module Camfort.Specification.Units.Parser ( unitParser
, UnitStatement(..)
, UnitOfMeasure(..)
, UnitPower(..)
) where
import Camfort.Analysis.CommentAnnotator
import Data.Data
import Data.List
import Data.Char (isLetter, isNumber, isAlphaNum, toLower)
import qualified Data.Text as T
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)
newtype HappyAbsSyn = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: (UnitStatement) -> (HappyAbsSyn )
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut4 :: (HappyAbsSyn ) -> (UnitStatement)
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn5 :: (Maybe [String]) -> (HappyAbsSyn )
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut5 :: (HappyAbsSyn ) -> (Maybe [String])
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn6 :: ([String]) -> (HappyAbsSyn )
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut6 :: (HappyAbsSyn ) -> ([String])
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn7 :: (UnitOfMeasure) -> (HappyAbsSyn )
happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut7 :: (HappyAbsSyn ) -> (UnitOfMeasure)
happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn8 :: ([(String, UnitOfMeasure)]) -> (HappyAbsSyn )
happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut8 :: (HappyAbsSyn ) -> ([(String, UnitOfMeasure)])
happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn9 :: ((String, UnitOfMeasure)) -> (HappyAbsSyn )
happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut9 :: (HappyAbsSyn ) -> ((String, UnitOfMeasure))
happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn10 :: (UnitOfMeasure) -> (HappyAbsSyn )
happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut10 :: (HappyAbsSyn ) -> (UnitOfMeasure)
happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn11 :: (UnitOfMeasure) -> (HappyAbsSyn )
happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut11 :: (HappyAbsSyn ) -> (UnitOfMeasure)
happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn12 :: (UnitPower) -> (HappyAbsSyn )
happyIn12 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut12 :: (HappyAbsSyn ) -> (UnitPower)
happyOut12 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn13 :: (Integer) -> (HappyAbsSyn )
happyIn13 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut13 :: (HappyAbsSyn ) -> (Integer)
happyOut13 x = Happy_GHC_Exts.unsafeCoerce# x
happyIn14 :: (String) -> (HappyAbsSyn )
happyIn14 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut14 :: (HappyAbsSyn ) -> (String)
happyOut14 x = Happy_GHC_Exts.unsafeCoerce# x
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x51\x00\x50\x00\x06\x00\x4e\x00\x03\x00\x39\x00\x0d\x00\x4d\x00\x4c\x00\x00\x00\x00\x00\x4b\x00\xff\xff\x4a\x00\x0b\x00\x40\x00\x00\x00\x49\x00\x06\x00\x0f\x00\x48\x00\x06\x00\x00\x00\x0d\x00\x47\x00\x00\x00\x46\x00\x41\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x2e\x00\x35\x00\x3b\x00\x45\x00\x06\x00\x00\x00\x00\x00\x3d\x00\x06\x00\x00\x00\x44\x00\x08\x00\x00\x00\x42\x00\x00\x00\x2e\x00\x00\x00\x00\x00\x00\x00\x29\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x34\x00\x00\x00\x2a\x00\x00\x00\x2a\x00\x43\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x2f\x00\x00\x00\x25\x00\x00\x00\x20\x00\x2c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x33\x00\x00\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x31\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xf8\xff\xee\xff\x00\x00\xeb\xff\xf7\xff\x00\x00\x00\x00\x00\x00\xf8\xff\xf7\xff\xf5\xff\x00\x00\x00\x00\x00\x00\xf0\xff\x00\x00\xfe\xff\x00\x00\x00\x00\xfc\xff\xf9\xff\xef\xff\xed\xff\xea\xff\xe7\xff\xe4\xff\xe5\xff\x00\x00\x00\x00\x00\x00\x00\x00\xf2\xff\x00\x00\xf6\xff\xec\xff\xfd\xff\x00\x00\xf4\xff\x00\x00\x00\x00\xe6\xff\x00\x00\xfa\xff\x00\x00\xe9\xff\xf1\xff\xf3\xff\x00\x00\xe8\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\x02\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x04\x00\x0c\x00\x0d\x00\x0a\x00\x03\x00\x0c\x00\x03\x00\x09\x00\x0c\x00\x04\x00\x05\x00\x0d\x00\x07\x00\x0c\x00\x0d\x00\x0c\x00\x0a\x00\x0c\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x03\x00\x04\x00\x05\x00\x06\x00\x07\x00\x03\x00\x07\x00\x03\x00\x06\x00\x07\x00\x06\x00\x07\x00\x03\x00\x02\x00\x07\x00\x06\x00\x07\x00\x04\x00\x05\x00\x00\x00\x07\x00\x0d\x00\x08\x00\x09\x00\x0a\x00\x09\x00\x0a\x00\x09\x00\x0a\x00\x09\x00\x0a\x00\x04\x00\x05\x00\x09\x00\x0a\x00\x01\x00\x03\x00\x09\x00\x03\x00\x0d\x00\x08\x00\x03\x00\x06\x00\x06\x00\x0d\x00\x03\x00\xff\xff\x08\x00\x01\x00\x01\x00\x09\x00\x0b\x00\x08\x00\xff\xff\xff\xff\x0c\x00\xff\xff\xff\xff\xff\xff\x0e\x00\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x09\x00\x0a\x00\x10\x00\x30\x00\x09\x00\x0a\x00\x0b\x00\x09\x00\x0a\x00\x0b\x00\x0d\x00\x11\x00\x0c\x00\x0a\x00\x0d\x00\x0a\x00\x32\x00\x0d\x00\x20\x00\x21\x00\x33\x00\x22\x00\x16\x00\x29\x00\x16\x00\x2e\x00\x23\x00\x23\x00\x34\x00\x25\x00\x06\x00\x07\x00\x23\x00\x24\x00\x25\x00\x06\x00\x07\x00\x29\x00\x1b\x00\x0d\x00\x06\x00\x07\x00\x0e\x00\x07\x00\x05\x00\x19\x00\x14\x00\x06\x00\x07\x00\x20\x00\x21\x00\x03\x00\x22\x00\x37\x00\x1c\x00\x1d\x00\x1e\x00\x35\x00\x1e\x00\x2d\x00\x1e\x00\x18\x00\x2d\x00\x20\x00\x21\x00\x18\x00\x19\x00\x16\x00\x1b\x00\x18\x00\x34\x00\x2c\x00\x14\x00\x1b\x00\x2b\x00\x30\x00\x28\x00\x12\x00\x00\x00\x14\x00\x03\x00\x05\x00\x18\x00\x27\x00\x14\x00\x00\x00\x00\x00\x13\x00\x00\x00\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00\x00\x00"#
happyReduceArr = Happy_Data_Array.array (1, 27) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11),
(12 , happyReduce_12),
(13 , happyReduce_13),
(14 , happyReduce_14),
(15 , happyReduce_15),
(16 , happyReduce_16),
(17 , happyReduce_17),
(18 , happyReduce_18),
(19 , happyReduce_19),
(20 , happyReduce_20),
(21 , happyReduce_21),
(22 , happyReduce_22),
(23 , happyReduce_23),
(24 , happyReduce_24),
(25 , happyReduce_25),
(26 , happyReduce_26),
(27 , happyReduce_27)
]
happy_n_terms = 15 :: Int
happy_n_nonterms = 11 :: Int
happyReduce_1 = happySpecReduce_3 0# happyReduction_1
happyReduction_1 happy_x_3
happy_x_2
happy_x_1
= case happyOut7 happy_x_2 of { happy_var_2 ->
case happyOut5 happy_x_3 of { happy_var_3 ->
happyIn4
(UnitAssignment happy_var_3 happy_var_2
)}}
happyReduce_2 = happyReduce 5# 0# happyReduction_2
happyReduction_2 (happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOutTok happy_x_3 of { (TId happy_var_3) ->
case happyOut7 happy_x_5 of { happy_var_5 ->
happyIn4
(UnitAlias happy_var_3 happy_var_5
) `HappyStk` happyRest}}
happyReduce_3 = happySpecReduce_2 1# happyReduction_3
happyReduction_3 happy_x_2
happy_x_1
= case happyOut6 happy_x_2 of { happy_var_2 ->
happyIn5
(Just happy_var_2
)}
happyReduce_4 = happySpecReduce_0 1# happyReduction_4
happyReduction_4 = happyIn5
(Nothing
)
happyReduce_5 = happySpecReduce_3 2# happyReduction_5
happyReduction_5 happy_x_3
happy_x_2
happy_x_1
= case happyOutTok happy_x_1 of { (TId happy_var_1) ->
case happyOut6 happy_x_3 of { happy_var_3 ->
happyIn6
(happy_var_1 : happy_var_3
)}}
happyReduce_6 = happySpecReduce_1 2# happyReduction_6
happyReduction_6 happy_x_1
= case happyOutTok happy_x_1 of { (TId happy_var_1) ->
happyIn6
([happy_var_1]
)}
happyReduce_7 = happySpecReduce_1 3# happyReduction_7
happyReduction_7 happy_x_1
= case happyOut10 happy_x_1 of { happy_var_1 ->
happyIn7
(happy_var_1
)}
happyReduce_8 = happySpecReduce_1 3# happyReduction_8
happyReduction_8 happy_x_1
= happyIn7
(Unitless
)
happyReduce_9 = happySpecReduce_3 3# happyReduction_9
happyReduction_9 happy_x_3
happy_x_2
happy_x_1
= happyIn7
(Unitless
)
happyReduce_10 = happySpecReduce_2 3# happyReduction_10
happyReduction_10 happy_x_2
happy_x_1
= happyIn7
(Unitless
)
happyReduce_11 = happyReduce 4# 3# happyReduction_11
happyReduction_11 (happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOut8 happy_x_3 of { happy_var_3 ->
happyIn7
(UnitRecord happy_var_3
) `HappyStk` happyRest}
happyReduce_12 = happySpecReduce_3 4# happyReduction_12
happyReduction_12 happy_x_3
happy_x_2
happy_x_1
= case happyOut9 happy_x_1 of { happy_var_1 ->
case happyOut8 happy_x_3 of { happy_var_3 ->
happyIn8
(happy_var_1 : happy_var_3
)}}
happyReduce_13 = happySpecReduce_1 4# happyReduction_13
happyReduction_13 happy_x_1
= case happyOut9 happy_x_1 of { happy_var_1 ->
happyIn8
([happy_var_1]
)}
happyReduce_14 = happySpecReduce_3 5# happyReduction_14
happyReduction_14 happy_x_3
happy_x_2
happy_x_1
= case happyOut7 happy_x_1 of { happy_var_1 ->
case happyOutTok happy_x_3 of { (TId happy_var_3) ->
happyIn9
((happy_var_3, happy_var_1)
)}}
happyReduce_15 = happySpecReduce_2 6# happyReduction_15
happyReduction_15 happy_x_2
happy_x_1
= case happyOut10 happy_x_1 of { happy_var_1 ->
case happyOut11 happy_x_2 of { happy_var_2 ->
happyIn10
(UnitProduct happy_var_1 happy_var_2
)}}
happyReduce_16 = happySpecReduce_3 6# happyReduction_16
happyReduction_16 happy_x_3
happy_x_2
happy_x_1
= case happyOut7 happy_x_1 of { happy_var_1 ->
case happyOut11 happy_x_3 of { happy_var_3 ->
happyIn10
(UnitQuotient happy_var_1 happy_var_3
)}}
happyReduce_17 = happySpecReduce_1 6# happyReduction_17
happyReduction_17 happy_x_1
= case happyOut11 happy_x_1 of { happy_var_1 ->
happyIn10
(happy_var_1
)}
happyReduce_18 = happySpecReduce_3 7# happyReduction_18
happyReduction_18 happy_x_3
happy_x_2
happy_x_1
= case happyOut11 happy_x_1 of { happy_var_1 ->
case happyOut12 happy_x_3 of { happy_var_3 ->
happyIn11
(UnitExponentiation happy_var_1 happy_var_3
)}}
happyReduce_19 = happySpecReduce_3 7# happyReduction_19
happyReduction_19 happy_x_3
happy_x_2
happy_x_1
= case happyOut10 happy_x_2 of { happy_var_2 ->
happyIn11
(happy_var_2
)}
happyReduce_20 = happySpecReduce_1 7# happyReduction_20
happyReduction_20 happy_x_1
= case happyOutTok happy_x_1 of { (TId happy_var_1) ->
happyIn11
(UnitBasic happy_var_1
)}
happyReduce_21 = happySpecReduce_1 8# happyReduction_21
happyReduction_21 happy_x_1
= case happyOut13 happy_x_1 of { happy_var_1 ->
happyIn12
(UnitPowerInteger happy_var_1
)}
happyReduce_22 = happySpecReduce_3 8# happyReduction_22
happyReduction_22 happy_x_3
happy_x_2
happy_x_1
= case happyOut13 happy_x_2 of { happy_var_2 ->
happyIn12
(UnitPowerInteger happy_var_2
)}
happyReduce_23 = happyReduce 5# 8# happyReduction_23
happyReduction_23 (happy_x_5 `HappyStk`
happy_x_4 `HappyStk`
happy_x_3 `HappyStk`
happy_x_2 `HappyStk`
happy_x_1 `HappyStk`
happyRest)
= case happyOut13 happy_x_2 of { happy_var_2 ->
case happyOut13 happy_x_4 of { happy_var_4 ->
happyIn12
(UnitPowerRational happy_var_2 happy_var_4
) `HappyStk` happyRest}}
happyReduce_24 = happySpecReduce_1 9# happyReduction_24
happyReduction_24 happy_x_1
= case happyOut14 happy_x_1 of { happy_var_1 ->
happyIn13
(read happy_var_1
)}
happyReduce_25 = happySpecReduce_2 9# happyReduction_25
happyReduction_25 happy_x_2
happy_x_1
= case happyOut14 happy_x_2 of { happy_var_2 ->
happyIn13
(read $ '-' : happy_var_2
)}
happyReduce_26 = happySpecReduce_1 10# happyReduction_26
happyReduction_26 happy_x_1
= case happyOutTok happy_x_1 of { (TNum happy_var_1) ->
happyIn14
(happy_var_1
)}
happyReduce_27 = happySpecReduce_1 10# happyReduction_27
happyReduction_27 happy_x_1
= happyIn14
("1"
)
happyNewToken action sts stk [] =
happyDoAction 14# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
TId "unit" -> cont 1#;
TRecord -> cont 2#;
TId happy_dollar_dollar -> cont 3#;
TNum "1" -> cont 4#;
TNum happy_dollar_dollar -> cont 5#;
TComma -> cont 6#;
TMinus -> cont 7#;
TExponentiation -> cont 8#;
TDivision -> cont 9#;
TDoubleColon -> cont 10#;
TEqual -> cont 11#;
TLeftPar -> cont 12#;
TRightPar -> cont 13#;
_ -> happyError' (tk:tks)
}
happyError_ 14# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)
happyThen :: () => Either AnnotationParseError a -> (a -> Either AnnotationParseError b) -> Either AnnotationParseError b
happyThen = (>>=)
happyReturn :: () => a -> Either AnnotationParseError a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> Either AnnotationParseError a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> Either AnnotationParseError a
happyError' = happyError
parseUnit tks = happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))
happySeq = happyDontSeq
data UnitStatement =
UnitAssignment (Maybe [String]) UnitOfMeasure
| UnitAlias String UnitOfMeasure
deriving Data
instance Show UnitStatement where
show (UnitAssignment (Just ss) uom) = "= unit (" ++ show uom ++ ") :: " ++ (intercalate "," ss)
show (UnitAssignment Nothing uom) = "= unit (" ++ show uom ++ ")"
show (UnitAlias s uom) = "= unit :: " ++ s ++ " = " ++ show uom
data UnitOfMeasure =
Unitless
| UnitBasic String
| UnitProduct UnitOfMeasure UnitOfMeasure
| UnitQuotient UnitOfMeasure UnitOfMeasure
| UnitExponentiation UnitOfMeasure UnitPower
| UnitRecord [(String, UnitOfMeasure)]
deriving Data
instance Show UnitOfMeasure where
show Unitless = "1"
show (UnitBasic s) = s
show (UnitProduct uom1 uom2) = show uom1 ++ " " ++ show uom2
show (UnitQuotient uom1 uom2) = show uom1 ++ " / " ++ show uom2
show (UnitExponentiation uom exp) = show uom ++ "** (" ++ show exp ++ ")"
show (UnitRecord recs) = "record (" ++ intercalate ", " (map (\ (n, u) -> n ++ " :: " ++ show u) recs) ++ ")"
data UnitPower =
UnitPowerInteger Integer
| UnitPowerRational Integer Integer
deriving Data
instance Show UnitPower where
show (UnitPowerInteger i) = show i
show (UnitPowerRational i1 i2) = show i1 ++ "/" ++ show i2
data Token =
TUnit
| TComma
| TDoubleColon
| TExponentiation
| TDivision
| TMinus
| TEqual
| TLeftPar
| TRightPar
| TRecord
| TId String
| TNum String
deriving (Show)
lexer :: String -> Either AnnotationParseError [ Token ]
lexer [] = Left NotAnnotation
lexer (c:xs)
| c `elem` ['=', '!', '>', '<'] =
if "unit" `isPrefixOf` (T.unpack . T.strip . T.toLower . T.pack $ xs)
then lexer' xs
else Left NotAnnotation
| otherwise = Left NotAnnotation
addToTokens :: Token -> String -> Either AnnotationParseError [ Token ]
addToTokens tok rest = do
tokens <- lexer' rest
return $ tok : tokens
lexer' :: String -> Either AnnotationParseError [ Token ]
lexer' [] = Right []
lexer' ['\n'] = Right []
lexer' ['\r', '\n'] = Right []
lexer' ['\r'] = Right []
lexer' (' ':xs) = lexer' xs
lexer' ('\t':xs) = lexer' xs
lexer' (':':':':xs) = addToTokens TDoubleColon xs
lexer' ('*':'*':xs) = addToTokens TExponentiation xs
lexer' (',':xs) = addToTokens TComma xs
lexer' ('/':xs) = addToTokens TDivision xs
lexer' ('-':xs) = addToTokens TMinus xs
lexer' ('=':xs) = addToTokens TEqual xs
lexer' ('(':xs) = addToTokens TLeftPar xs
lexer' (')':xs) = addToTokens TRightPar xs
lexer' (x:xs)
| isLetter x || x == '\'' = aux (\ c -> isAlphaNum c || c `elem` ['\'','_','-'])
(\ s -> if s == "record" then TRecord else TId s)
| isNumber x = aux isNumber TNum
| otherwise = failWith $ "Not valid unit syntax at " ++ show (x:xs) ++ "\n"
where
aux p cons =
let (target, rest) = span p xs
in lexer' rest >>= (\tokens -> return $ cons (x:target) : tokens)
unitParser :: String -> Either AnnotationParseError UnitStatement
unitParser src = do
tokens <- lexer $ map toLower src
parseUnit tokens
happyError :: [ Token ] -> Either AnnotationParseError a
happyError t = failWith $ "Could not parse unit specification at: " ++ show t ++ "\n"
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 17 "/usr/include/stdc-predef.h" 3 4
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail i tk st
1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = indexShortOffAddr happyActOffsets st
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else False
action
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = indexShortOffAddr happyGotoOffsets st1
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = indexShortOffAddr happyGotoOffsets st
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ i tk
happyFail i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b