{- Copyright 2016, Dominic Orchard, Andrew Rice, Mistral Contrastin, Matthew Danish Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -} {-# LANGUAGE TemplateHaskell, ImplicitParams, DeriveDataTypeable #-} {- Provides various data types and type class instances for the Units extension -} module Camfort.Specification.Units.Environment where import qualified Data.Label import Data.Label.Mono (Lens) import Data.Label.Monadic hiding (modify) import Control.Monad.State.Strict hiding (gets) import qualified Language.Fortran.AST as F import qualified Language.Fortran.Analysis as FA import qualified Language.Fortran.Util.Position as FU import Camfort.Specification.Units.Parser import qualified Camfort.Specification.Units.Parser as P import Data.Char import Data.Data import Data.List import Data.Matrix import Data.Ratio data UnitInfo = Parametric (String, Int) | ParametricUse (String, Int, Int) -- identify particular instantiation of parameters | UnitName String | Undetermined String | UnitlessI | UnitMul UnitInfo UnitInfo | UnitPow UnitInfo Double deriving (Show, Eq, Ord, Data, Typeable) type EqualityConstrained = Bool data Solver = LAPACK | Custom deriving (Show, Read, Eq, Data) data AssumeLiterals = Poly | Unitless | Mixed deriving (Show, Read, Eq, Data) -- ***************** -- Syntax -- -- ***************** {- Represents a constant unit expression (i.e. one without unit variables) for the RHSs of the Gaussian matrix. e.g. Unitful [("a", 2/3), ("b",2)] represents the linear term 2/3 log a + 2 log b UnitlessC marks unitless i.e., 1 -} data UnitConstant = Unitful [(F.Name, Rational)] | UnitlessC Rational deriving (Eq, Show, Data) -- Column of the Guassian matrix associated with a variable newtype VarCol = VarCol Col deriving (Eq, Show) -- Map from Variable names to their column paired with any column of their indices -- e.g., for a(i,k) we have a map from 'a' to its column paired with -- a two element list of the columns for 'i' and 'j' newtype VarBinder = VarBinder (F.Name, FU.SrcSpan) deriving Show type VarColEnv = [(VarBinder, (VarCol, [VarCol]))] data UnitVarCategory = Literal EqualityConstrained | Temporary | Variable | Argument | Magic deriving (Eq, Show) type DerivedUnitEnv = [(F.Name, UnitConstant)] type ProcedureNames = (String, Maybe F.Name, [F.Name]) type Procedure = (Maybe VarCol, [VarCol]) type ProcedureEnv = [(String, Procedure)] type LinearSystem = (Matrix Rational, [UnitConstant]) type Row = Int type Col = Int type DebugInfo = [(Col, (FU.SrcSpan, String))] data UnitAnnotation a = UnitAnnotation { prevAnnotation :: a, unitSpec :: Maybe UnitStatement, unitInfo :: Maybe UnitInfo, unitBlock :: Maybe (F.Block (FA.Analysis (UnitAnnotation a))) } deriving (Data, Typeable, Show) dbgUnitAnnotation (UnitAnnotation _ x y z) = "{ unitSpec = " ++ show x ++ ", unitInfo = " ++ show y ++ ", unitBlock = " ++ (case z of Nothing -> "Nothing" Just (F.BlStatement _ span _ (F.StDeclaration {})) -> "Just {decl}@" ++ show span Just (F.BlStatement _ span _ _) -> "Just {stmt}@" ++ show span Just _ -> "Just ...") ++ "}" mkUnitAnnotation :: a -> UnitAnnotation a mkUnitAnnotation a = UnitAnnotation a Nothing Nothing Nothing data UnitEnv = UnitEnv { _report :: [String], _varColEnv :: VarColEnv, _derivedUnitEnv :: DerivedUnitEnv, _procedureEnv :: ProcedureEnv, _calls :: ProcedureEnv, _unitVarCats :: [UnitVarCategory], _reorderedCols :: [Int], _underdeterminedCols :: [Int], _linearSystem :: LinearSystem, _debugInfo :: DebugInfo, _tmpRowsAdded :: [Int], _tmpColsAdded :: [Int], _success :: Bool, -- This part of the state is just for some evaluation metrics _evUnitsAdded :: (Int, [String]), _evCriticals :: [Int], _puname :: Maybe F.ProgramUnitName, _hasDeclaration :: [F.Name] } deriving Show emptyUnitEnv = UnitEnv { _report = [], _varColEnv = [], _derivedUnitEnv = [], _procedureEnv = [], _calls = [], _unitVarCats = [Magic], _reorderedCols = [], _underdeterminedCols = [], _linearSystem = (fromLists [[1]], [Unitful []]), _debugInfo = [], _tmpRowsAdded = [], _tmpColsAdded = [], _success = True, --- _evUnitsAdded = (0, []), _evCriticals = [], _puname = Nothing, _hasDeclaration = [] } Data.Label.mkLabels [''UnitEnv] -- ******************* -- Syntax transformers unitMult :: UnitConstant -> UnitConstant -> UnitConstant unitMult (Unitful us) (Unitful us') = Unitful (us ++ us') unitMult (UnitlessC r) (Unitful us) = Unitful (map (\(n, u) -> (n, r * u)) us) unitMult (Unitful us) (UnitlessC r) = Unitful (map (\(n, u) -> (n, u * r)) us) unitMult (UnitlessC r) (UnitlessC r') = UnitlessC (r * r') unitScalarMult :: Rational -> UnitConstant -> UnitConstant unitScalarMult r (UnitlessC r') = UnitlessC (r * r') unitScalarMult r (Unitful us) = Unitful (map (\(n, u) -> (n, r * u)) us) convertUnit :: UnitInfo -> State UnitEnv UnitConstant convertUnit p@(Parametric {}) = error $ "Can't use parametric yet: " ++ show p convertUnit p@(ParametricUse {}) = error $ "Can't use parameteric yet" ++ show p convertUnit (UnitName u) = do denv <- gets derivedUnitEnv case lookup u denv of Just uc -> return uc Nothing -> do let u1 = Unitful [(u, 1)] derivedUnitEnv << (u, u1) return $ u1 convertUnit (Undetermined s) = return $ Unitful [] convertUnit UnitlessI = return $ UnitlessC 1 convertUnit (UnitMul u1 u2) = do u1' <- convertUnit u1 u2' <- convertUnit u2 return $ unitMult u1' u2' convertUnit (UnitPow u r) = do u' <- convertUnit u return $ unitScalarMult (toRational r) u' -- Convert parser units to UnitInfo toUnitInfo :: UnitOfMeasure -> UnitInfo toUnitInfo (UnitProduct u1 u2) = UnitMul (toUnitInfo u1) (toUnitInfo u2) toUnitInfo (UnitQuotient u1 u2) = UnitMul (toUnitInfo u1) (UnitPow (toUnitInfo u2) (-1)) toUnitInfo (UnitExponentiation u1 p) = UnitPow (toUnitInfo u1) (toDouble p) where toDouble :: UnitPower -> Double toDouble (UnitPowerInteger i) = fromInteger i toDouble (UnitPowerRational x y) = fromRational (x % y) toUnitInfo (UnitBasic str) = UnitName str toUnitInfo (P.Unitless) = UnitlessI -- ****************** -- Helpers -- Update a list state by consing infix 2 << (<<) :: MonadState f m => Lens (->) f [o] -> o -> m () (<<) lens o = lens =. (o:) -- Update a list state by appending infix 2 <<++ (<<++) lens o = lens =. (++ [o]) -- *** Operations on unit environments addCol :: UnitVarCategory -> State UnitEnv Int addCol category = do (matrix, vector) <- gets linearSystem let m = ncols matrix + 1 linearSystem =: (extendTo 0 0 m matrix, vector) unitVarCats <<++ category tmpColsAdded << m return m addRow :: State UnitEnv Int addRow = addRow' (Unitful []) addRow' :: UnitConstant -> State UnitEnv Int addRow' uc = do (matrix, vector) <- gets linearSystem let n = nrows matrix + 1 linearSystem =: (extendTo 0 n 0 matrix, vector ++ [uc]) tmpRowsAdded << n return n liftUnitEnv :: (Matrix Rational -> Matrix Rational) -> UnitEnv -> UnitEnv liftUnitEnv f = Data.Label.modify linearSystem $ \(matrix, vector) -> (f matrix, vector) resetTemps :: State UnitEnv () resetTemps = do tmpRowsAdded =: [] tmpColsAdded =: [] -------------------------------------------- -- Lookup helpers lookupCaseInsensitive :: String -> [(String, a)] -> Maybe a lookupCaseInsensitive x m = let x' = map toUpper x in (find (\(k, v) -> (map toUpper k) == x') m) >>= (return . snd) lookupWithoutSrcSpan :: F.Name -> [(VarBinder, a)] -> Maybe a lookupWithoutSrcSpan v env = snd `fmap` find f env where f (VarBinder (w, _), _) = map toUpper w == v' v' = map toUpper v lookupWithSrcSpan :: F.Name -> FU.SrcSpan -> [(VarBinder, a)] -> Maybe a lookupWithSrcSpan v s env = snd `fmap` find f env where f (VarBinder (w, t), _) = map toUpper w == v' && s == t v' = map toUpper v --------------------------------------------- trim = filter $ \(unit, r) -> r /= 0 {- Treat 'UnitConstant's as numbers -} instance Num UnitConstant where (Unitful u1) + (Unitful u2) = Unitful $ trim $ merge u1 u2 where merge [] u2 = u2 merge u1 [] = u1 merge ((unit1, r1) : u1) ((unit2, r2) : u2) | unit1 == unit2 = (unit1, r1 + r2) : merge u1 u2 | unit1 < unit2 = (unit1, r1) : merge u1 ((unit2, r2) : u2) | otherwise = (unit2, r2) : merge ((unit1, r1) : u1) u2 (UnitlessC n1) + (UnitlessC n2) = UnitlessC (n1 + n2) (Unitful units) * (UnitlessC n) = Unitful $ trim [(unit, r * n) | (unit, r) <- units] (UnitlessC n) * (Unitful units) = Unitful $ trim [(unit, n * r) | (unit, r) <- units] (UnitlessC n1) * (UnitlessC n2) = UnitlessC (n1 * n2) negate (Unitful units) = Unitful [(unit, -r) | (unit, r) <- units] negate (UnitlessC n) = UnitlessC (-n) abs (Unitful units) = Unitful [(unit, abs r) | (unit, r) <- units] abs (UnitlessC n) = UnitlessC $ abs n signum (Unitful units) = Unitful [(unit, signum r) | (unit, r) <- units] signum (UnitlessC n) = UnitlessC $ signum n fromInteger = UnitlessC . fromInteger {- Treat 'UnitConstant's as fractionals -} instance Fractional UnitConstant where (Unitful units) / (UnitlessC n) = Unitful [(unit, r / n) | (unit, r) <- units] (UnitlessC n1) / (UnitlessC n2) = UnitlessC (n1 / n2) fromRational = UnitlessC . fromRational data Consistency a = Ok a | Bad a Int (UnitConstant, [Rational]) deriving Show efmap :: (a -> a) -> Consistency a -> Consistency a efmap f (Ok x) = Ok (f x) efmap f (Bad x l msg) = Bad x l msg ifDebug :: (?debug :: Bool, Monad m) => m a -> m () ifDebug e = if ?debug then e >> return () else return ()