantor' (M1 x) = gFromCantor' @s @f x