module Camfort.Specification.Stencils.InferenceFrontend where
import Control.Monad.State.Strict
import Control.Monad.Reader
import Control.Monad.Writer.Strict hiding (Product)
import Camfort.Analysis.CommentAnnotator
import Camfort.Specification.Stencils.InferenceBackend
import Camfort.Specification.Stencils.Syntax
import Camfort.Specification.Stencils.Annotation
import qualified Camfort.Specification.Stencils.Grammar as Gram
import qualified Camfort.Specification.Stencils.Synthesis as Synth
import Camfort.Analysis.Annotations
import Camfort.Helpers.Vec
import Camfort.Helpers (collect)
import Camfort.Input
import qualified Camfort.Output as O
import qualified Language.Fortran.AST as F
import qualified Language.Fortran.Analysis as FA
import qualified Language.Fortran.Analysis.Types as FAT
import qualified Language.Fortran.Analysis.Renaming as FAR
import qualified Language.Fortran.Analysis.BBlocks as FAB
import qualified Language.Fortran.Analysis.DataFlow as FAD
import qualified Language.Fortran.Util.Position as FU
import qualified Language.Fortran.Util.SecondParameter as FUS
import Data.Data
import Data.Foldable
import Data.Generics.Uniplate.Operations
import Data.Graph.Inductive.Graph hiding (isEmpty)
import qualified Data.Map as M
import qualified Data.IntMap as IM
import qualified Data.Set as S
import Data.Maybe
import Data.List
import Debug.Trace
data InferMode =
DoMode | AssignMode | CombinedMode | EvalMode | Synth
deriving (Eq, Show, Data, Read)
instance Default InferMode where
defaultValue = AssignMode
data InferState = IS {
ivMap :: FAD.InductionVarMapByASTBlock,
hasSpec :: [(FU.SrcSpan, Variable)] }
type EvalLog = [(String, Variable)]
type LogLine = (FU.SrcSpan, Either [([Variable], Specification)] (String,Variable))
type Inferer = WriterT [LogLine]
(ReaderT (Cycles, F.ProgramUnitName)
(State InferState))
type Cycles = [(F.Name, F.Name)]
type Params = (?flowsGraph :: FAD.FlowsGraph A, ?nameMap :: FAR.NameMap)
runInferer :: FAD.InductionVarMapByASTBlock
-> Cycles
-> F.ProgramUnitName
-> Inferer a
-> (a, [LogLine])
runInferer ivmap cycles puName =
flip evalState (IS ivmap [])
. flip runReaderT (cycles, puName)
. runWriterT
stencilInference :: FAR.NameMap
-> InferMode
-> F.ProgramFile (FA.Analysis A)
-> (F.ProgramFile (FA.Analysis A), [LogLine])
stencilInference nameMap mode pf =
(F.ProgramFile mi cm_pus' blocks', log1 ++ log2)
where
(pf'@(F.ProgramFile mi cm_pus blocks), log0) =
if mode == Synth
then runWriter (annotateComments Gram.specParser pf)
else (pf, [])
(cm_pus', log1) = runWriter (transformBiM perPU cm_pus)
(blocks', log2) = runInferer ivMap [] F.NamelessBlockData blocksInf
blocksInf = let ?flowsGraph = flTo
?nameMap = nameMap
in descendBiM (perBlockInfer mode) blocks
perPU :: F.ProgramUnit (FA.Analysis A)
-> Writer [LogLine] (F.ProgramUnit (FA.Analysis A))
perPU pu | Just _ <- FA.bBlocks $ F.getAnnotation pu =
let ?flowsGraph = flTo
?nameMap = nameMap
in do
let pum = descendBiM (perBlockInfer mode) pu
let (pu', log) = runInferer ivMap [] (FA.puName pu) pum
tell log
return pu'
perPU pu = return pu
ivMap = FAD.genInductionVarMapByASTBlock beMap gr
rd = FAD.reachingDefinitions dm gr
flTo = FAD.genFlowsToGraph bm dm gr rd
beMap = FAD.genBackEdgeMap (FAD.dominators gr) gr
bm = FAD.genBlockMap pf'
bbm = FAB.genBBlockMap pf'
sgr = FAB.genSuperBBGr bbm
gr = FAB.superBBGrGraph sgr
dm = FAD.genDefMap bm
findVarFlowCycles :: Data a => F.ProgramFile a -> [(F.Name, F.Name)]
findVarFlowCycles = FAR.underRenaming (findVarFlowCycles' . FAB.analyseBBlocks)
findVarFlowCycles' pf = cycs2
where
bm = FAD.genBlockMap pf
bbm = FAB.genBBlockMap pf
sgr = FAB.genSuperBBGr bbm
gr = FAB.superBBGrGraph sgr
dm = FAD.genDefMap bm
rd = FAD.reachingDefinitions dm gr
flTo = FAD.genFlowsToGraph bm dm gr rd
flMap = FAD.genVarFlowsToMap dm flTo
cycs2 = [ (n, m) | (n, ns) <- M.toList flMap
, m <- S.toList ns
, ms <- maybeToList $ M.lookup m flMap
, n `S.member` ms && n /= m ]
genSpecsAndReport :: Params
=> InferMode -> FU.SrcSpan -> [Neighbour]
-> [F.Block (FA.Analysis A)]
-> Inferer [([Variable], Specification)]
genSpecsAndReport mode span lhs blocks = do
(IS ivmap _) <- get
let (specs, evalInfos) = runWriter $ genSpecifications ivmap lhs blocks
tell [ (span, Left specs) ]
if mode == EvalMode
then do
tell [ (span, Right ("EVALMODE: assign to relative array subscript\
\ (tag: tickAssign)","")) ]
mapM_ (\evalInfo -> tell [ (span, Right evalInfo) ]) evalInfos
mapM_ (\spec -> if show spec == ""
then tell [ (span, Right ("EVALMODE: Cannot make spec\
\ (tag: emptySpec)","")) ]
else return ()) specs
return specs
else return specs
isArraySubscript :: F.Expression (FA.Analysis A)
-> Maybe [F.Index (FA.Analysis A)]
isArraySubscript (F.ExpSubscript _ _ (F.ExpValue _ _ (F.ValVariable _)) subs) =
Just $ F.aStrip subs
isArraySubscript (F.ExpDataRef _ _ _ e) = isArraySubscript e
isArraySubscript _ = Nothing
fromJustMsg msg (Just x) = x
fromJustMsg msg Nothing = error msg
perBlockInfer :: Params
=> InferMode -> F.Block (FA.Analysis A) -> Inferer (F.Block (FA.Analysis A))
perBlockInfer Synth b@(F.BlComment ann span _) = do
ann' <- return $ FA.prevAnnotation ann
case (stencilSpec ann', stencilBlock ann') of
(Just (Left (Gram.SpecDec _ vars)), Just block) ->
case block of
s@(F.BlStatement _ span _ assg@(F.StExpressionAssign _ _ _ _)) -> do
state <- get
put (state { hasSpec = hasSpec state ++ zip (repeat span) vars })
_ -> return ()
return b
perBlockInfer mode b@(F.BlStatement ann span@(FU.SrcSpan lp up) _ stmnt)
| mode == AssignMode || mode == CombinedMode || mode == EvalMode || mode == Synth = do
let lhses = [lhs | (F.StExpressionAssign _ _ lhs _)
<- universe stmnt :: [F.Statement (FA.Analysis A)]]
(IS ivmap hasSpec) <- get
specs <- flip mapM lhses
(\lhs -> do
case isArraySubscript lhs of
Just subs ->
case neighbourIndex ivmap subs of
Just lhs -> genSpecsAndReport mode span lhs [b]
Nothing -> if mode == EvalMode
then do
tell [(span , Right ("EVALMODE: LHS is an array\
\ subscript we can't handle \
\(tag: LHSnotHandled)",""))]
return []
else return []
_ -> return [])
if mode == Synth && not (null specs)
then
let specComment = Synth.formatSpec (Just (tabs ++ "!= ")) ?nameMap (span, Left (concat specs'))
specs' = map (mapMaybe noSpecAlready) specs
noSpecAlready (vars, spec) =
if null vars'
then Nothing
else Just (vars', spec)
where vars' = filter (\v -> not ((span, realName v) `elem` hasSpec)) vars
realName v = v `fromMaybe` (v `M.lookup` ?nameMap)
tabs = take (FU.posColumn lp 1) (repeat ' ')
loc = fst $ O.srcSpanToSrcLocs span
span' = FU.SrcSpan (lp {FU.posColumn = 0}) (lp {FU.posColumn = 0})
ann' = ann { FA.prevAnnotation = (FA.prevAnnotation ann) { refactored = Just loc } }
in return $ F.BlComment ann' span' specComment
else return b
perBlockInfer mode b@(F.BlDo ann span x mDoSpec body) = do
if (mode == DoMode || mode == CombinedMode) && isStencilDo b
then genSpecsAndReport mode span [] body
else return []
body' <- mapM (descendBiM (perBlockInfer mode)) body
return $ F.BlDo ann span x mDoSpec body'
perBlockInfer mode b = do
mapM_ (descendBiM (perBlockInfer mode)) $ children b
return b
genSpecifications :: Params
=> FAD.InductionVarMapByASTBlock
-> [Neighbour]
-> [F.Block (FA.Analysis A)]
-> Writer EvalLog [([Variable], Specification)]
genSpecifications ivs lhs blocks = do
let subscripts = evalState (mapM (genSubscripts True) blocks) []
varToMaybeSpecs <- sequence . map strength . mkSpecs $ subscripts
let varToSpecs = catMaybes . map strength $ varToMaybeSpecs
case varToSpecs of
[] -> do
tell [("EVALMODE: Empty specification (tag: emptySpec)", "")]
return []
_ -> do
let varsToSpecs = groupKeyBy varToSpecs
return $ splitUpperAndLower varsToSpecs
where
mkSpecs = M.toList
. M.mapWithKey (\v -> indicesToSpec ivs v lhs)
. M.unionsWith (++)
strength :: Monad m => (a, m b) -> m (a, b)
strength (a, mb) = mb >>= (\b -> return (a, b))
splitUpperAndLower = concatMap splitUpperAndLower'
splitUpperAndLower' (vs, Specification (Left (Bound (Just l) (Just u)))) =
[(vs, Specification (Left (Bound (Just l) Nothing))),
(vs, Specification (Left (Bound Nothing (Just u))))]
splitUpperAndLower' x = [x]
genSubscripts :: Params
=> Bool
-> F.Block (FA.Analysis A)
-> State [Int] (M.Map Variable [[F.Index (FA.Analysis A)]])
genSubscripts False (F.BlStatement _ _ _ (F.StExpressionAssign _ _ e _))
| isArraySubscript e /= Nothing
= return M.empty
genSubscripts top block = do
visited <- get
case (FA.insLabel $ F.getAnnotation block) of
Just node
| node `elem` visited ->
return $ M.empty
| otherwise -> do
put $ node : visited
let blocksFlowingIn = mapMaybe (lab ?flowsGraph) $ pre ?flowsGraph node
dependencies <- mapM (genSubscripts False) blocksFlowingIn
return $ M.unionsWith (++) (genRHSsubscripts block : dependencies)
Nothing -> error $ "Missing a label for: " ++ show block
genRHSsubscripts ::
F.Block (FA.Analysis A)
-> M.Map Variable [[F.Index (FA.Analysis A)]]
genRHSsubscripts b =
collect [ (FA.varName exp, e)
| F.ExpSubscript _ _ exp subs <- FA.rhsExprs b
, isVariableExpr exp
, let e = F.aStrip subs
, not (null e)]
getInductionVar :: Maybe (F.DoSpecification (FA.Analysis A)) -> [Variable]
getInductionVar (Just (F.DoSpecification _ _ (F.StExpressionAssign _ _ e _) _ _))
| isVariableExpr e = [FA.varName e]
getInductionVar _ = []
isStencilDo :: F.Block (FA.Analysis A) -> Bool
isStencilDo b@(F.BlDo _ span _ mDoSpec body) =
case getInductionVar mDoSpec of
[] -> False
[ivar] -> length exprs > 0 &&
and [ all (\sub -> sub `isNeighbour` [ivar]) subs' |
F.ExpSubscript _ _ _ subs <- exprs
, let subs' = F.aStrip subs
, not (null subs') ]
where exprs = universeBi upToNextDo :: [F.Expression (FA.Analysis A)]
upToNextDo = takeWhile (not . isDo) body
isDo (F.BlDo {}) = True
isDo _ = False
isStencilDo _ = False
padZeros :: [[Int]] -> [[Int]]
padZeros ixss = let m = maximum (map length ixss)
in map (\ixs -> ixs ++ replicate (m length ixs) 0) ixss
indicesToSpec :: FAD.InductionVarMapByASTBlock
-> Variable
-> [Neighbour]
-> [[F.Index (FA.Analysis Annotation)]]
-> Writer EvalLog (Maybe Specification)
indicesToSpec ivs a lhs ixs = do
let rhses = map (map (ixToNeighbour ivs)) ixs
let (rhses', mult) = hasDuplicates rhses
if not (consistentIVSuse lhs rhses')
then do tell [("EVALMODE: Inconsistent IV use (tag: inconsistentIV)", "")]
return Nothing
else
if hasNonNeighbourhoodRelatives rhses'
then do tell [("EVALMODE: Non-neighbour relative subscripts\
\ (tag: nonNeighbour)","")]
return Nothing
else do
let rhses'' = relativise lhs rhses'
if rhses' /= rhses''
then tell [("EVALMODE: Relativized spec (tag: relativized)", "")]
else return ()
let offsets = padZeros $ map (fromJust . mapM neighbourToOffset) rhses''
tell [("EVALMODE: dimensionality=" ++
show (case offsets of [] -> 0
_ -> length (head offsets)), a)]
let spec = relativeIxsToSpec offsets
return $ fmap (setLinearity (fromBool mult)) spec
where hasNonNeighbourhoodRelatives xs = or (map (any ((==) NonNeighbour)) xs)
relativise :: [Neighbour] -> [[Neighbour]] -> [[Neighbour]]
relativise lhs rhses = foldr relativiseRHS rhses lhs
where
relativiseRHS (Neighbour lhsIV i) rhses =
map (map (relativiseBy lhsIV i)) rhses
relativiseRHS _ rhses = rhses
relativiseBy v i (Neighbour u j) | v == u = Neighbour u (j i)
relativiseBy v i (Neighbour "" j) = Constant (F.ValInteger "")
relativiseBy _ _ x = x
consistentIVSuse :: [Neighbour] -> [[Neighbour]] -> Bool
consistentIVSuse lhs [] = True
consistentIVSuse lhs rhses =
consistentRHS /= Nothing && (all consistentWithLHS (fromJust consistentRHS))
where
cmp (Neighbour v i) (Neighbour v' _) | v == v' = Just $ Neighbour v i
| otherwise = Nothing
cmp n@(Neighbour {}) (Constant _) = Just n
cmp (Constant _) n@(Neighbour {}) = Just n
cmp (NonNeighbour {}) (Neighbour {}) = Nothing
cmp (Neighbour {}) (NonNeighbour{}) = Nothing
cmp _ _ = Just $ Constant (F.ValInteger "")
consistentRHS = foldrM (\a b -> mapM (uncurry cmp) $ zip a b) (head rhses) (tail rhses)
consistentWithLHS :: Neighbour -> Bool
consistentWithLHS (Neighbour rv _) = any (matchesIV rv) lhs
consistentWithLHS _ = True
matchesIV :: Variable -> Neighbour -> Bool
matchesIV v (Neighbour v' _) | v == v' = True
matchesIV v (Neighbour v' _) | v == "" = True
matchesIV v (Neighbour v' _) | v' == "" = True
matchesIV _ _ = False
relativeIxsToSpec :: [[Int]] -> Maybe Specification
relativeIxsToSpec ixs =
if isEmpty exactSpec then Nothing else Just exactSpec
where exactSpec = inferFromIndicesWithoutLinearity . fromLists $ ixs
isNeighbour :: Data a => F.Index (FA.Analysis a) -> [Variable] -> Bool
isNeighbour exp vs =
case (ixToNeighbour' vs exp) of
Neighbour _ _ -> True
_ -> False
neighbourIndex :: FAD.InductionVarMapByASTBlock
-> [F.Index (FA.Analysis Annotation)] -> Maybe [Neighbour]
neighbourIndex ivs ixs =
if all ((/=) NonNeighbour) neighbours
then Just neighbours
else Nothing
where neighbours = map (ixToNeighbour ivs) ixs
data Neighbour = Neighbour Variable Int
| Constant (F.Value ())
| NonNeighbour deriving (Eq, Show)
neighbourToOffset :: Neighbour -> Maybe Int
neighbourToOffset (Neighbour _ o) = Just o
neighbourToOffset (Constant _) = Just absoluteRep
neighbourToOffset _ = Nothing
ixToNeighbour :: FAD.InductionVarMapByASTBlock
-> F.Index (FA.Analysis Annotation) -> Neighbour
ixToNeighbour ivmap f = ixToNeighbour' ivsList f
where
insl = FA.insLabel . F.getAnnotation $ f
errorMsg = show (ixsspan f)
++ " get IVs associated to labelled index "
++ show insl
insl' = fromJustMsg errorMsg insl
ivsList = S.toList $ fromMaybe S.empty $ IM.lookup insl' ivmap
ixsspan :: F.Index (FA.Analysis A) -> FU.SrcSpan
ixsspan (F.IxRange _ sp _ _ _) = sp
ixsspan (F.IxSingle _ sp _ _ ) = sp
ixToNeighbour' ivs (F.IxRange _ _ Nothing Nothing Nothing) = Neighbour "" 0
ixToNeighbour' ivs (F.IxRange _ _ Nothing Nothing
(Just (F.ExpValue _ _ (F.ValInteger "1")))) = Neighbour "" 0
ixToNeighbour' ivs (F.IxSingle _ _ _ exp) = expToNeighbour ivs exp
ixToNeighbour' _ _ = NonNeighbour
expToNeighbour :: forall a. Data a
=> [Variable] -> F.Expression (FA.Analysis a) -> Neighbour
expToNeighbour ivs e@(F.ExpValue _ _ v@(F.ValVariable _))
| FA.varName e `elem` ivs = Neighbour (FA.varName e) 0
| otherwise = Constant (fmap (const ()) v)
expToNeighbour ivs (F.ExpValue _ _ val) = Constant (fmap (const ()) val)
expToNeighbour ivs (F.ExpBinary _ _ F.Addition
e@(F.ExpValue _ _ (F.ValVariable _))
(F.ExpValue _ _ (F.ValInteger offs)))
| FA.varName e `elem` ivs = Neighbour (FA.varName e) (read offs)
expToNeighbour ivs (F.ExpBinary _ _ F.Addition
(F.ExpValue _ _ (F.ValInteger offs))
e@(F.ExpValue _ _ (F.ValVariable _)))
| FA.varName e `elem` ivs = Neighbour (FA.varName e) (read offs)
expToNeighbour ivs (F.ExpBinary _ _ F.Subtraction
e@(F.ExpValue _ _ (F.ValVariable _))
(F.ExpValue _ _ (F.ValInteger offs)))
| FA.varName e `elem` ivs =
Neighbour (FA.varName e) (if x < 0 then abs x else ( x))
where x = read offs
expToNeighbour ivs e =
if null ivs' then Constant (F.ValInteger "0") else NonNeighbour
where
ivs' = [i | e@(F.ExpValue _ _ (F.ValVariable {}))
<- universeBi e :: [F.Expression (FA.Analysis a)]
, let i = FA.varName e
, i `elem` ivs]
expToNeighbour ivs e = Constant (F.ValInteger "0")
isUnaryOrBinaryExpr :: F.Expression a -> Bool
isUnaryOrBinaryExpr (F.ExpUnary {}) = True
isUnaryOrBinaryExpr (F.ExpBinary {}) = True
isUnaryOrBinaryExpr _ = False
isVariableExpr :: F.Expression a -> Bool
isVariableExpr (F.ExpValue _ _ (F.ValVariable _)) = True
isVariableExpr _ = False